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1. Introduction. In large measure, stability theory of differential equations centers

around equilibrium points, either those occurring naturally in the equation or constructed

by a change of variable. Thus, if we are interested in a stability theory for integral equa-

tions, then we need to decide just what will play the role of an equilibrium point. This

is particularly important if we wish to employ Liapunov functions because they are con-

structed so as to be positive definite with respect to an equilibrium point.

In this paper we offer one choice for equilibrium points and we show that it is a good

choice by developing a Liapunov theory around it and use it to obtain new results on limit

sets for three problems of classical interest.

In particular, we study three forms of the integral equation

(1) x(t) = a(t) −

∫ t

α(t)

Q(t, s, x(s)) ds

where α(t) ≥ α ≥ −∞. We focus on functions which are analogous to equilibrium points

of ordinary differential equations and obtain results, by way of Liapunov’s direct method,

concerning the long-time behavior of solutions.

DEF. 1. A pair of functions (ψ,Ψ), each mapping [α,∞) → Rn with α ≤ 0, is said to

be a near equilibrium for (1) if

(2) Ψ(t) := a(t) − ψ(t) −

∫ t

α(t)

Q(t, s, ψ(s))ds ∈ L1[0,∞).
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Thus, if (1) is perturbed by the L1 function Ψ, then ψ is a solution of (1); in other

words, ψ fails to be a solution of (1) by an amount of an L1 function.

We will discuss the relation of a near equilibrium to the concept of an equilibrium point

for an ordinary differential equation in a moment.

EXAMPLE 1.

(i) If a ∈ L1[0,∞) and Q(t, s, 0) = 0, then ψ(t) = 0 and Ψ(t) = a(t) so (ψ,Ψ) is a near

equilibrium for (1).

(ii) If x(t) = a(t) +
∫ t

−∞
C(t − s)x(s)ds where a ∈ L1[0,∞) and

∫

∞

0
C(t)dt = 1, then for

every constant x0, ψ(t) = x0 and Ψ(t) = a(t), so (ψ,Ψ) is a near equilibrium for this

equation.

(iii) If x(t) = a+a1(t)+
∫ t

−∞
C(t−s)x(s)ds where a is constant, a1 ∈ L1[0,∞),

∫

∞

0
C(t)dt =

c 6= 1, then for α defined by α(1 − c) = a, it follows that ψ(t) = α and Ψ(t) = a1(t) so

(ψ,Ψ) is a near equilibrium.

(iv) If ψ is an L1 solution of x(t) = a(t) +
∫ t

−∞
D(t, s)g(x(s)) ds and if E ∈ L1, then (ψ,Ψ)

is a near equilibrium for

x(t) = a(t) +

∫ t

−∞

D(t, s)g(x(s)) ds +

∫ t

0

E(t− s)x(s)ds

where Ψ(t) :=
∫ t

0
E(t− s)ψ(s)ds.

REMARK. In the work to follow we frequently ask that not only Ψ, but powers of Ψ

be L1[0,∞). A number of transformations may be used to achieve this. In the equation

x(t) = a(t) +

∫ t

0

C(t− s)x(s)ds

with a and c in L1[0,∞) and C(t) → 0 as t→ ∞, let y = x− a(t) so that

y(t) =

∫ t

0

C(t− s)a(s)ds +

∫ t

0

C(t− s)y(s)ds.

The first term on the right is L1[0,∞) and it tends to zero. Hence, all powers are L1[0,∞).
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For a given t0 we require a continuous initial function ϕ : [α, t0] → Rn and seek a

solution x(t, t0, ϕ) of (1) with x continuous on [α,∞), x(t) = ϕ(t) on [α, t0], and x(t, t0, ϕ)

satisfying (1) for t ≥ t0. While existence theory may be given for (1) which allows a

discontinuity of x at t0, in most of our work we perform certain integration by parts which

requires continuity; thus, ϕ must be selected with care.

DEF. 2. A metric space (Ω(t0), ρ) of continuous functions ϕ : [α, t0] → Rn is said to be

admissible if for each ϕ ∈ Ω(t0) there is a solution x(t, t0, ϕ) of (1) with x(t, t0, ϕ) = ϕ(t)

for α ≤ t ≤ t0, x(t, t0, ϕ) satisfies (1) for t ≥ t0 and x(t, t0, ϕ) is continuous on [α,∞).

Thus, given ϕ ∈ Ω(t0), Equation (1) is usually written as

x(t) = a(t) −

∫ t0

α(t)

Q(t, s, ϕ(s))ds −

∫ t

t0

Q(t, s, x(s)) ds

and the first two terms on the right are taken as the inhomogeneous term. In this form

there is much existence theory, as may be seen in Corduneanu [2] or Gripenberg-Londen-

Staffans [3], for example.

NOTATION. The symbol Ω(t0) will always denote an admissible set. If ϕ ∈ Ω(t0) and

Ψ : [α,∞) → Rn, then ρ(ϕ,Ψ) means Ψ is restricted to [α, t0].

Clearly, ϕ must be chosen so that

(3) ϕ(t0) = a(t0) −

∫ t0

α(t0)

Q(t0, s, ϕ(s))ds.

However, if for large t we have α(t) > α(t0) then (3) can be avoided, as we will see in the

next section.

But what is important here is that any bounded continuous ϕ on (−∞, 0] can be ap-

proximated arbitrarily well by a function satisfying (3) with t0 = 0.

PROPOSITION. Let Q : R × R × Rn → Rn be continuous and suppose that
∫ 0

−∞
Q(0, s, ϕ(s))ds converges for each bounded and continuous ϕ : (−∞, 0] → Rn. Let
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ϕ : (−∞, 0] → Rn be an arbitrary bounded and continuous function. For each ε > 0 there

is a t1 < 0, t1 near 0, and ϕ1 : (−∞, 0] → Rn which is continuous, which satisfies

ϕ1(0) = a(0) −

∫ 0

−∞

Q(0, s, ϕ1(s))ds,(3∗)

ϕ(t) = ϕ1(t) for −∞ < t ≤ t1, and |ϕ̃(0) − ϕ1(0)| ≤ ε

where

ϕ̃(0) = a(0) −

∫ 0

−∞

Q(0, s, ϕ(s))ds.

Proof. For any x ∈ Rn and any t1 < 0 define

ϕx =

{

ϕ(s), if s ≤ t1,

[(t1 − s)x+ sϕ(t1)]/t1, if t1 < s ≤ 0.

Now, let t1 be any number such that for any x ∈ Rn with |x− ϕ̃(0)| ≤ ε we have

(∗)

∣

∣

∣

∣

∫ 0

−∞

Q(0, s, ϕ(s))ds −

∫ 0

−∞

Q(0, s, ϕx(s))ds

∣

∣

∣

∣

≤ ε.

By the continuity of Q and the assumed convergence, (∗) can be satisfied. Also, t1 is as

near 0 as we please.

Next, let S = {x ∈ Rn : |x− ϕ̃(0)| ≤ ε} and define P : S → S by x ∈ S implies that

P (x) = a(0) −

∫ 0

−∞

Q(0, s, ϕx(s))ds.

Now P is continuous and, by construction, maps S into S. By Brouwer’s theorem, there

is a fixed point x1 and ϕx1 is the required function.

REMARK. The next definition is a straight-forward generalization of the standard

definition of stability from differential equations and, in fact, contains it as a special case,

as we later see. We will also point out why the standard definition may be inadequate for

integral equations.

DEF. 3. A near equilibrium (ψ,Ψ) is said to be stable relative to Ω if there is a wedge W

and continuous functions γ(t) and p(t), where γ ∈ L1[0,∞), while p(t) → 0 and W (t) → ∞
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as t→ ∞, and for each ε > 0 and t0 ∈ R there is a δ > 0 such that [ϕ ∈ Ω(t0), ρ(ϕ,Ψ) < δ]

imply that

W (|x(t, t0, ϕ) − Ψ(t)|) < ε + p(t0) +

∫ t

t0

γ(s)ds.

If, in addition, |x(t, t0, ϕ) − Ψ(t)| → 0 as t → ∞, then (ψ,Ψ) is asymptotically stable

relative to Ω.

To relate this to differential equations, first note in (1) that if a(t) ≡ 0 and Q(t, s, 0) ≡ 0,

then ψ and Ψ may be both zero so (0, 0) is a near equilibrium. If we take W as the

identity function and p(t) = γ(t) = 0 then our definition is the usual one for stability of

an integrodifferential equation

x′(t) =

∫ t

α(t)

Q(t, s, x(s)) ds, Q(t, s, 0) ≡ 0,

so that the zero function is a solution (equilibrium point). See, for example, Yoshizawa

[11; pp. 27–31, 183–190], Burton [1; pp. 12–3, 33–34, 227–237].

Next, if ϕ(t) is a solution of (1) and we wish to study the behavior of solutions starting

near it, we can write x = y + ϕ so that

(1∗) y(t) = −

∫ t

α(t)

[Q(t, s, y(s) + ϕ(s)) −Q(t, s, ϕ(s))] ds

has the near equilibrium (0, 0).

The very construction of a differential equation frequently produces an equation with

some constant solutions, say x = 0 is a solution. And the vast majority of stability

considerations surround stability of x = 0. By contrast, uncontrived forms of (1) seldom

have constant solutions, nor do they have easily recognizable solutions ϕ so that (1∗) can

be treated, except in the linear case. Even in the linear case, when (1∗) is analyzed without

the knowledge of ϕ, stability of the zero solution tells little about ultimate behavior of all

solutions.

The natural idea in the study of (1) is to show that x(t) follows a(t) in some sense. For

example, consider

(1∗∗) x(t) = a(t) +

∫ t

−∞

D(t − s)x(s)ds
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whereD ∈ L1[0,∞). Three facts are derived by elementary considerations which motivated

Definitions 1 and 3:

(i) Does (1∗∗) have any constant solutions?

It does if and only if a(t) is constant.

(ii) Does (1∗∗) have a solution in L1[0,∞)?

It does only if a(t) ∈ L1[0,∞).

(iii) Does (1∗∗) have any solutions tending to zero?

It does only if a(t) → 0 as t→ ∞.

Part (ii) is the most interesting. We frequently show that there is not only a solution

in L1, but it converges pointwise to a(t) as t→ ∞.

2. A finite delay problem. In our discussions we always consider a pair of equations:

one is linear, one nonlinear. The linear equation will be the prototype and will lead us

to the results; in effect, it will be an example. But the basic theory is nonlinear and we

provide nonlinear examples.

Let h be a positive constant, Q be continuous, and consider the scalar equations

(4) x(t) = a(t) −

∫ t

t−h

D(t, s)x(s) ds

and

(4N ) x(t) = a(t) −

∫ t

t−h

Q(t, s, x(s))ds

with

(5) a : R→ R being continuous, a and a2 ∈ L1[0,∞),

and suppose there is a P > 0 with

(6) D(t, t) ≤ P,D(t, s) ≥ 0,Ds(t, s) ≥ 0,Dst(t, s) ≤ 0,D(t, t − h) = 0.
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Condition (6) might be called the Volterra-Levin condition because of work in differential

equations of both bounded and unbounded delay found in Levin ([6], [7]), Levin and Nohel

([8], [9]), extended by Hale in ([4], [5]), and summarized in Corduneanu [2] and Gripenberg-

Londen-Staffans [3]. But (6) has also been used extensively in circuit theory and statistics

for a very long time. There are technical reasons for these assumptions, but elementary

considerations strongly suggest them.

For example, let a(t) be bounded and consider the convolution equation

x(t) = a(t) −

∫ t

t−h

C(t− s)x(s)ds.

If C(t) < 0 and large, for a positive initial function, we readily expect x(t) to grow; thus,

we ask C(t) > 0. But this is an equation with memory and, although the memory is lost

on each interval of length h, we still expect the memory to immediately begin to fade

with time; thus, we ask that C ′(t) ≤ 0. For technical reasons we ask that C(h) = 0,

but if C(h) > 0 a translation could be made. Hence, there is an uncontrived reason for

D(t, s) ≥ 0, Ds(t, s) ≥ 0, and D(t, t − h) = 0, and investigators traditionally ask Dst ≤ 0

out of technical necessity. One of our goals is to reduce Dst ≤ 0.

The discussion here is the same for any t0 so we take t0 = 0 and Ω = Ω(0) to be the set

of continuous ϕ : [−h, 0] → R with

(7) ϕ(0) = a(0) −

∫ 0

−h

D(0, s)ϕ(s)ds

for the stability statements. But (7) will not be needed for the study of limit sets.

The metric ρ on Ω will be the L2-norm, ||| · |||. Also, if q : [−h,A) → R, A > 0, then

qt(s) = q(t + s) for −h ≤ s ≤ 0 and

(8) |||qt|||
2 =

∫ 0

−h

q2(t + s)ds.

Clearly, the pair (0, a(t)) is a near equilibrium for (4) and we will show that it is

asymptotically stable relative to Ω. In addition, it will motivate a general theorem. It is

convenient to give them in reverse order and to prove Theorem 1B first.
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Theorem 1A. Suppose that for some continuous function ψ : [−h,∞) → R,

Ψ(t) := a(t) − ψ(t) −

∫ t

t−h

Q(t, s, ψ(s)) ds ∈ L1[0,∞),

and that there exist continuous functions p, q : [0,∞) → [0,∞), p(t) → 0 as t → ∞,

q ∈ L1[0,∞), a continuous function V (t, x(·)) defined for a solution x(t) = x(t, 0, ϕ) of

(4N ) with ϕ ∈ Ω, and wedges Wi such that W1(r) → ∞ as r → ∞,

(i) W1(|x(t) − Ψ(t)|) ≤ V (t, x(·)) ≤ W2(|||(x− Ψ)t|||) + p(t), and

(ii) V ′(t, x(·)) ≤ −W3(|x(t) −Ψ(t)|) + q(t).

Then the near equilibrium (ψ,Ψ) of (4N ) is asymptotically stable relative to Ω. If p and q

depend on ϕ then |x(t) − Ψ(t)| → 0 as t→ ∞.

Theorem 1B. Let (5), (6), (7) hold. Then there exist continuous functions p, q :

[0,∞) → [0,∞), p(t) → 0 as t→ ∞, q ∈ L1[0,∞), a continuous function V (t, x(·)) defined

for a solution x(t) = x(t, 0, ϕ) of (4) with ϕ ∈ Ω, and wedges Wi such that W1(r) → ∞ as

r → ∞,

(i) W1(|x(t) − a(t)|) ≤ PV (t, x(·)) ≤ W2(|||(x− a)t|||) + p(t),

and

(ii) V ′(t, x(·)) ≤ −W3(|x(t) − a(t)|) + q(t).

Thus, the near equilibrium (0, a(t)) of (4) is asymptotically stable relative to Ω.

Proof. To prove Theorem 1B, let ϕ ∈ Ω, x(t) = x(t, 0, ϕ), and define

(9) V (t) = V (t, x(·)) =

∫ t

t−h

Ds(t, s)

(
∫ t

s

x(v)dv

)2

ds.

8



Then

V ′(t) = −Ds(t, t − h)

(
∫ t

t−h

x(v)dv

)2

ds+

∫ t

t−h

Dst(t, s)

(
∫ t

s

x(v)dv

)2

ds

+ 2x(t)

∫ t

t−h

Ds(t, s)

∫ t

s

x(v)dv

≤ 2x(t)

[

D(t, s)

∫ t

s

x(v)dv

∣

∣

∣

∣

t

t−h

+

∫ t

t−h

D(t, s)x(s) ds

]

= 2x(t)[a(t) − x(t)]

= −x2(t) − (x(t) − a(t))2 + a2(t) ≤ −(x(t) − a(t))2 + a2(t)

=: −W3(|x(t) − a(t)|) + q(t)

so (ii) holds.

Next, from (4) we have

W1(|x(t) − a(t)|) := (x(t) − a(t))2 =

(

−

∫ t

t−h

D(t, s)x(s) ds

)2

=

{

D(t, s)

∫ t

s

x(v)dv

∣

∣

∣

∣

t

t−h

−

∫ t

t−h

Ds(t, s)

∫ t

s

x(v)dv ds

}2

≤

∫ t

t−h

Ds(t, s)ds

∫ t

t−h

Ds(t, s)

(
∫ t

s

x(v)dv

)2

ds ≤ PV (t)

≤ P

∫ t

t−h

Ds(t, s)2

[(
∫ t

s

|x(v) − a(v)| dv

)2

+

(
∫ t

s

|a(v)| dv

)2]

ds

≤ 2P

∫ t

t−h

Ds(t, s)(t − s)

∫ t

s

|x(v) − a(v)|2 dv + 2P

(
∫ t

t−h

Ds(t, s)ds

)(
∫ t

t−h

|a(v)| dv

)2

≤ 2P 2h

∫ t

t−h

|x(v) − a(v)|2 dv + 2P 2

(
∫ t

t−h

|a(v)| dv

)2

=: W2(|||(x− a)t|||) + p(t)

where p(t) → 0 as t→ ∞; hence, (i) holds and Theorem 1B will be proved when we have

proved Theorem 1A.

To that end, in Theorem 1A we note that an integration of (ii) yields V (t) bounded

and, since W1(r) → ∞ as r → ∞, in (i) we see that |x(t) − Ψ(t)| is bounded. This means

that (ii) can be sharpened to

(ii∗) V ′(t) ≤ −W4(|x(t) − Ψ(t)|2) + q(t)
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where W4 is convex downward. (See Natanson [10; pp. 36–46] for a good discussion of

convexity and Jensen’s inequality. In particular, if W is a wedge, then for 0 ≤ r ≤ 1 we

have

W ∗(r) =

∫ r

0

W (s)ds = W (ξ)r ≤W (r)

for some ξ in [0, r] and W ∗ is convex downward.)

From (i) and (ii) we have

W1(|x(t) − Ψ(t)|) ≤ V (t, x(·)) ≤ V (0) +

∫ t

0

q(s)ds

≤ W2(|||(ϕ− Ψ)0|||) + p(0) +

∫ t

0

q(s)ds,

(as we have taken t0 to be zero for convenience) and this is the required stability.

We now show that |x(t) − Ψ(t)| → 0 as t → ∞. If it does not, then there is an ε > 0

and {tn} ↑ ∞ with h < tn, tn+1 > tn + h, and |x(tn) − Ψ(tn)| ≥ ε. Using (i) and the fact

that p(t) → 0, we can say that there is a δ > 0 with |||(x − Ψ)tn
|||2 ≥ δ for large n, say

n ≥ 1. Using (ii∗) and Jensen’s inequality, we take N large, integrate (ii∗) from t1 to tN

and obtain

V (tN ) − V (t1) ≤ −

∫ tN

t1

W4(|x(s) − Ψ(s)|2)ds +

∫ tN

t1

q(s)ds

≤ −

N
∑

i=2

∫ ti

ti−h

W4(|x(s) − Ψ(s)|2)ds +

∫ tN

t1

q(s)ds

≤ −

N
∑

i=2

hW4

(

1

h

∫ ti

ti−h

|x(s) − Ψ(s)|2 ds

)

+

∫ tN

t1

q(s)ds

≤ −
N

∑

i=2

hW4(δ/h) +

∫ tN

t1

q(s)ds,

a contradiction for large N since V (t) ≥ 0 and q ∈ L1[0,∞). This proves Theorem 1A, so

1B is also true.

The only place (7) was used was in the integration by parts when differentiating V .

For any continuous ϕ there is a solution x(t, 0, ϕ) for t > 0 of (4) which may have a
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discontinuity at t = 0 but V is differentiable for t > h. There is the question of stability,

but it can be resolved using continuous dependence of solutions on initial conditions in

conjunction with the following result.

COR. 1. If (5) and (6) hold then there exist continuous functions p, q : [0,∞) → [0,∞),

p(t) → 0 as t→ ∞, q ∈ L1[0,∞), and wedges Wi such that if ϕ : [−h, 0] → R is continuous

and x(t) = x(t, 0, ϕ) solves (4), then there is a continuous function V (t, x(·)) satisfying (i)

of Theorem 1B for t > 0 and (ii) for t > h. In particular, |x(t) − a(t)| → 0 as t→ ∞.

One of our main stated goals is to reduce Dst ≤ 0 and the next result gives us one way

to do that. But it forces us to write (ii) as an integral inequality, which we do in later

results. Here, f+ = max(f(t), 0).

COR. 2. Let the conditions of Theorem 1B hold except

2h2

∫ t

t−h

(Dst(t, s))+ ds ≤ 1.

Then (0, a(t)) is asymptotically stable relative to Ω.

Proof. We readily obtain

V ′(t) ≤ −x2(t) − (x(t) − a(t))2 + a2(t) +

∫ t

t−h

(

Dst(t, s)

)

+

(
∫ t

s

x(v)dv

)2

ds

≤ −x2(t) − (x(t) − a(t))2 + a2(t) +
1

2h

∫ t

t−h

x2(v)dv

Again, take t0 = 0 and let t = 2Nh. On each interval [(n− 1)h, nh], choose tn such that

∫ tn

tn−h

x2(v)dv ≥

∫ t

t−h

x2(v)dv on [(n− 1)h, nh].
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An integration of V ′ will yield

0 ≤ V (t) ≤ V (0) −

∫ t

0

x2(s)ds −

∫ t

0

(x(s) − a(s))2 ds

+

∫ t

0

a2(s)ds +
1

2h

∫ t

0

∫ s

s−h

x2(v)dv ds

≤ V (0) −
1

2

N
∑

i=1

∫ 2ih

2ih−2h

x2(s)ds −
1

2

N
∑

i=2

∫ (2i−1)h

(2i−1)h−2h

x2(s)ds

+
1

2

N
∑

i=1

∫ t2i

t2i−h

x2(s)ds +
1

2

N
∑

i=1

∫ t2i−1

t2i−1−h

x2(s)ds

−

∫ t

0

(x(s) − a(s))2 ds +

∫ t

0

a2(s)ds

(Notice that the lengths of intervals of integration in the first pair of integrals is 2h, but

only h in the second pair.)

≤ V (0) + constant −

∫ t

0

(x(s) − a(s))2 ds+

∫ t

0

a2(s)ds

and this will allow us to prove the result as before.

Theorem 1A emphasizes that linearity is not essential; it merely serves as a convenient

example with fewer hypotheses. We now give examples of superlinear and sublinear cases.

The wedges in the theorems still arise in a natural way.

For the equation

(4∗) x(t) = a(t) −

∫ t

t−h

D(t, s)g(s, x(s)) ds

with (5), (6), g bounded for x bounded, and

(7∗) ϕ(0) = a(0) −

∫ 0

−h

D(0, s)g(s, ϕ(s)) ds

then

V (t, x(·)) =

∫ t

t−h

Ds(t, s)

(
∫ t

s

g(v, x(v))dv

)2

ds

satisfies

(x(t) − a(t))2 ≤ D(t, t)V (t, x(·))
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and

V ′(t, x(·)) ≤ −2g(t, x)[x− a(t)].

EXAMPLE 2. If (5), (6), and (7∗) hold and if a3 and a4 ∈ L1[0,∞), then conditions

(i) and (ii) of Theorem 1A hold when g(t, s) = x3 in (4∗) and |x(t) − a(t)| → 0 as t→ ∞.

Proof. We have just defined V and we have

V ′(t) ≤ −2x4 + 2a(t)x3

= −x4 − (x− a(t))4 − 2a(t)x3 + 6x2a2(t) − 4xa3(t) + a4(t)

so that

V (t) ≤ V (0) −

∫ t

0

x4(s)ds −

∫ t

0

(x(s) − a(s))4 ds

+ 2

(
∫ t

0

a4(s)ds

)1/4(∫ t

0

x4(s)ds

)3/4

+ 6

(
∫ t

0

x4(s)ds

)1/2(∫ t

0

a2(s)ds

)1/2

+ 4

(
∫ t

0

x4(s)ds

)1/4(∫ t

0

a4(s)ds

)3/4

+

∫ t

0

a4(s)ds

and it follows that each term in the expression for V ′ is L1[0,∞). Indeed, if
∫ t

0 x
4(s)ds →

∞, then it dominates all the positive terms, so the right hand side tends to −∞. Thus,

all the positive terms have finite integrals and, therefore, so does (x− a)4. We may write

V ′(t) ≤ −(x(t) − a(t))4 + q(t)

where q ∈ L1[0,∞), satisfying (ii) of Theorem 1A. Next, if we take

r(s) = 3(x(s) − a(s))2 |a(s)| + 3|x(s) − a(s)|a2(s) + |a(s)|3,

then we have

∫ t

t−h

x2(s)|a(s)| ds ≤

(
∫ t

t−h

|x(s)|3 ds

)2/3(∫ t

t−h

|a(s)|3 ds

)1/3

≤ h1/6

(
∫ t

t−h

|x(s)|4 ds

)1/2(∫ t

t−h

|a(s)|3 ds

)1/3

13



→ 0 as t→ ∞

and
∫ t

t−h

|x(s)|a2(s)ds ≤

(
∫ t

t−h

|x(s)|3 ds

)1/3(∫ t

t−h

|a(s)|3 ds

)2/3

→ 0 as t→ ∞.

Clearly,
∫ t

t−h

|a(s)|3 ds→ 0 as t→ ∞.

Thus, we have, for r defined above,

V (t, x(·)) =

∫ t

t−h

Ds(t, s)

(
∫ t

s

x3(v)dv

)2

ds

≤

∫ t

t−h

Ds(t, s)2

{(
∫ t

s

|x(v) − a(v)|3 dv

)2

+

(
∫ t

s

r(v)dv

)2}

ds

≤

∫ t

t−h

Ds(t, s)2

{

h1/4

(
∫ t

t−h

|x(v) − a(v)|4 dv

)3/4

+

(
∫ t

t−h

r(v)dv

)2}

ds

≤ 2D(t, t)h1/4

(
∫ t

t−h

(x(v) − a(v))4 dv

)3/4

+ p(t)

where we have verified that p(t) → 0 as t→ ∞, so that (i) of Theorem 1A is satisfied and

the conclusion follows.

EXAMPLE 3. If (5), (6), and (7∗) hold for (4∗) and if g(t, x) = x1/3, while a(t) is

bounded, then the conditions of Theorem 1A hold and |x(t) − a(t)| → 0 as t→ ∞.

Proof. We have

V ′(t) ≤ −2x4/3 + 2x1/3a(t)

so that

0 ≤ V (t) ≤ V (0) − 2

∫ t

0

x4/3(s)ds + 2

(
∫ t

0

x4/3(s)ds

)1/4(∫ t

0

a4/3(s)ds

)3/4

and so the terms in V ′ are L1[0,∞). Moreover, familiar arguments yield (i). Hence, V is

bounded so (x(t) − a(t))2 is bounded; but a(t) bounded yields x(t) bounded. Thus, there

exists M > 0 with
∫ t

0

x2(s)ds =

∫ t

0

x2/3(s)x4/3(s)ds ≤M

∫ t

0

x4/3(s)ds

14



Hence, (x− a)2 = x2 − 2ax+ a2 is in L1[0,∞) and we can write

V ′(t) ≤ −(x(t) − a(t))2 + q(t)

so that (ii) of Theorem 1A holds and the proof is complete.

Theorem 1A is predicated on finding a near equilibrium; once that is found, the limit

set of all solutions is specified by Cor. 1. To find a near equilibrium is to find a function

which fails to solve (4) only by an amount of an L1-function. If we can find a function

which fails to solve (4) only by an amount of a bounded function, then we can locate a

bounded set which contains the limit set of all solutions of (4). When the conditions of this

theorem hold, then we are assured that all stable near equilibria are a bounded distance

from that function.

Theorem 2A. Let x(t) solve (4N ) with x(t) = x(t, 0, ϕ) and ϕ : [−h, 0] → R be contin-

uous. Suppose there is a continuous function Ψ : [−h,∞) → R, positive constants Q and

L, wedges Wi with W1(r) → ∞ as r → ∞, and a continuous function V (t, x(·)) so that

for t > h

(i) W1(|x(t) − Ψ(t)|) ≤ V (t, x(·)) ≤W2(|||(x− Ψ)t|||) +Q

and for t > h

(ii) V ′(t, x(·)) ≤ −W3(|x(t) − Ψ(t)|2) + L

with W3 convex downward. Then there is a number B independent of ϕ with |x(t)| ≤ B

for large t.

Proof. Consider the intervals In = [(n− 1)h, nh] for n = 2, 3, . . . . Either

(a) V (nh) ≥ V ((n− 1)h) − 1 so that from (ii)

−1 ≤ V (nh) − V ((n − 1)h) ≤ −hW3

(

1

h
|||(x− Ψ)nh|||

2

)

+ Lh

15



or

|||(x− Ψ)nh|||
2 ≤ hW−1

3

(

L+
1

h

)

so from (i)

(A) V (nh) ≤ W2((hW
−1
3 (L +

1

h
))1/2) +Q =: C

or

(b) V (nh) ≤ V ((n− 1)h) − 1.

Since (b) can not hold for all n, there is a k with (A) holding for n = k:

V (kh) ≤ C.

From (ii) we have

V (t) ≤ C + Lh if kh ≤ t ≤ (k + 1)h.

But by the arguments in (a) and (b), either

V ((k + 1)h) ≤ V (kh) − 1 < C by (b)

or

V ((k + 1)h) ≤ C by (A).

Hence,

W1(|x(t) − Ψ(t)|) ≤ V (t) ≤ C + Lh

for all large t and we take

B = W−1
1 (C + Lh).

This completes the proof.

Suppose there is an A > 0 with

(5∗) a : R→ R is continuous and |a(t)| ≤ A for t ≥ 0.

16



Theorem 2B. Let (5∗) and (6) hold. Then there are constants Q and L, wedges Wi

with W1(r) → ∞ as r → ∞ and a continuous function V with the following properties. If

ϕ : [−h, 0] → R is continuous and if x(t) = x(t, 0, ϕ) satisfies (4) then

(i) W1(|x(t) − a(t)|) ≤ PV (t, x(·)) ≤ W2(|||(x− a)t|||) +Q

and for t > h

(ii) V ′(t, x(·)) ≤ −W3(|x(t) − a(t)|2) + L

where W3 is convex downward. Thus, there is a B > 0 independent of ϕ with |x(t)| ≤ B

for large t.

Proof. The proof of (i) proceeds by familiar arguments. We have

Q = 2P 2h2A2 and in (ii) L = A2.

REMARK. When we study the proof of Theorem 2A, part (b), we see that for each

B1 > 0 there is a B2 > 0 such that |||(ϕ − Ψ)0||| < B1 and t ≥ 0 imply |x(t, 0, ϕ)| < B2.

Also, for each B3 > 0 there is a T > 0 such that |||(ϕ − Ψ)0||| < B3 and t ≥ T imply

|x(t)| ≤ B. This may be called uniform boundedness and uniform ultimate boundedness.

3. Infinite delay. Consider the equation

(10) x(t) = a(t) −

∫ t

−∞

D(t, s)x(s) ds

or

(10N ) x(t) = a(t) −

∫ t

−∞

Q(t, s, x(s)) ds

where Q is continuous,

(11) a : R→ R is bounded and continuous, a ∈ L1[0,∞),

17



there is a constant P > 0 with

(12) D(t, s) ≥ 0,Ds(t, s) ≥ 0,D(t, t) ≤ P,

(13)

∫ t

−∞

[D(t, s) + {Ds(t, s) + |Dst(t, s)|}(t − s)2] ds is continuous

(14) lim
s→−∞

(t− s)D(t, s) = 0 for fixed t,

there is a function

(15) g : [0,∞) → (0, 1], g decreasing, g(0) = 1,

∫

∞

0

g(s)ds =: G <∞,

there are constants L > 0 and M > 0 with MG < 1 and

(16)

∫ t

−∞

[Ds(t, s)(t − s)/g(t− s)] ds ≤ Land

2

∫ 0

−∞

[

(Dst(t, s))+(t− s)/g(t− s)

]

ds+

∫ t

0

[

(Dst(t, s))+(t− s)/g(t − s)

]

ds ≤M,

(17)

d∗(t) :=

∫ 0

−∞

(

Dst(t, s)+

)

s2 ds ∈ L1[0,∞) and for each

T > 0 then

∫ T

−∞

Ds(t, s)(t − s)2 ds→ 0 as t→ ∞.

Define Ω by

(18) Ω = {ϕ : (−∞, 0] → R,ϕ ∈ C,ϕ bounded, ϕ(0) = a(0) −

∫ 0

−∞

D(0, s)ϕ(s)ds}

where C denotes a set of continuous functions on (−∞, 0], and ρ by

(19) ϕ ∈ Ω implies that ρ(ϕ) =

∫ 0

−∞

g(−s)|ϕ(s)| ds.

Solutions are denoted as before.

Theorem 3A. Suppose that there is a continuous function ψ : R → R with Ψ(t) :=

a(t) − ψ(t) −
∫ t

−∞
Q(t, s, ψ(s)) ds in L1[0,∞), and that there are continuous functions p,

18



q : [0,∞) → [0,∞), p(t) → 0 as t → ∞, q ∈ L1[0,∞), wedges Wi with W1(r) → ∞

as r → ∞, and a continuous function V (t, x(·))defined for a solution x(t) = x(t, t0, ϕ) of

(10N ) such that

(i) W1(|x(t) − Ψ(t)|) ≤ V (t, x(·)) ≤ W2(ρ(W3(|x− Ψ|t))) + p(t)

and for V (t) = V (t, x(·)) then

(ii) V (t) ≤ V (t0) −

∫ t

t0

W3(|x(s) − Ψ(s)|)ds +

∫ t

t0

q(s)ds.

Then the near equilibrium (ψ,Ψ) of (10N ) is asymptotically stable relative to Ω. If p and

q depend on x(t), then |x(t) − Ψ(t)| → 0 as t→ ∞.

Theorem 3B. Let (11) – (18) hold. Then there are continuous functions p, q : [0,∞) →

[0,∞), p(t) → 0 as t → ∞, q ∈ L1[0,∞), wedges Wi with W1(r) → ∞ as r → ∞, and a

continuous function V (t, x(·)) defined for a solution x(t) = x(t, t0, ϕ) of (10) with ϕ ∈ Ω

such that

(i) W1(|x(t) − a(t)|) ≤ PV (t, x(·)) ≤W2(ρ(W3(|x− a|t))) + p(t)

and for V (t) = V (t, x(·)) then

(ii) V (t) ≤ V (t0) −

∫ t

t0

W3(|x(s) − a(s)|)ds +

∫ t

t0

q(s)ds.

Moreover, the near equilibrium (0, a(t)) of (10) is asymptotically stable relative to Ω.

Proof. We begin the proof of Theorem 3B first. As before, we can obtain

(x(t) − a(t))2 ≤ D(t, t)

∫ t

−∞

Ds(t, s)

(
∫ t

s

x(v)dv

)2

ds =: D(t, t)V (t, x(·))

≤ P

∫ t

−∞

Ds(t, s)2

{(
∫ t

s

|x(v) − a(v)| dv

)2

+

(
∫ t

s

|a(v)| dv

)2}

ds

≤ 2P

∫ t

−∞

Ds(t, s)(t − s)

∫ t

s

|x(v) − a(v)|2dv ds + 2P

∫ t

−∞

Ds(t, s)

(
∫ t

s

|a(v)| dv

)2

ds

≤ 2P

∫ t

−∞

[Ds(t, s)(t − s)/g(t − s)]

∫ t

s

|x(v) − a(v)|2g(t− s)ds

+ 2P

∫ t

−∞

Ds(t, s)

(
∫ t

s

|a(v)|dv

)2

ds
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(g decreasing implies that g(t− v) ≥ g(t− s))

≤ 2P

∫ t

−∞

[Ds(t, s)(t − s)/g(t − s)]

∫ t

−∞

|x(v) − a(v)|2g(t− v)dv

+ 2P

∫ t

−∞

Ds(t, s)

(
∫ t

s

|a(v)| dv

)2

ds

≤ 2PLρ(|x− a|2t ) + p(t)

where p is the last integral. We later show that p(t) → 0 as t→ ∞.

A calculation yields

V ′(t, x(·)) ≤ −2x[x− a(t)] +

∫ t

−∞

(Dst(t, s))+

(
∫ t

s

x(v)dv

)2

ds

≤ −x2 − (x− a(t))2 + a2(t) +

∫ t

−∞

(Dst(t, s))+

(
∫ t

s

x(v)dv

)2

ds.

Now there is a positive constant H with |ϕ(t)| ≤ H on (−∞, 0] so the last term can be

bounded by

2

∫ 0

−∞

(Dst(t, s))+

(
∫ 0

s

ϕ(v)dv

)2

ds

+ 2

∫ 0

−∞

[

(Dst(t, s))+(t− s)/g(t − s)

]

ds

∫ t

0

g(t− v)x2(v)dv

+

∫ t

0

[

(Dst(t, s))+(t − s)/g(t − s)

]
∫ t

0

g(t− v)x2(v)dv

≤ 2d∗(t)H2 +M

∫ t

0

g(t− v)x2(v)dv.

If we now integrate V ′ and interchange the order of integration in the last term above,

taking a2(t) + 2d∗(t)H2 = q(t), then we will have, by taking t0 = 0 for brevity,

V (t) ≤ V (0) −

∫ t

0

x2(s)ds +

∫ t

0

q(s)ds +M

∫ t

0

∫ u

0

g(u− v)x2(v)dv ds

−

∫ t

0

(x(s) − a(s))2 ds

= V (0) −

∫ t

0

x2(s)ds +

∫ t

0

M

∫ t

v

g(u− v)du x2(v)dv +

∫ t

0

q(s)ds

−

∫ t

0

(x(s) − a(s))2 ds

≤ V (0) − (1 −MG)

∫ t

0

x2(s)ds +

∫ t

0

q(s)ds −

∫ t

0

(x(s) − a(s))2 ds
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yielding (ii).

We now complete the proof of (i) by noting that (x(t) − a(t))2 , x2(t), and a2(t) are all

in L1[0,∞). From the first line of the proof we have

PV (t) ≤ 2P

∫ t

−∞

[Ds(t, s)(t − s)/g(t − s)]

∫ t

s

|x(v) − a(v)|2g(t− v)dv ds

+ 2P

∫ t

−∞

Ds(t, s)

(
∫ t

s

|a(v)| dv

)2

ds

≤ 2PL

∫ t

−∞

|x(v) − a(v)|2g(t− v)dv

+ 2P

∫ T

−∞

Ds(t, s)(t − s)2 ds‖a‖2 + 2P

∫ t

T

Ds(t, s)

(
∫ t

s

|a(v)| dv

)2

ds

where ‖a‖ is the bound on a and T will be large. The second term tends to zero by

assumption; the last term can be made small by taking T large since a ∈ L1[0,∞). This

proves (i).

We now prove Theorem 3A which will also complete the proof of Theorem 3B. Using

(ii) we have V (t) ≤ V (t0) +
∫ t

t0
q(s)ds which in (i) yields

W1(|x(t) − Ψ(t)|) ≤ V (t, x(·)) ≤ W2(ρ(W3(|ϕ− Ψ|t0))) + p(t0)

+

∫ t

t0

q(s)ds.

This yields stability. From (ii), W3(|x(t) − Ψ(t)|) ∈ L1[0,∞) and g(t) → 0 so ρ(W3(|x −

Ψ|t)) → 0 as t→ ∞. Since p(t) → 0 as t→ ∞, V (t) → 0, completing the proof.

We now give a general boundedness result for (10N ) and for (10) when a(t) is bounded.

Let

(11∗) a : R→ R be bounded and continuous,

(12∗) D(t, s) ≥ 0,Ds(t, s) ≥ 0,D(t, t) ≤ P,Dst(t, s) ≤ 0,

and for g defined in (15) let

∫ t

−∞

[Ds(t, s)(t − s)/g(t − s)] ds ≤ L.
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Theorem 4A. Let g satisfy (15), V , f , p : [0,∞) → [0,∞) be continuous, p(t) → 0 as

t→ ∞, W be a wedge, and let M be a positive constant. Suppose that

(i) V (t) ≤ W

(
∫ t

0

f(s)g(t − s)ds

)

+ p(t),

(ii) V ′(t) ≤M − f(t),

and that V (t) being bounded implies that f(t) is bounded. Then V (t) ≤ B := W (MG+1)+1

for large t.

Theorem 4B. Let (11∗), (12∗), (13) – (15), (16∗) hold. Suppose also that there are

wedges Wi, M > 0, p : [0,∞) → [0,∞) with p(t) → 0 as t → ∞, such that W1(r) → ∞

as r → ∞. If ϕ ∈ Ω and x(t) = x(t, 0, ϕ) solves (10), then there is a continuous function

V (t, x(·)) with

(i) W1(|x(t) − a(t)|) ≤ PV (t, x(·)) ≤ W2

(
∫ t

0

W3(|x(s)|)g(t − s)ds

)

+ p(t)

and

(ii) V ′(t, x(·)) ≤M −W3(|x(t)|)

so that V (t, x(·)) ≤ B := W (MG + 1) + 1 for large t.

Proof. We first verify the conditions in Theorem 4B. If a2(t) ≤M , then the calculations

in the proof of Theorem 3B yield (ii) with V ′(t) ≤M − x2. For the same V we have

(x(t) − a(t))2 ≤ P

∫ t

−∞

Ds(t, s)

(
∫ t

s

x(v)dv

)2

ds = PV (t, x(·))

≤ P

∫ t

−∞

[Ds(t, s)(t − s)/g(t− s)] ds

∫ t

−∞

x2(v)g(t − v)dv

≤ PL

∫ t

0

x2(v)g(t − v)dv + PL

∫ 0

−∞

x2(v)g(t − v)dv

so (i) is satisfied since g ∈ L1[0,∞). Notice that M is independent of ϕ.
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We now consider Theorem 4A and suppose there is a t > 0 with V (t) ≥ V (s) for

0 ≤ s ≤ t. Then

g(t− s)V ′(s) ≤Mg(t − s) − g(t− s)f(s)

so by a mean value theorem, there is an ξ ∈ [0, t] with

0 ≤ g(0)[V (t) − V (ξ)] = g(0)

∫ t

ξ

V ′(s)ds =

∫ t

0

g(t− s)V ′(s)ds

≤M

∫ t

0

g(s)ds −

∫ t

0

g(t− s)f(s)ds

or
∫ t

0

g(t− s)f(s)ds ≤MG

where G =
∫

∞

0
g(s)ds. This means that either V (0) is the maximum of V or V (t) ≤

W (MG) + ‖p‖. In either case, V is bounded and there is a k > 0 with f(t) ≤ k.

Let {tn} ↑ ∞ have the property that V (tn) → lim sup
t→∞

V (t), and find m such that

(∗) t ≥ tm implies that V (t) ≤ V (tj) + 1 if j ≥ m.

Now, let n > m and from (ii) consider

g(tn − s)V ′(s) ≤Mg(tn − s) − f(s)g(tn − s)

so that if tm ≤ t∗ < tn there is some ξ ∈ [t∗, tn]. We have from (∗) that

−g(0) ≤ g(0)[V (tn) − V (ξ)] = g(0)

∫ tn

ξ

V ′(s)ds

=

∫ tn

t∗
g(tn − s)V ′(s)ds ≤MG −

∫ tn

t∗
g(tn − s)f(s)ds

or
∫ tn

t∗
g(tn − s)f(s)ds ≤MG + 1.

Thus, if tm ≤ t∗ < tn then

V (tn) ≤W

(
∫ t∗

0

f(s)g(tn − s)ds +MG + 1

)

+ p(tn)
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For t∗ fixed and tn → ∞,
∫ t∗

0
f(s)g(tn − s)ds → 0 since f is bounded and g ∈ L1[0,∞).

This means that

V (tn) → lim sup
t→∞

V (t) ≤ W (MG + 1) + 1 = B.

This completes the proof.

EXAMPLE 4. Let

(10NN) x(t) = a(t) −

∫ t

−∞

D(t, s)r(s, x(s)) ds

where a and D satisfy (11∗), (12∗), and

(16∗∗)

∫ t

−∞

[Ds(t, s)/g
2(t − s)] ds ≤ L, g defined in (15).

Let r be continuous, bounded for x bounded, and suppose there is an M > 0 with

−2r(t, x)[x − a(t)] ≤ M − |r(t, x)|. For ϕ : (−∞, 0] → R bounded and continuous

with ϕ(0) = a(0) −
∫ 0

−∞
D(0, s)r(s, ϕ(s)) ds, let x(t) = x(t, 0, ϕ) solve (10NN). Then

for f(t) = |r(t, x(t))| and

V (t) =

∫ t

−∞

Ds(t, s)

(
∫ t

s

r(v, x(v))dv

)2

ds,

the conditions of Theorem 4A are satisfied.

Proof. A calculation yields V ′(t) ≤M − |r(t, x)| and

(x(t) − a(t))2 ≤ PV (t, x(·)) ≤ P

∫ t

−∞

[Ds(t, s)/g
2(t− s)]

(
∫ t

s

|r(v, x(v))|g(t − v)dv

)2

ds

≤ 2PL

(
∫ t

0

|r(v, x(v))|g(t − v)dv

)2

+ 2PL

(
∫ 0

−∞

|r(v, ϕ(v))|g(t − v)dv

)2

=: W

(
∫ t

0

f(v)g(t − v)dv

)

+ p(t).
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4. Unbounded delay. While the theory for the following equations is generally quite

different from that for (10) and (10N), they can be treated in much the same way in this

context. Let

(20) x(t) = a(t) −

∫ t

0

D(t, s)x(s) ds

or

(20N ) x(t) = a(t) −

∫ t

0

Q(t, s, x(s))ds

with Q continuous,

(21) a : [0,∞) → R is continuous, a and a2 ∈ L1[0,∞),

(22) D(t, s) ≥ 0,D(t, t) ≤ P,Dt(t, s) ≤ 0,Ds(t, s) ≥ 0, tD(t, 0) → 0 as t→ ∞.

Let

(23) g : [0,∞) → (0, 1], g(0) = 1, g decreasing,

∫ t

0

g(s)ds ≤ G

and suppose there are constants L > 0, M ≥ 0 with GM < 1 and for t ≥ 0 then

(24)

∫ t

0

[Ds(t, s)(t − s)/g(t − s)] ds ≤ L,

∫ t

0

[

(Dst(t, s))+(t − s)/g(t − s)

]

ds ≤M.

Now for each t0 ≥ 0 and each continuous ϕ : [0, t0] → R there is a solution x(t, t0, ϕ)

satisfying (20) if t > t0 and x(t, t0, ϕ) = ϕ(t) for 0 ≤ t ≤ t0. We then require that

(25) ϕ(t0) = a(t0) −

∫ t0

0

D(t0, s)ϕ(s)ds

so that x(t, t0 , ϕ) is continuous on [0,∞) enabling us to integrate by parts when we compute

V ′.

Theorem 5A. Suppose that for a continuous function ψ : [0,∞) → R, Ψ(t) := a(t) −

ψ(t) −
∫ t

0
Q(t, s, ψ(s)) ds is in L1[0,∞), and that there are continuous functions p, q :
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[0,∞) → [0,∞) with p(t) → 0 as t → ∞, q ∈ L1[0,∞), a continuous funciton V (t, x(·))

defined for a solution x(t) = x(t, t0, ϕ) of (20N ) with ϕ ∈ Ω, and wedges Wi such that

(i) W1(|x(t) − Ψ(t)|) ≤ V (t, x(·)) ≤W2

(
∫ t

0

W3(|x(v) − Ψ(v)|)g(t− v)dv

)

+ p(t)

where W1(r) → ∞ as r → ∞ and

(ii) V (t, x(·)) ≤ V (t0) −

∫ t

t0

W3(|x(s) − Ψ(s)|)ds +

∫ t

t0

q(s)ds.

Then the near equilibrium (ψ,Ψ) of (20N ) is asymptotically stable relative to Ω. If p and

q depend on x(t) then |x(t) −Ψ(t)| → 0 as t→ ∞.

Theorem 5B. Let (21) – (25) hold. Then there are wedges Wi such that W1(r) → ∞

as r → ∞ and for any solution x(t) = x(t, t0, ϕ) of (20) with ϕ ∈ Ω, there are continuous

functions p, q : [t0,∞) → [0,∞), p(t) → 0 as t → ∞, q ∈ L1[t0,∞) and a continuous

function V (t, x(·)) such that

(i)

W1(|x(t)−a(t)|) ≤ 2(D(0, 0)+P )V (t, x(·)) ≤W2

(
∫ t

0

W3(|x(v)−a(v)|)g(t−v) dv

)

+p(t)

and for V (t) = V (t, x(·)) then

(ii) V (t) ≤ V (t0) −

∫ t

t0

W3(|x(s) − a(s)|)ds +

∫ t

t0

q(s)ds +G

∫ t0

0

ϕ2(s)ds

and |x(t) − a(t)| → 0 as t→ ∞.

Proof. We consider Theorem 5B first. Let

V (t, x(·)) =

∫ t

0

Ds(t, s)

(
∫ t

s

x(v)dv

)2

ds+D(t, 0)

(
∫ t

0

x(s)ds

)2
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so that

(x(t) − a(t))2 =

(

−

∫ t

0

D(t, s)x(s) ds

)2

=

(

D(t, s)

∫ t

s

x(v)dv

∣

∣

∣

∣

t

0

−

∫ t

0

Ds(t, s)

∫ t

s

x(v)dv ds

)2

=

(

−D(t, 0)

∫ t

0

x(v)dv −

∫ t

0

Ds(t, s)

∫ t

s

x(v)dv ds

)2

≤ 2D2(t, 0)

(
∫ t

0

x(v)dv

)2

+ 2

∫ t

0

Ds(t, s)ds

∫ t

0

Ds(t, s)

(
∫ t

s

x(v)dv

)2

ds

≤ 2D2(t, 0)

(
∫ t

0

x(v)dv

)2

+ 2 [D(t, t) −D(t, 0)]

∫ t

0

Ds(t, s)

(
∫ t

s

x(v)dv

)2

ds

≤ 2 [D(t, 0) +D(t, t)]V (t, x(·)) ≤ 2 [D(0, 0) +D(t, t)]V (t, x(·))

or

(x(t) − a(t))2 ≤ 2[D(0, 0) + P ]V (t, x(·))

satisfying the left-hand-side of (i).

Next

V ′(t, x(·)) ≤ 2

∫ t

0

Ds(t, s)

∫ t

s

x(v)dv dsx(t) +Dt(t, 0)

(
∫ t

0

x(s)ds

)2

+ 2D(t, 0)x(t)

∫ t

0

x(s)ds +

∫ t

0

Dst(t, s)

(
∫ t

s

x(v)dv

)2

ds

= 2x(t)

[

D(t, s)

∫ t

s

x(v)dv

∣

∣

∣

∣

t

0

+

∫ t

0

D(t, s)x(s)ds

]

+Dt(t, 0)

(
∫ t

0

x(s)ds

)2

+ 2x(t)D(t, 0)

∫ t

0

x(s)ds

+

∫ t

0

Dst(t, s)

(
∫ t

s

x(v)dv

)2

ds

= −2x(t)D(t, 0)

∫ t

0

x(v)dv + 2x(t)[a(t) − x(t)]

+Dt(t, 0)

(
∫ t

0

x(s)ds

)2

+ 2x(t)D(t, 0)

∫ t

0

x(s)ds
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+

∫ t

0

Dst(t, s)

(
∫ t

s

x(v)dv

)2

ds

≤ −x2 − (x− a(t))2 + a2(t) +

∫ t

0

(Dst(t, s))+(t− s)

∫ t

s

x2(v)dv ds

≤ −x2 − (x− a(t))2 + a2(t) +

∫ t

0

[

(Dst(t, s))+(t − s)/g(t − s)

]
∫ t

s

x2(v)g(t− s)dv ds

≤ −x2 − (x− a(t))2 + a2(t) +M

∫ t

0

x2(v)g(t − v)dv

so that

V (t, x(·)) ≤ V (t0, ϕ) −

∫ t

t0

x2(s)ds −

∫ t

t0

(x(s) − a(s))2 ds +

∫ t

t0

a2(s)ds

+M

∫ t

t0

∫ u

0

x2(v)g(u− v)dv du

and the last term is

M

∫ t

t0

x2(v)

∫ t

v

g(u− v)du dv +M

∫ t0

0

∫ t

t0

x2(v)g(u − v)du dv

≤MG

∫ t

t0

x2(v)dv +M

∫ t0

0

x2(v)Gdv

and this verifies (ii). In particular, a2 ∈ L1[0,∞) and so is (x(t) − a(t))2 , as MG < 1 we

can also argue that x2 ∈ L1.

To satisfy the right-hand-side of (i), we note that

D(t, 0)

(
∫ t

0

x(v)dv

)2

≤ D(t, 0)t

∫ t

0

x2(v)dv =: p1(t) → 0

as t→ ∞ by (22) and the fact that x2 ∈ L1[0,∞). Next,
∫ t

0

Ds(t, s)

(
∫ t

s

x(v)dv

)2

ds

≤

∫ t

0

Ds(t, s)2

{(
∫ t

s

|x(v) − a(v)| dv

)2

+

(
∫ t

s

|a(v)| dv

)2}

ds

≤ 2

∫ t

0

[Ds(t, s)(t − s)/g(t− s)]

∫ t

s

(x(v) − a(v))2g(t− s)dv ds

+ 2

∫ t

0

Ds(t, s)

(
∫ t

s

|a(v)| dv

)2

ds

≤ 2L

∫ t

0

(x(v) − a(v))2g(t− v)dv + 2

∫ t

0

Ds(t, s)

(
∫ t

s

|a(v)| dv

)2

ds

=: 2L

∫ t

0

(x(v) − a(v))2g(t− v)dv + p2(t)
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and L is defined in (24), g is defined in (23), while one can argue from (24) and a ∈ L1[0,∞)

that p2(t) → 0 as t → ∞. Clearly, the integral on the right tends to zero as it is the

convolution of an L1-function and a function tending to zero. Also, p(t) = 2(D(0, 0) +

P )(p1(t) + p2(t)) → 0 as t→ ∞ and so (i) is satisfied.

Looking now at Theorem 5A, since (ii) implies that W3(|x(t) − Ψ(t)|) ∈ L1[0,∞), it

readily follows that V (t) → 0. The stability relation follows by familiar arguments.

Clearly, Theorem 4A applies to (20) and (20N ) as well.
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