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1 Introduction

This paper is concerned with stability and boundededness properties of the functional dif-

ferential equation

x′(t) = F (t, xt) (1)

where xt(s) = x(t + s) for −h ≤ s ≤ 0 and h is a fixed positive constant. The equation is

investigated by means of Liapunov’s direct method.

In this discussion, (C, ‖ · ‖) is the Banach space of continuous functions φ : [−h, 0] → Rn,

‖φ‖ = sup
−h≤s≤0

|φ(s)|, and | · | is any convenient norm in Rn. The symbol ||| · ||| is used to

∗This research was supported in part by an NSF grant with number NSF-DMS-8521408.
†(On leave from Anhui University, Hefei, People’s Republic of China)
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denote the L2-norm. For a positive constant H, by CH we denote the subset of C for which

‖φ‖ < H.

It is supposed that F : [0,∞) × CH → Rn, that F is continuous, and that F takes

bounded sets into bounded sets. It is then known that if t0 ≥ 0 and φ ∈ CH then there is a

solution x(t0, φ) satisfying (1) on an interval [t0, t0 + α) with xt0(t0, φ) = φ, and with value

at t denoted by x(t, t0, φ). Moreover, if there is an H1 < H and if |x(t, t0, φ)| ≤ H1 for all

t ≥ t0 for which x(t0, φ) can be defined, then α = ∞.

Throughout this paper we work with wedges, denoted by Wi, which are continuous func-

tions from [0,∞) → [0,∞), which are strictly increasing, and which satisfy Wi(0) = 0.

These wedges are related to properties of continuous scalar functionals (called Liapunov

functionals) V : [0,∞)× CH → [0,∞) which are differentiated along solutions of (1) by the

relation

V ′
(1)(t, φ) = lim sup

δ→0+

[V (t + δ, xt+δ(t, φ)) − V (t, φ)]/δ .

Detailed consequences of this derivative are discussed in ([2],[6],[7],[11]). Those consequences

are concerned with the following properties of (1).

DEFINITION 1. Let F (t, 0) = 0 so that x = 0 is a solution of (1).

(a) The zero solution of (1) is stable if for each ε > 0 and t0 ≥ 0 there exists δ > 0

such that [φ ∈ Cδ, t ≥ t0] imply that |x(t, t0, φ)| < ε.

(b) The zero solution of (1) is uniformly stable (U.S.) if it is stable and if δ is

independent of t0.
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(c) The zero solution of (1) is asymptotically stable (A.S.) if it is stable and if for

each t0 ≥ 0 there is a γ > 0 such that φ ∈ Cγ implies that |x(t, t0, φ)| → 0 as

t → ∞.

(d) The zero solution of (1) is uniformly asymptotically stable (U.A.S.) if it is U.S.

and if there is an γ > 0 and for each µ > 0 there is a T > 0 such that

[t0 ≥ 0, φ ∈ Cγ, t ≥ t0 + T ] imply that |x(t, t0, φ)| < µ.

The following result is the standard theorem for (1).

THEOREM 0. Let V : [0,∞) ×CH → [0,∞) be continuous.

(a) If W1(|φ(0)|) ≤ V (t, φ), V (t, 0) = 0, and V ′
(1)(t, φ) ≤ 0, then x = 0 is stable.

(b) If W1(|φ(0)|) ≤ V (t, φ) ≤ W2(‖φ‖) and V ′
(1)(t, φ) ≤ 0, then x = 0 is U.S.

(c) If W1(|φ(0)|) ≤ V (t, φ) ≤ W2(‖φ‖), V ′
(1)(t, φ) ≤ −W3(|φ(0)|), and if |F (t, φ)| is

bounded for φ bounded, then x = 0 is U.A.S.

(d) If W1(|φ(0)|) ≤ V (t, φ) ≤ W2(|φ(0)|)+W3(|||φ|||) and V ′
(1)(t, φ) ≤ −W4(|φ(0)|),

then x = 0 is U.A.S.

So frequently in applications a functional V is constructed with numerous properties

similar (but different from) those listed in Theorem 0. It is then of interest to find alternate

properties which will imply some type of stability. In this paper we show some effective ways

of doing that using Jensen’s inequality. The discussion here closely follows that of Natanson

[9; pp. 36–46].

DEFINITION 2. Let G : [a, b] → (−∞,∞) with

G ([t1 + t2]/2) ≤ [G(t1) + G(t2)]/2
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for any t1, t2 ∈ [a, b], then G is convex downward.

LEMMA 1. If f : [a, b] → (−∞,∞) is increasing, then

F (t) =

∫ t

a

f(u)du

is convex downward.

We note, in particular, that if W (r) is a wedge then W1(r) =
r
∫

0

W (s)ds is a wedge and

that on [0, 1] then W1(r) ≤ W (r). This means that for any local result which we state with

V ′
(1)(t, φ) ≤ −W (|φ(0)|)

it is no loss of generality to assume that W is convex downward.

THEOREM 2 (JENSEN). Let Φ : (−∞,∞) → (−∞,∞) be continuous and convex

downward. If f and p are continuous on [a, b] with p(t) ≥ 0 and
b
∫

a

p(t)dt > 0, then

Φ





b
∫

a

f(t)p(t)dt/

b
∫

a

p(t)dt



 ≤
b

∫

a

Φ(f(t))p(t)dt/

∫ b

a

p(t)dt .

Throughout this paper we will apply this inequality to wedges; thus it suffices to regard

Φ : [0,∞) → [0,∞).

The following type of function plays a central role with Jensen’s inequality and, hence, is

called a J -function.

DEFINITION 3. A continuous function η : [0,∞) → [0,∞) is said to be a J -function if η

is non-increasing, η /∈ L1[0,∞), and for each h > 0 there is an M > 0 with
t
∫

t−h

η(s)ds ≤ Mη(t)

for h ≤ t < ∞.

The function defined by η(t) = 1/(t + 1) is a J -function.

In the way of notation we remark that when a function is written without its argument,

then that argument is t.
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Parts (a), (b), and (c) of Theorem 0 constitute the classical result for (1) which stood

from Krasovskii’s formulation in 1956 (cf. [8; pp. 152–157]) until 1978 when part (d) was

proved by Burton [1]. While the upper bound on V in part (d) is more stringent than the

one used in part (c), the requirement in (c) that |F (t, φ)| be bounded is considered by most

investigators to be entirely unacceptable and one of the main thrusts of investigators has

been to eliminate that type of condition. A counterpart for part (d) of Theorem 0 has been

obtained by Wen [10] using a Razumikhin technique. For a summary, see [4].

2 Asymptotic Stability

Our first results focus on relations which are variants of V ′
(1)(t, φ) ≤ −δ|F (t, φ)|, δ > 0. This

means that a solution of (1) satisfies

V (t, xt) ≤ V (t0, xt0) − δ(Arc length x(t)).

While this appears to be a strong condition, with the aid of Jensen’s inequality we show that

the net result can frequently be realized. This leads us to the scalar equation

x′ = a(t)x(t) + b(t)x(t− h)

in which we show that if (among other conditions) we have a(t) + b(t + h) ≤ −β < 0 for all

t, then x(t) → 0 as t → ∞; in fact, a(t) and b(t) can change sign.

The results frequently require U.S., which follows from Theorem 0(b), but examples show

that it is sometimes prudent to give a separate set of conditions for the U.S.

THEOREM 1. Let V : R+ × CH → [0,∞) and η : [0,∞) → [0,∞) both be continuous

with

(i) W1(|x(t)|) ≤ V (t, xt),
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(ii) V ′
(1)(t, xt) ≤ −η(t)[W2(|x|) + W3(|x′|)],

(iii) W3 convex downward,

(iv) η a J -function, and

(v) x = 0 U.S.

Then x = 0 is A.S.

PROOF. By (v), there is a γ > 0 such that [t0 ≥ 0, φ ∈ Cγ, t ≥ t0] imply that

|x(t, t0, φ)| < H. Suppose that for some such (t0, φ), the solution x(t) = x(t, t0, φ) 9 0 as

t → ∞. By the uniform stability there is an ε > 0 and an ri in each interval Ii = [t0 + ih,

t0 + (i + 1)h] with |x(ri)| ≥ ε. If t ∈ In+1, then

V (t, xt) ≤ V (t0, φ) −
n

∑

i=0

∫

Ii

η(s)W2(|x(s)|)ds

−
n

∑

i=0

∫

Ii

η(s)W3(|x′(s)|)ds.

On each Ii either |x(t)| ≥ ε/2 for every t in Ii or there is an si with |x(si)| ≤ ε/2 and, in

the latter case, we have

∫

Ii

|x′(s)|ds ≥
∣

∣

∣

∣

∫ si

ri

|x′(s)|ds

∣

∣

∣

∣

≥ |x(si) − x(ri)| ≥ ε/2.

In the first case we have

∫

Ii

η(s)W2(|x(s)|)ds ≥ W2(ε/2)

∫

Ii

η(s)ds,
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whereas the second case yields

∫

Ii

η(s)W3(|x′(s)|)ds

≥
(

∫

Ii

η(s)ds

)

W3

([
∫

Ii

|η(s)x′(s)|ds

]/[
∫

Ii

η(s)ds

])

≥
(

∫

Ii

η(s)ds

)

W3

(

η(t0 + (i + 1)h)

)[
∫

Ii

|x′(s)|ds

]/[
∫

Ii

η(s)ds

]

≥
(

∫

Ii

η(s)ds

)

W3

[

(1/M)

∫

Ii

|x′(s)|ds

]

≥ W3(ε/2M)

∫

Ii

η(s)ds.

If J = min[W2(ε/2), W3(ε/2M)], then

0 ≤ V (t, xt) ≤ V (t0, φ) − J
n

∑

i=0

∫

Ii

η(s)ds → −∞,

a contradiction. This completes the proof.

EXAMPLE A. Busenberg and Cooke [5] consider the scalar equation

(A1) x′ = b(t)x(t− h) − c(t)x(t)

with b, c : [0,∞) → (−∞,∞) continuous. They assume that for each η > 0 there exists

τ > 0 such that

(A2)

t+τ
∫

t

|b(s)|ds < η for all t ≥ 0

so that

(A3)

0
∫

−h

|b(t + h + θ)|dθ ≤ B for some B and all t ≥ 0

and that for some a > 0 and q > 0 then

(A4) 2c(t) − a|b(t)| − |b(t + h)|/a ≥ q for t ≥ 0.

They conclude U.A.S.
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Condition (A4) is not transparent. It seems to ask (very roughly) that c(t) ≥ q/2, that

c(t) > |b(t)|, and that c(t) > |b(t + h)|.

We ask instead that there exist a number a > 1 with

(A5) c(t) > a|b(t + h)|

and that there exist an η ≤ 1 satisfying Theorem 1 with

(A6) c(t) ≥ η(t).

Our conclusion then is only A.S., but we note that c(t) may tend to 0 as t → ∞.

To this end we define a = (a + 1)/2 and

V (t, xt) = |x| + a

∫ t

t−h

|b(u + h)| |x(u)|du

so that

V ′(t, xt) ≤ |b(t)x(t− h)| − c(t)|x(t)|

+ a|b(t + h)| |x| − a|b(t)| |x(t− h)|

= (−a + 1)|b(t)| |x(t− h)| +
[

− c(t) + a|b(t + h)|
]

|x|

≤ c(t)
[

−1 + a
{

|b(t + h)|/c(t)
}]

|x|

≤ c(t)[−1 + (a/a)]|x| def
= −δc(t)|x|.

Next, note that

V ′(t − h, xt−h) ≤ −δc(t− h)|x(t− h)|

so that if we define

H(t, xt, xt−h) = V (t, xt) + V (t − h, xt−h)
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we have

H ′ ≤ −δc(t)|x(t)| − δc(t− h)|x(t− h)|

≤ −(δ/2)c(t)|x(t)| − (δ/2)c(t)|x(t)| − δ|b(t)x(t− h)|

≤ −(δ/2)η(t)
[

|x(t)| + |x′(t)|
]

because η(t) ≤ 1.

REMARK. If (A2) holds we have U.S. If, in addition, c(t) ≥ c0 > 0, then we have

W1(|x|) ≤ H(t, xt, xt−h) ≤ W2(|x|) + W3(‖xt‖) + W4(‖xt−h‖)

and

H ′ ≤ −δ
[

|x| + |x′|
]

.

It is then trivial to show U.A.S.

The following concept was introduced in [3].

DEFINITION 4. A measurable function η : R+ → R+ is said to be uniformly integrally

positive with parameter h (UIP(h)) if there exists δ > 0 with
t
∫

t−h

η(s)ds ≥ δ for t ≥ h.

THEOREM 2. Let V : R+×CH → [0,∞) and let η1, η2 : R+ → R+ where
∞
∫

0

η1(s)ds = ∞

and η2 is UIP(h). If

(i) x = 0 is U.S. and

(ii) V ′
(1)(t, xt) ≤ −η1(t)

{

W1

(
∫ t

t−h

|F (s, xs)|ds

)

+W2

(
∫ t

t−h

η2(s)W3(|x(s)|)ds

)}

,

then x = 0 is A.S.
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PROOF. Let x(t) be a solution of (1) on [t0,∞), |x(t)| < H, and suppose that |x(t)| 9 0

as t → ∞. Then there is an ε > 0 and {tn} ↑ ∞ such that |x(tn)| ≥ ε. For the ε > 0 there

exists δ > 0 such that [φ ∈ Cδ, t ≥ t1] imply that |x(t, t1, φ)| < ε. Thus, on each interval

[t− h, t] there is a t∗ with |x(t∗)| ≥ δ. There are two possibilities:

(a) |x(s)| ≥ δ/2 for all s ∈ [t− h, t], or

(b) |x(s1)| < δ/2 at some s1 ∈ [t− h, t].

If (a) holds, then there exists β > 0 with

∫ t

t−h

η2(s)W3(δ/2)ds ≥ β.

If (b) holds, then
t
∫

t−h

|F (s, xs)|ds ≥ δ/2.

In any case, for every t we have

V ′
(1)(t, xt) ≤ −η1(t) min

[

W1(δ/2), W2(β)
]

so that V (t, xt) → −∞ as t → ∞, a contradiction. This completes the proof.

REMARK. The next example seems significant. Using standard theory it is some chore

to show that solutions of x′ = −ax + bx(t−h) tend to zero even when a and b are constants

with −a + b < 0. Using Theorem 2 we allow a(t) and b(t) to both change sign so long as

−a(t) + b(t + h) ≤ −β < 0, plus other conditions.

EXAMPLE B. Consider the scalar equation

(B1) x′(t) = −a(t)x(t) + b(t)x(t− h)

with a, b : [−h,∞) → R being continuous. We wish to use b(t) to help stabilize the equation.

It is assumed that there is an α > 0 such that
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(B2) 2[b(t + h) − a(t)] + |b(t + h) − a(t)|
∫ t

t−h

|b(u + h)|du

+αhλ(t)
def
= Γ(t) ≤ 0

where λ(t) = max
[

|a(t)|, |b(t + h)|
]

is UIP(h),

(B3) α − |b(t + h) − a(t)| def
= η1(t) ≥ 0,

(B4) η(t) = min[η1(t), η1(t− h)] /∈ L1[0,∞),

(B5) 0 <

∫ t

t−h

|b(s + h)|ds ≤ K, 0 <

∫ t

t−h

|a(s)|ds ≤ K,

some K > 0.

Then U.S. implies A.S. If, in addition, Γ(t) ≤ −Γ0 < 0, and if −2a(t) + |b(t)|+ |b(t + h)| is

bounded above, then x = 0 is U.S.

PROOF. Write (B1) as

(B1)′ x′ = [−a(t) + b(t + h)]x − (d/dt)

∫ t

t−h

b(u + h)x(u)du

and define

V (t, xt) =

(

x +

∫ t

t−h

b(u + h)x(u)du

)2

+ α

∫ 0

−h

∫ t

t+s

λ(u)x2(u)du ds
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so that

V ′(t, xt) = 2

(

x +

∫ t

t−h

b(u + h)x(u)du

)

[−a(t) + b(t + h)]x

+ α

∫ 0

−h

λ(t)x2(t)ds − α

∫ 0

−h

λ(t + s)x2(t + s)ds

≤ 2[b(t + h) − a(t)]x2 + |b(t + h) − a(t)|
∫ t

t−h

|b(u + h)|du x2

+ |b(t + h) − a(t)|
∫ t

t−h

|b(u + h)|x2(u)du + αhλ(t)x2

− α

∫ t

t−h

λ(s)x2(s)ds

= Γ(t)x2 + |b(t + h) − a(t)|
∫ t

t−h

|b(u + h)|x2(u)du

− α

∫ t

t−h

λ(s)x2(s)ds.

First, we note that

(B6) V ′(t, xt) ≤ −η1(t)

∫ t

t−h

λ(s)x2(s)ds

and λ is UIP(h), so this is the term

−η1(t)W2

(
∫ t

t−h

η2(s)W3(|x(s)|)ds

)

of Theorem 2. Next, we see that

V ′(t, xt) ≤ −η1(t)

∫ t

t−h

|b(s + h)|x2(s)ds

so that by Jensen’s inequality we have

V ′(t, xt) ≤ −
[

η1(t)/

∫ t

t−h

|b(s + h)|ds

][
∫ t

t−h

|b(s + h)x(s)|ds

]2

.

This means that

(B7) V ′(t− h, xt−h) ≤ −[η1(t− h)/K]

[
∫ t

t−h

|b(s)x(s − h)|ds

]2

.
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Finally, V ′(t, xt) ≤ −η1(t)
t
∫

t−h

|a(s)|x2(s)ds so that by Jensen’s inequality

V ′(t, xt) ≤ −[η1(t)/K]

[
∫ t

t−h

|a(s)x(s)|ds

]2

.

If we define

Ω(t, xt, xt−h) = V (t, xt)(1 + K) + KV (t − h, xt−h),

then for

η(t) = min[η1(t), η1(t − h)] /∈ L1[0,∞)

the conditions of Theorem 2 are satisfied with W1(u) = 1
2
u2.

Next, we show U.S. Define

H(t, xt) = x2 +

∫ t

t−h

|b(u + h)|x2(u)du

so that

H ′(t, xt) = −2a(t)x2 + 2|b(t)| |x(t− h)|

+ |b(t + h)|x2 − |b(t)|x2(t − h)

≤
[

− 2a(t) + |b(t)|+ |b(t + h)|
]

x2 ≤ Jx2

for some J > 0. Since V ′(t, xt) ≤ −Γ0x
2, then for

U(t, xt) = V (t, xt) + (Γ0/2J)H(t, xt)

we have

U ′(t, xt) ≤ −Γ0x
2 + (Γ0/2)x

2 ≤ 0.

Evidently there are Wi with

W4(|x(t)|) ≤ U(t, xt) ≤ W5(‖xt‖)
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and this implies U.S.

EXAMPLE OF EXAMPLE B. Let

(B1)′ x′ = b(t)x(t− h)

with b(t) < 0 and continuous. Suppose there is an α > 0 with

(B2)′ |b(t + h)|
[

− 2 + αh +

∫ t

t−h

|b(u + h)|du

]

≤ −Γ0 < 0,

(B3)′ 0 ≤ α − |b(t + h)| − η1(t),

(B4)′ η(t) = min[η1(t), η1(t − h)] /∈ L1[0,∞),

and

(B5)′ −b ∈ UIP(h),

∫ t

t−h

|b(s + h)|ds ≤ K, K > 0.

Then x = 0 is U.S. and A.S.

The conditions (B1)–(B4) are readily verified. Moreover, it is not hard to see that when

a(t) ≡ 0 then the requirement in (B5) of

0 <

∫ t

t−h

|a(s)|ds

is not needed.

In Example B the size of h plays a significant role. In the next example, the condition

labelled (B2) is simplified. As a result, it is easier to see that when functions a and b are

bounded and satisfy the condition −a(t) + b(t + h) ≤ −β < 0, solutions may tend to zero

for sufficiently small h even when each function is allowed to change its sign.

EXAMPLE C. Consider again the scalar equation

(C1) x′(t) = −a(t)x(t) + b(t)x(t− h),

where a, b : [−h,∞) → R are continuous and λ denotes the UIP(h) function that was defined

in Example B. Assume α is a positive constant such that
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(C2) −a(t) + b(t + h) + αhλ(t)
def
= Q(t) ≤ 0

and

(C3) α − K|b(t + h) − a(t)| def
= η1(t) ≥ 0,

where K again represents the upper bound on the two integrals in Example B. Assume

η(t) = min[η1(t), η1(t − h)] /∈ L1[0,∞). Then U.S. implies A.S. Furthermore, if there is a

positive constant Q0 such that Q(t) ≤ −Q0 and if −2a(t) + |b(t)| + |b(t + h)| is bounded

above, then x = 0 is U.S.

PROOF. Define the functional V (t, xt) exactly as in the proof of Example B. Then

differentiation yields

V ′(t, xt) ≤ 2[b(t + h) − a(t)]x2(t)

+ |b(t + h) − a(t)|
{

x2(t) +

(
∫ t

t−h

|b(u + h)| |x(u)|du

)2
}

+ αhλ(t)x2(t) − α

∫ t

t−h

λ(s)x2(s)ds

= Γ(t)x2(t) + |b(t + h) − a(t)|
[

∫ t

t−h

|b(u + h)| |x(u)|du

]2

− α

∫ t

t−h

λ(s)x2(s)ds

where Γ(t) = 2[b(t + h) − a(t)] + |b(t + h) − a(t)|+ αhλ(t). By Jensen’s inequality,

V ′(t, xt) ≤ Γ(t)x2(t)

+ |b(t + h) − a(t)|
∫ t

t−h

|b(u + h)|du

∫ t

t−h

|b(u + h)|x2(u)du

− α

∫ t

t−h

λ(s)x2(s)ds.

We note that Γ(t) ≤ −δ if and only if Q(t) ≤ −δ, for δ ≥ 0. Using Γ(t) ≤ 0, the integral

bounds, and (C3), we find
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(C4) V ′(t, xt) ≤ −η1(t)

∫ t

t−h

λ(s)x2(s)ds.

Next, we see that

V ′(t, xt) ≤ |b(t + h) − a(t)|
[
∫ t

t−h

|b(u + h)x(u)|du

]2

− α

∫ t

t−h

|b(s + h)|x2(s)ds

≤ −[η1(t)/K]

[
∫ t

t−h

|b(s + h)x(s)|ds

]2

,

as
∫ t

t−h

|b(u + h)|x2(u)du ≥ [1/K]

[
∫ t

t−h

|b(u + h)x(u)|du

]2

by the integral bounds and Jensen’s inequality. This implies

(C5) V ′(t − h, xt−h) ≤ −[η1(t − h)/K]

[
∫ t

t−h

|b(s)x(s− h)|ds

]2

.

By (C4),

V ′(t, xt) ≤ −η1(t)

∫ t

t−h

|a(s)|x2(s)ds

which, upon applying Jensen’s inequality again, yields

(C6) V ′(t, xt) ≤ −[η1(t)/K]

[
∫ t

t−h

|a(s)x(s)|ds

]2

.

Since Q(t) ≤ −Q0 implies that Γ(t) ≤ −Q0, it follows from the inequalities (C4), (C5),

(C6) that the rest of this proof proceeds just like Example B’s, the only notable change being

that the constant Q0 replaces Γ0 in the definition of the functional U(t, xt).

EXAMPLE OF EXAMPLE C. Let b = −4, a(t) = −1 + 2 sin t, λ(t) = 4, K = 4h,

α = 20h, and h ≤ 1/9. Then x = 0 is U.S. and A.S.
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PROOF. Since B(t + h) − a(t) = −3 − 2 sin t, α − K|b(t + h) − a(t)| = 8h(1 − sin t) =

η1(t) ≥ 0, η(t) = min[η1(t), η1(t−h)] /∈ L1[0,∞). Then (C2) is −3−2 sin t+80h2 = Q(t). If

h ≤ 1/9, then Q(t) ≤ −Q0, where Q0 = 1/81. All the conditions in Example C are satisfied.

The ideas in Theorem 2 are very useful in locating limit sets, as we now illustrate.

THEOREM 3. Let V : R+ ×CH → [0,∞) be continuous and satisfy

V ′
(1)(t, xt) ≤ −

∫ t

t−h

W (|x′
i(s)|)ds

(where x = (x1, . . . , xn)) for some i. Then any solution x(t) satisfying |x(t)| < H on [t0,∞)

also satisfies

sup
0≤θ≤h

|xi(t) − xi(t − θ)| → 0 as t → ∞

and
t
∫

t−h

|x′
i(s)|ds → 0 as t → ∞. Here, W is convex downward.

PROOF. If the theorem is false then there is a solution x(t), there is an ε > 0, and there

is a sequence {tn} ↑ +∞ with
∫ tn

tn−h

|x′
i(s)|ds ≥ ε

for some i. Moreover, it is shown in [3] that there is a sequence {tn} ↑ ∞, a δ > 0, and an

h1 > 0 with
∫ t

t−h

|x′
i(u)|du ≥ δ

for tn ≤ t ≤ tn + h1. This means that

V ′(t, xt) ≤ −hW

(

[1/h]

∫ t

t−h

|x′
i(u)|du

)

≤ −hW ([1/h]δ)

on [ tn, tn + h1]. Thus, V (t, xt) → −∞ as t → ∞, a contradiction. Hence

sup
0≤θ≤h

|xi(t) − xi(t− θ)| → 0 as t → ∞
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as required.

EXAMPLE D. Krasovskii [8; p. 173] considers a system

(D1)







x′(t) = y(t)

y′(t) = −φ(y(t), t)− f(x(t)) +

∫ 0

−h(t)

f∗(x(t + s))y(t + s)ds

where

(D2) [φ(y, t)/y] ≥ b > 0 for y 6= 0,

(D3) 0 ≤ h(t) ≤ h, [f(x)/x] > a > 0 for x 6= 0,

and

(D4) f∗(x) = (d/dx)f(x) satisfies |f∗(x)| < N.

Consider the functional

(D5) V (xt, yt) = 2

∫ x

0

f(s)ds + y2(t) + [b/h]

∫ 0

−h

∫ 0

u

y2(t + s)ds du.

Then

(D6) V ′(xt, yt) ≤ −γ

[

hy2(t) +

∫ t

t−h

y2(u)du

]

,

where γ > 0 for h < b/N . Note that with xi = x, (D6) satisfies the conditions of Theorem

3. This means that:

(i)

∫ 0

−h(t)

f∗(x(t + s))y(t + s)ds → 0 as t → ∞,

(ii)

∫ 0

−h

∫ 0

u

y2(t + s)ds du ≤ h

∫ 0

−h

y2(t + s)ds → 0 as t → ∞,

and for any L > 0 then

(iii) sup
−L≤θ≤0

|x(t)− x(t + θ)| → 0 as t → ∞.

Since V ′ ≤ 0 we see that

(iv) 2

∫ x(t)

0

f(s)ds + y2(t) → constant as t → ∞.
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If φ(t, y) is bounded for y bounded, then it would follow readily that x(t) approaches a

constant and y(t) approaches zero as t → ∞. It seems unclear that this might be derived

from (iii) and (iv).

The proof of Lemma 2 is a simple exercise.

LEMMA 2. Let η be UIP(δ) for some δ > 0. Then the zero solution of the ordinary

differential equation

(*) |x(t)|′ = −η(t)W
(

|x(t)|/2
)

is U.A.S.

THEOREM 4. Let D, V : [0,∞) × CH → [0,∞) be continuous with V locally Lipschitz

in φ such that

(i) W0(|x|) ≤ V (t, xt) ≤ W1(|x|) + W2(D(t, xt)),

(ii) V ′
(1)(t, xt) ≤ −η(t)

[

W3(|x|) + W4(D(t, xt))
]

,

(iii) D(t, xt) ≤ W5(‖xt‖),

and

(iv) η is UIP(δ), some δ > 0.

Then x = 0 is U.A.S.

PROOF. The U.S. follows from Theorem 0(b).

Let x(t) be a solution of (1) on [t0,∞) with |x(t)| < H. If

W (r) = min
[

W3(W
−1
1 (r)), W4(W

−1
2 (r))

]

,

then

V ′
(1)(t, xt) ≤ −η(t)W (V (t, xt)/2),
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where, by renaming, we assume that W is convex downward. By Lemma 2 and a comparison

theorem, the zero solution of (1) is U.A.S.

In the same way, the following result may be proved.

THEOREM 5. Let D, V : [0,∞) × CH → [0,∞) and η : [0,∞) → [0,∞) be continuous

with

(i) W0(|x|) ≤ V (t, xt) ≤ W1(|x|) + W2(D(t, xt)),

(ii) V ′
(1)(t, xt) ≤ −η(t)

[

W3(|x|) + W4(D(t, xt))
]

,

and

(iii)

∫ ∞

0

η(t)dt = ∞.

If x(t) is a solution of (1) on [t0,∞) with |x(t)| < H, then |x(t)| → 0 as t → ∞.

THEOREM 6. Let D, V : [0,∞) × CH → [0,∞) be continuous and satisfy

(i) 0 ≤ V (t, xt) ≤ W2(|x|) + W3

(
∫ t

t−h

D(s, xs)ds

)

and

(ii) V ′
(1)(t, xt) ≤ W4(|x|) − W5(D(t, xt)) where W5 is convex downward.

If x(t) is a solution of (1) on [t0,∞) with |x(t)| < H, then V (t, xt) → 0 as t → ∞.

PROOF. If V (t, xt) 9 0 as t → ∞, then there exists C > 0 with V (t, xt) ≥ C for t ≥ t0.

Hence,

W2(|x(t)|) + W3

(
∫ t

t−h

D(s, xs)ds

)

≥ C for t ≥ t0.

This implies that either:

(a) |x(t)| ≥ W−1
2 (C/2)
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or

(b)

∫ t

t−h

D(s, xs)ds ≥ W−1
3 (C/2)

for each t ≥ t0.

By Jensen’s inequality

hW5

(

[1/h]

∫ t

t−h

D(s, xs)ds

)

≤
∫ t

t−h

W5(D(s, xs))ds

and so
∫ t

t−h

W5(D(s, xs))ds ≥ hW5

(

[1/h]W−1
3 (C/2)

) def
= L > 0

in case (b) holds.

Let E1 = {t ≥ t0 : (a) holds} and

E2 = [t0,∞) −E1 ⊂ {t ≥ t0 : (b) holds}.

Suppose N is the positive integer such that

NL > V (t0, xt0) ≥ (N − 1)L

and µ > 0 is a number such that

µW4(W
−1
2 (C/2)) > V (t0, xt0).

Let T = Nh + µ and consider the interval I = [t0, t0 + T ]. Then one of the following cases

must hold.

(A) measure (E1 ∩ I) ≥ µ

or

(B) measure (E2 ∩ I) ≥ Nh.
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If (A) is true, then

V (t0 + T, xt0+T ) ≤ V (t0, xt0) −
∫ t0+T

t0

W4(|x(s)|)ds

≤ V (t0, xt0) −
∫

E1∩I

W4(W
−1
2 (C/2))ds

≤ V (t0, xt0) − µW4(W
−1
2 (C/2)) < 0.

If (B) is true then in E2 ∩ I there must exist N points t1 < t2 < . . . < tN with t1 ≥ t0 and

tj ≥ tj−1 + h for j = 2, 3, . . . , N . Hence

V (t0 + T, xt0+T ) ≤ V (t0, xt0) −
∫ t0+T

t0

W5(D(s, xs))ds

≤ V (t0, xt0) −
∫

E2∩I

W5(D(s, xs))ds

≤ V (t0, xt0) −
N

∑

j=1

∫ tj

tj−h

W5(D(s, xs))ds

≤ V (t0, xt0) − NL < 0.

Thus, both (A) and (B) yield contradictions and so V (t, xt) → 0 as t → ∞.

THEOREM 7. Let V, D : [0,∞)× CH → [0,∞) be continuous with

(i) 0 ≤ V (t, xt) ≤ W2(|x|) + W3

[
∫ t

t−h

D(s, xs)ds

]

and

(ii) V ′
(1)(t, xt) ≤ −γ(t)W4(|x|),

where γ : [0,∞) → [0,∞) is a measurable function with the property that lim inf
t→∞

t+ξ
∫

t

γ(s)ds >

0 for each ξ > 0.

If x(t) is a solution of (1) on [t0,∞) with |x(t)| < H, then either

(a) V (t, xt) → 0 as t → ∞
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or for any δ > 0

(b)

∫ t

t−h−δ

D(s, xs)ds ≥ M for some M > 0

and all large t.

In particular, if we define

H(t, x(·)) = V (t, xt) + V (t − h, xt−h)

then

(i)′ 0 ≤ H(t, x(·)) ≤ W2(|x|) + W2(|x(t− h)|) + 2W3

[
∫ t

t−2h

D(s, xs)ds

]

and

(ii)′ H ′
(1)(t, (·)) ≤ −γ(t)W4(|x|)− γ(t − h)W4(|x(t − h)|)

so that either

(a)′ H(t, x(·)) → 0 as t → ∞

or

(b)′
∫ t

t−2h

D(s, xs)ds ≥ M for all large t.

PROOF. Let x(t) be such a solution and suppose that V (t, xt) 9 0 as t → ∞. Then

V (t, xt) ≥ C for some C > 0. Choose ε > 0 so that W2(ε) + W3(ε) = C . We observe that
t
∫

t−h

D(s, xs)ds > ε whenever |x(t)| < ε and that γ(t)W4(|x(t)|) ∈ L1[0,∞).

We claim that for each δ > 0 there corresponds a T ≥ δ + h such that t ≥ T implies

the existence of a point t∗ ∈ [t − δ, t] with
t∗
∫

t∗−h

D(s, xs)ds > ε. If this were not the case,

then there would be infinitely many mutually disjoint intervals [tn − δ, tn], with t1 ≥ δ + h
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and tn → ∞, such that |x(t)| ≥ ε for all t ∈ [tn − δ, tn]. By a result referred to in [3,

cf. the definition of integrally positive],
∫

I

γ(s)ds = ∞ where I =
∞
⋃

n=1

[tn − δ, tn]. Hence,

∞
∫

0

γ(s)W4(|x(s)|)ds ≥
∞
∑

n=1

tn
∫

tn−δ

γ(s)W4(ε)ds = ∞, a contradiction.

Let h > δ, say δ = h/4. Then for t ≥ T ,
t
∫

t−h−δ

D(s, xs)ds ≥
t∗
∫

t∗−h

D(s, xs) > ε, which

completes the proof.

EXAMPLE E. Consider the scalar equation

(E1) x′ = b(t)x(t− h) − c(t)x(t)

with b, c : [0,∞) → R continuous and assume

(i) −γ(t)
def
= −c(t) + |b(t + h)| < 0,

(ii) lim inf
t→∞

∫ t+ξ

t

γ(s)ds > 0 for every ξ > 0,

and suppose there is a function µ with

(iii) µ(t) ≥
∫ t

t−2h

b2(u + h)du for t ≥ h.

If, in addition, γ(t) ≥ γi ≥ 0 on [2ih, 2(i + 1)h] and

(iv)
∞

∑

i=0

γi/µ(2(i + 1)h) = ∞

then x = 0 is A.S.

PROOF. Define

V (t, xt) = |x|+
∫ t

t−h

|b(u + h)| |x(u)|du
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so that

V ′(t, xt) ≤ −c(t)|x|+ |b(t)| |x(t− h)|

+ |b(t + h)| |x| − |b(t)| |x(t− h)| = −γ(t)|x|

≤ −γ(t)|x|2 if |x| ≤ 1.

Since x = 0 is stable, we may take H = 1 and have |x(t)| < 1.

Referring to Theorem 7, the conditions labelled (i) and (ii) are fulfilled. If V (t, xt) 9 0

as t → ∞, then there is a constant M > 0 with

M ≤
∫ t

t−2h

|b(u + h)| |x(u)|du ≤
[

∫ t

t−2h

b2(u + h)du

∫ t

t−2h

x2(u)du

]1/2

so that
∫ t

t−2h

x2(u)du ≥ M2/

∫ t

t−2h

b2(u + h)du ≥ M2/µ(t).

If m and n are chosen so that 2mh ≥ t0 and n ≥ m, then for t ≥ 2(n + 1)h we have

V (t, xt) ≤ V (t0, xt0) −
n

∑

i=m

∫ 2(i+1)h

2ih

γ(s)x2(s)ds

≤ V (t0, xt0) −
n

∑

i=m

γi

∫ 2(i+1)h

2ih

x2(s)ds

≤ V (t0, xt0) −
n

∑

i=m

γiM
2/µ(2(i + 1)h) → −∞

as n → ∞. This is a contradiction and so V (t, xt) (hence, |x(t)|) tends to 0 as t → ∞,

completing the proof.

REMARK. Let b(t) =
√

t. Then

∫ t

t−2h

b2(u + h)du =

∫ t

t−2h

(u + h)du ≤ (t + h)2h

def
= µ(t).
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Thus, if γ(t) ≥ 1, then (ii) and (iv) hold. This means that b(t) can be unbounded of order
√

t and we can still conclude A.S.
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