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1. Introduction. Stability in two measures can be traced back at least to Krasovskii

[12; p. 155] (originally done in 1956) where he considers a system of functional differential

equations

(K) x′(t) = F (t, xt), F (t, 0) = 0.

Here (C, ‖ · ‖) is the Banach space of continuous functions ϕ : [−h, 0] → Rn, h > 0, with

the supremum norm and xt(s) = x(t + s) for −h ≤ s ≤ 0. To specify a solution of K

it is required that there be given a continuous initial function ϕ : [t0 − h, t0] → Rn. If

F : [0,∞)×C → Rn is continuous and takes bounded sets into bounded sets and if t0 ≥ 0,

then there is a solution x(t; t0 , ϕ) of (K) with xt0(t0, ϕ) = ϕ and defined on some interval

[t0, t0 + β); if the solution remains bounded, β = ∞.

The standard definition of stability states that: the zero solution of (K) is stable if for

each ε > 0 and t0 ≥ 0 there is a δ > 0 such that [ϕ ∈ C, ‖ϕ‖ < δ, t ≥ t0] imply that

‖xt(t0, ϕ)‖ < ε. The stability is entirely in terms of the supremum norm. The definition

is continued to uniform stability and uniform asymptotic stability, all in terms of the

supremum norm; those definitions and relations are extensively discussed in numerous

places, including [7–10], [13–19], [21–22], [24]. Krasovskii noticed that, for smooth F ,

uniform asymptotic stability could be characterized by Liapunov functionals. Here, Wi
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shall always denote a wedge, which is a continuous increasing function with Wi(0) = 0.

Krasovskii proved that the zero solution of (K) is uniformly asymptotically stable if and

only if there is a continuous scalar functional V (t, ϕ) and wedges Wi with

(i) W1(‖ϕ‖) ≤ V (t, ϕ) ≤W2(‖ϕ‖)

and

(ii) V ′

(K)(t, xt) ≤ −W3(‖ϕ‖).

But Krasovskii seems to have never found a V for a particular system which satisfied

(i) and (ii). He noted that useful Liapunov functionals had a prototype

V (t, ϕ) = ϕ2(0) +

∫ 0

−h

ϕ2(s)ds.

When he stated a theorem for such Liapunov functionals, he inadvertently introduced the

fruitful notion of stability in two measures. He proved that if there is a continuous scalar

functional V (t, ϕ) and wedges Wi with

(i∗) W1(|ϕ(0)|) ≤ V (t, ϕ) ≤ W2(|ϕ(0)| + |||ϕ|||)

and

(ii∗) V ′

(K)(t, xt) ≤ −W3(|x(t)|)

(here, ||| · ||| is the L2-norm), then x = 0 is asymptotically stable (we showed [3] that the

conclusion is uniform asymptotic stability). In fact, a simple consequence of these relations

is that for each ε > 0 there is a δ > 0 such that [t0 ≥ 0, ϕ ∈ C, |ϕ(0)| + |||ϕ||| < δ, t ≥ t0]

imply that |x(t; t0, ϕ)| < ε. This is stability in the two measures | · | and | · | + ||| · |||.

Not only do these measures allow much larger initial functions, producing solutions

which remain bounded by ε, but the attempts to replace | · |+ ||| · ||| by ‖ · ‖ for forty years

have recently been proved fruitless by Kato [11] and Makay [22]. Not only was (i∗) a good

practical choice over (i), but (i) can not assure uniform asymptotic stability.
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The idea was formalized by Movchan [24] for equations without delay and enjoyed

some attention. For example, Hatvani ([7] – [10]) dealt with partial stability by means of

Liapunov functions which failed to be decrescent or radially unbounded. But a sequence

of papers by Lakshmikantham and Liu ([13–17]) culminated in a substantial monograph

[18] for ordinary and finite delay equations, followed by a section on infinite delay in the

monograph by Lakshmikantham-Zhang-Wen [19].

The general idea is quite parallel to that described above by Krasovskii; one considers

two measures h0(t, ϕ) and h1(t, ϕ), together with a Liapunov functional V satisfying

W1(h1(t, ϕ)) ≤ V (t, ϕ) ≤W2(h0(t, ϕ)).

Briefly, in such an arrangement, h0 is said to be finer than h1. If, for example, V ′ ≤ 0,

then an initial function ϕ which is small in the measure h0 will give rise to a solution which

remains small in the measure of h1.

The relationships in (i) and (i∗) are natural properties of typical Liapunov functionals

used for decades with (K), and corresponding relations are natural in partial stability and

boundedness when a Liapunov function fails to be either decrescent or radially unbounded.

But the basic thesis of this paper is that the Sobolev norms which arise in the study of

differential and integral equations involving partial derivatives turn out to be very natural

and much richer as a source of applications for the idea of stability in two measures. In

this paper we illustrate some of those relations for partial integral equations of the form

u(t, x) = f(t, x) +

∫ t

t−h

D(t, s)uxx(s, x)ds, u(t, 0) = u(t, 1) = 0,

where h is a positive constant.

We focus here on linear equations only because existence theory is so accessible. Our

work rests on two Liapunov functionals, including

V (t, u(·)) =

∫ t

t−h

Ds(t, s)

∫ 1

0

(∫ t

s

uxx(v, x)dv

)2

dxds.
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Nonlinear problems are considered in the same way merely by replacing uxx throughout

by g(ux)x where xg(x) > 0 if x 6= 0.

2. Several measures. We are interested in stability, boundedness, and asymptotic

behavior of solutions of

(2.1) u(t, x) = f(t, x) +

∫ t

t−h

D(t, s)uxx(s, x)ds , u(t, 0) = u(t, 1) = 0,

where f and D are at least continuous and some of the following hold when t− h ≤ s ≤ t:

f(t, 0) = f(t, 1) = 0,(2.2)

D(t, s) ≥ 0,Ds(t, s) ≥ 0,Dst(t, s) ≤ 0,Dt(t, s) ≤ 0, andD(t, t − h) = 0,(2.3)

∃P > 0, Q > 0 with D(t, t) ≤ P,P

∫ t

t−h

Ds(t, s)(t − s)ds ≤ Q,(2.4)

∫
∞

0

∫ 1

0

[fx(t, x) + f2
xx(t, x) + f2

xxx(t, x)] dxdt <∞,(2.5)

F (t) :=

∫ t

t−h

Ds(t, s)

∫ 1

0

(∫ t

s

fxx(v, x)dv

)2

dxds→ 0 as t→ ∞,(2.6)

∃k(t) ≥ 0 with

∫
∞

0

k(t)dt = ∞ and Dst(t, s) ≤ −k(t)Ds(t, s).(2.7)

The general problem is to show that a solution u(t, x) gets close to f(t, x) in some sense.

2.a. Initial functions. To specify a solution of (2.1) it is required that there be given

a continuous function ϕ : [t0 −h, t0]× [0, 1] → R, ϕxx continuous and ϕ(t, 0) = ϕ(t, 1) = 0.

The task then is to prove that there is a solution u(t, x) of (2.1) on an interval [t0, t0 + α)

for some α > 0 with u(t, x) = ϕ(t, x) for t0 − h ≤ t ≤ t0. Such existence results are known

under a variety of conditions. For example, if t0 = 0 we can write (2.1) as

u(t, x) = f(t, x) +

∫ 0

t−h

D(t, s)ϕxx(s, x)ds +

∫ t

0

D(t, s)uxx(s, x)ds

and apply an existence theorem of Grimmer [6] (see Section 5, Theorems 5.1 and 5.2)

directly if we assume that

(2.3a)
D(t, t) > 0, both D(t, t) and Dt(t, s) are continuously differentiable in t,

while Dt(t, s) is continuously differentiable in s.
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We obtain a solution for 0 ≤ t ≤ h which we continue by the method of steps. While it

is convenient, (2.3a) asks too much; and there are several other ways to obtain solutions.

We illustrate one way by separating variables when f = 0 in Section 2.b.

But we assume neither (23a) nor f ≡ 0 in general; rather, our stability considerations

concern sets Ω(t0) and C(t0) of initial functions for which there are solutions on [t0,∞).

It is clear that the solution u(t, x; t0, ϕ) will have a discontinuity at t0 unless

(2.8) ϕ(t0, x) = f(t0, x) +

∫ t0

t0−h

D(t0 , s)ϕxx(s, x)ds.

This is parallel to a problem encountered by El’sgol’ts [5; pp. 35] for delay differential

equations. He points out that if the initial function is not the natural one for the system,

then a discontinuity in the derivative of the solution appears at t0 but the solution is

continuous and smooth for t > t0. The discontinuity in the derivative causes few difficulties

unless, for example, there is a need to integrate by parts (as El’sgol’ts does [5; p. 31]) or

unless one is constructing a smooth set for the application of a fixed point theorem.

We have problems differentiating V unless (2.8) holds. Thus, our results are of two

types. First, when f(t, x) = 0 we can show that (2.8) will hold for a function ϕ∗ near a

given continuous ϕ; hence, we assume (2.8) holds and obtain results on stability very close

to classical results for differential equations. Next, when f(t, x) is not zero we use a new

Liapunov function W (t, u) for t0 ≤ t ≤ t0 + h to bound the solution for such t; then we

proceed with V (t, u) for t > t0 + h which can now be differentiated. Our bounds are all

in terms of Sobolev norms; the interesting property is that when we lose (2.8), then we

require an increase in the Sobolev dimension for the stability.

2.b. Existence and (2.8). Our first results concern the case f(t, x) ≡ 0. This illus-

trates stability in several measures very close to stability theory for differential equations

since (2.1) then has an equilibrium solution. In addition, it will require a weaker measure

for stability than that required when f is not zero. When f is zero we can separate vari-

ables to obtain global solutions under conditions much weaker than (2.3a) and we can also

5



show how (2.8) can be satisfied.

In (2.1), let f(t, x) = 0, u(t, x) = X(x)T (t) and obtain

T (t)

/ ∫ t

t−h

D(t, s)T (s)ds = X ′′(x)/X(x) = −λ2

where ′ = d/dx and −λ2 is the separation constant. This yields

X ′′ + λ2X = 0, X(0) = X(1) = 0,

T (t) = −λ2

∫ t

t−h

D(t, s)T (s)ds.

We take λ2 = n2π2 so Xn(x) = bn sinnπx and to satisfy (2.8) we need (taking t0 = 0)

Tn(0) = −n2π2

∫ 0

−h

D(0, s)Tn(s)ds.

To solve the equation in T (t) we need an initial function ψn : [−h, 0] → R to obtain a

solution Tn(t) = Tn(t; 0, ψn) with Tn(t) = ψn(t) for −h ≤ t < 0. We showed [4] that for

any continuous ψn and any ε > 0 there is a t1 in (−h, 0) and as close to 0 as we please,

together with a continuous ψ∗

n with ψ∗

n(t) = ψn(t) on [−h, t1] and differing by less than ε

at 0, while

ψ∗

n(0) = −n2π2

∫ 0

−h

D(0, s)ψ∗

n(s)ds;

moreover, if T ∗

n = T ∗

n(t; 0, ψ∗

n), then it is bounded and converges to zero as t→ ∞. While

discussion of infinite sums take more space than we wish to use here, a finite sum

U∗(t, x) =
∑

bnT
∗

n(t) sin nπx

will satisfy (2.1) and (2.8).

2.c. Stability. For a given t0 ∈ R, denote by

(2.9) Ω(t0)

the set of continuous ϕ : [t0 − h, t0] × [0, 1] → R for which (2.8) holds, ϕ(t, 0) = ϕ(t, 1) =

ϕxx(t, 0) = ϕxx(t, 1) = 0, and there is a solution u(t, x) of (2.1) satisfying (2.2), agreeing

with ϕ on [t0 − h, t0], existing on [t0,∞), and having uxx(t, x) continuous. Denote by

(2.9∗) C(t0)
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those ϕ for which all of these conditions hold, except possibly (2.8).

For ϕ ∈ Ω(t0) and for u(t, x) = u(t, x; t0, ϕ) define

(2.10) V (t, u(·)) =

∫ t

t−h

Ds(t, s)

∫ 1

0

(∫ t

s

uxx(v, x)dv

)2

dxds

which gives rise to the following norms for functions u(t, x) satisfying u(t, 0) = u(t, 1) = 0.

It is known that
∫ 1

0

u2(t, x)dx ≤

∫ 1

0

u2
x(t, x)dx ≤

∫ 1

0

u2
xx(t, x)dx

for functions with those boundary conditions so that the following norms generate the

usual Sobolev topologies for u, ux, and uxx; but uxxx does not satisfy such inequalities:

|u|2H0(t) =

∫ 1

0

u2(t, x)dx,

|u|2H1(t) =

∫ 1

0

u2
x(t, x)dx,

|u|2H2(t) =

∫ 1

0

u2
xx(t, x)dx,

|u|2H3(t) = |u|2H2 +

∫ 1

0

u2
xxx(t, x)dx,

|u|2B0(t) =

∫ t

t−h

∫ 1

0

u2(s, x)dxds,

|u|2B1(t) =

∫ t

t−h

∫ 1

0

u2
x(s, x)dxds,

|u|2B2(t) =

∫ t

t−h

∫ 1

0

u2
xx(s, x)dxds,

|u|2B3(t) =

∫ t

t−h

∫ 1

0

[u2
xx(s, x) + u2

xxx(s, x)] dxds.

In the terminology of stability in several measures, H2 is finer than H1 which is finer

than H0. One of the interesting properties here is that, while B2 is generally not compa-

rable to H0, along solutions of (2.1) we have B2 finer than H0.

2.d. The case f = 0. Generally, our work focuses on f(t, x) not identically zero;

indeed, if we consider

u(t, x) = f(t, x) +

∫ t

0

D(t, s)uxx(s, x)ds,
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a nonzero solution on [0,∞) will generally exist only if f(t, x) is not identically zero. But for

(2.1) the case f(t, x) identically zero is not only nontrivial, but it provides an introduction

to stability which is close to classical theory for differential equations.

CONVENTION. If ϕ ∈ Ω(t0), then |ϕ|B2 means |ϕ|B2(t0).

Def. 0. Let f(t, x) = 0 and u = u(t, x; t0, ϕ).

(a) The solution u = 0 of (2.1) is said to be (B2,H0)-uniformly stable if [∀ε > 0,∀t0 ∈

R]∃δ > 0 such that [t ≥ t0, ϕ ∈ Ω(t0), |ϕ|B2 < δ] ⇒ |u|H0(t) < ε. If δ depends on t0, then

u = 0 is (B2,H0)-stable.

(b) The solution u = 0 of (2.1) is said to be ((B2,H0),H0)-uniformly asymptotically

stable if it is (B2,H0) − US and if there is a γ > 0 and ∀µ > 0 ∃T > 0 such that

[t0 ∈ R,ϕ ∈ Ω(t0), |ϕ|B2 < γ, t ≥ t0 + T ] ⇒ |u|H0(t) < µ.

(c) The solution u = 0 of (2.1) is said to be ((B2,H0), B1)-asymptotically stable if it is

(B2,H0)-stable and if ∀t0 ∈ R ∃γ > 0 such that [ϕ ∈ Ω(t0), |ϕ|B2 < γ] ⇒ |u|B1(t) → 0 as

t→ ∞.

Note in (2.9) that ϕ ∈ Ω(t0) implies u(t, x; t0, ϕ) is continuable.

Theorem O. Let (2.3) hold, except possibly Dt(t, s) ≤ 0, and define Ω(t0) in (2.9).

Suppose that f(t, x) = 0. Then the zero solution of (2.1) is (B2,H0) − US and

((B2,H0), B1) − AS. If there is a K > 0 with Dst(t, s) ≤ −KDs(t, s), then u = 0 is

((B2,H0),H0) − UAS.

Proof. In the proof of Theorem 1 we will show that for V defined in (2.10) and u =

u(t, x; t0, ϕ) with f(t, x) = 0, then there are positive constants P and Q with

(i) |u|2H0(t) ≤ PV (t, u(·)) ≤ 2Q|u|2B2(t)

and

(ii) V ′(t, u(·)) ≤ −2|u|2H1(t) +

∫ t

t−h

Dst(t, s)

∫ 1

0

(∫ t

s

uxx(v, x)dv

)2

dxds

and Dst ≤ 0 yields

(ii∗) V ′(t, u(·)) ≤ −2|u|2H1(t).
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The calculations for f 6= 0 contain those for f = 0 and so are delayed until later.

For US, let ε > 0 be given and choose δ2 = ε2/Q so that if t0 ∈ R, if ϕ ∈ Ω(t0), and if

|ϕ|2B2 < δ2, then (i) and (ii*) yield

|u|2H0(t) ≤ PV (t, u(·)) ≤ PV (t0, ϕ) ≤ Q|ϕ|2B2 < Qδ2 = ε2,

as required.

For ((B2 ,H0), B1) − AS, if t0 ∈ R, ϕ ∈ Ω(t0), then an integration of (ii*) yields

0 ≤ V (t, u(·)) ≤ V (t0, ϕ) − 2

∫ t

t0

|u|2H1(s) ds

so that
∫ t

t−h |u|
2
H1(s) ds→ 0 as t→ ∞.

If Dst ≤ −KDs, then V ′ ≤ −KV so that

|u|2H0(t) ≤ PV (t, u(·)) ≤ PV (t0, ϕ)e−K(t−t0)

≤ Q|ϕ|2B2e−K(t−t0),

proving the UAS.

Example O. Let D(t, s) = d(t− s) so that for 0 ≤ t ≤ h we ask that d(t) ≥ 0, d′(t) ≤ 0,

d′′(t) ≥ 0, d(h) = 0 and (2.3) will be satisfied.

(a) If n > 1 and d(t) = (h− t)n, then for 0 ≤ t ≤ h we have d′(t) = −n(h− t)n−1 ≤ 0,

d′′(t) = n(n− 1)(h − t)n−2 ≥ 0, and d′′(t)/d′(t) = −(n− 1)/(h − t) ≤ −(n− 1)/h =: −K

and we will have V ′ ≤ −KV so (2.1) is ((B2 ,H0),H0) − UAS.

(b) Let d(t) = 1 + cos(t + π
2 ), h = π/2, so that d′(t) = − sin(t + π

2 ) and d′′(t) =

− cos(t+ π
2
). Then d′′(t)/d′(t) = cot(t+ π

2
) and we can not satisfy V ′ ≤ −KV for K > 0.

Thus, we conclude only (B2,H0) − US and ((B2,H0), B1) − AS.

2.e. The case f 6= 0. If f is not identically zero then the idea is that the solution of

(2.1) may converge to f in some way. Recall that C(t0) is defined with (2.9*).

CONVENTION. If ϕ ∈ C(t0), then |ϕ− f |B3 = |ϕ− f |B3(t0).

DEF. 1.
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(a) Solutions of (2.1) are said to be (B3,H0)-uniformly bounded relative to f if for each

B1 > 0 there exists B2 > 0 such that [t0 ∈ R, ϕ ∈ C(t0), |ϕ − f |B3 < B1, t ≥ t0] imply

that |u− f |H0(t) < B2.

(b) The function f is said to be eventually (B3,H0)-uniformly stable if for each ε > 0

there is a δ > 0 and T > 0 such that [t0 ≥ T, ϕ ∈ C(t0), |ϕ− f |B3 < δ, t ≥ t0] imply that

|u− f |H0(t) < ε.

(c) The function f is said to be B1-globally attractive if [t0 ∈ R,ϕ ∈ C(t0)] imply that

|u− f |B1(t) → 0 as t→ ∞.

(d) The function f is said to be H0-globally attractive if [t0 ∈ R,ϕ ∈ C(t0)] imply that

|u− f |H0(t) → 0 as t→ ∞.

We will formulate theorems yielding such properties and there is one more of interest

here. In the theory of differential equations a Liapunov function frequently does not have

quite enough properties to yield a given result, but simple examination of the equation

supplies the missing information. The classical example is the Barbashin-Marachkov-

Krasovskii-LaSalle-Yoshizawa idea ([1], [12], [20], [23], [25]) that if the equation x′ =

p(t, x) is bounded for x bounded then every bounded solution approaches a set where the

derivative of the Liapunov function is zero. We offer an interesting counterpart here. We

show that if |u|H1(t) is bounded, then |u− f |H0(t) → 0 as t→ ∞.

If u is a solution of (2.1) with initial function ϕ satisfying (2.8), then (2.10) can be

differentiated for t ≥ t0 and stability properties will result. But if (2.8) fails then we will

need a growth estimate on V for t0 ≤ t ≤ t0 + h. Such an estimate is obtained by writing

(2.1) as

u(t, x) = f(t, x) +

∫ t0

t−h

D(t, s)ϕxx(s, x)ds +

∫ t

t0

D(t, s)uxx(s, x)ds(2.1a)

=: G(t, x, ϕ) +

∫ t

t0

D(t, s)uxx(s, x)ds
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and employing the Liapunov functional

W (t, u) =

∫ t

t0

Ds(t, s)

∫ 1

0

(∫ t

s

uxx(v, x)dv

)2

dxds

+

∫ 1

0

D(t, t0)

(∫ t

t0

uxx(v, x)dv

)2

dx.(2.11)

Theorem 1. Let u be continuous with u(t,0) = u(t,1) = 0 on [t1 − h,∞), satisfy (2.1)

on [t1,∞), and let (2.2) - (2.6) hold. Then for V defined in (2.10) and t ≥ t1 we have

(i) |u− f |2H0(t) ≤ PV (t, u) ≤ 2Q|u− f |2B2(t) + 2F (t) (see (2.6)),

(ii) V ′(t, u) ≤ −|u− f |2H1(t) − |u|2H1(t) + |f |2H1(t),

and

(iii) |u− f |2H0(t) ≤ P |u− f |H1(t)h
1/2|u|B1(t).

If, in addition, (2.7) holds, then

(iv) V ′(t, u) ≤ −k(t)V + |f |2H1(t) and |u− f |H0(t) → 0 as t→ ∞.

Theorem 2. Let t0 ∈ R, ϕ ∈ C(t0), u = u(t, x; t0, ϕ) satisfy (2.1) for t0 ≤ t ≤ t0 + h.

Suppose that (2.2) – (2.6) hold and that V (t, u) and W (t, u) are defined by (2.10) and

(2.11). Let ∆ = maxD(t, s) for t0 ≤ t ≤ t0+h and t0−h ≤ s ≤ t0. Then for t ∈ [t0, t0+h]

we have

V (t, u) ≤ 2V (t0, ϕ) + 2W (t, u)(i)

W ′(t, u) ≤ −|u−G|2H1(t) + +|G|2H1(t) for G defined in (2.1a),(ii)

W (t, u) ≤ 4∆2h2|ϕ− f |B3 + 2|f |2B1(t0+h) + 4∆2h2|f |B3(t0+h)(iii)

and

(iv) |u− f |2H0 ≤ 4∆2|ϕ− f |B2 + 4∆2|f |B2(t0+h) + 8∆W (t, u)
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COR. If (2.2) – (2.6) hold then f is (B3,H0)-uniformly bounded, eventually (B3,H0)-

uniformly stable, and it is globally B1-attractive. If, in addition, (2.7) holds, then f is

H0-globally attractive. If there is a continuous ϕ with |u−f |H1(t) bounded on some [t2,∞),

then |u− f |H0(t) → 0 as t→ ∞.

Proof of Theorem 1. We first compute the derivative of V along a solution u(t, x) of

(2.1) which is continuous on [t− h, t]. We have

V ′ = −

∫ 1

0

Ds(t, t − h)

(∫ t

t−h

uxx(v, x)dv

)2

dx

+

∫ 1

0

∫ t

t−h

Dst(t, s)

(∫ t

s

uxx(v, x)dv

)2

ds dx

+ 2

∫ 1

0

uxx(t, x)

∫ t

t−h

Ds(t, s)

∫ t

s

uxx(v, x)dv ds dx

and the last term can be integrated by parts to obtain

2

∫ 1

0

uxx(t, x)

[
D(t, s)

∫ t

s

uxx(v, x)dv

∣∣∣∣
t

t−h

+

∫ t

t−h

D(t, s)uxx(s, x)ds

]
dx

= 2

∫ 1

0

uxx(t, x)

∫ t

t−h

D(t, s)uxx(s, x)ds dx (since D(t, t − h) = 0)

= 2

∫ 1

0

uxx(t, x)[u(t, x) − f(t, x)] dx (from (2.1))

= 2ux(t, x)

[
u(t, x) − f(t, x)

]x=1

x=0

− 2

∫ 1

0

ux(t, x)[ux(t, x) − fx(t, x)] dx

or

V ′ ≤

∫ 1

0

∫ t

t−h

Dst(t, s)

(∫ t

s

uxx(v, x)dv

)2

ds dx(2.12)

−

∫ 1

0

[ux(t, x) − fx(t, x)]2 dx

−

∫ 1

0

u2
x(t, x)dx +

∫ 1

0

f2
x(t, x)dx

from which we obtain (ii).
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Next, we get a lower bound on V . From (2.1) we have
∫ 1

0

(u(t, x) − f(t, x))2 dx =

∫ 1

0

(∫ t

t−h

D(t, s)uxx(s, x)ds

)2

dx

=

∫ 1

0

(
−D(t, s)

∫ t

s

uxx(v, x)dv

∣∣∣∣
t

t−h

+

∫ t

t−h

Ds(t, s)

∫ t

s

uxx(v, x)dv ds

)2

dx

=

∫ 1

0

(∫ t

t−h

√
Ds(t, s)

√
Ds(t, s)

∫ t

s

uxx(v, x)dv ds

)2

dx

≤

∫ 1

0

∫ t

t−h

Ds(t, s)ds

∫ t

t−h

Ds(t, s)

(∫ t

s

uxx(v, x)dv

)2

ds dx

= D(t, t)V (t, u(·))

or ∫ 1

0

(u(t, x) − f(t, x))2 dx ≤ PV (t, u(·)).

Finally, we get an upper bound on V . We have

V (t, u(·)) ≤

∫ 1

0

∫ t

t−h

2Ds(t, s)

(∫ t

s

[uxx(v, x) − fxx(v, x)] dv

)2

ds dx

+ 2

∫ 1

0

∫ t

t−h

Ds(t, s)

(∫ t

s

fxx(v, x)dv

)2

ds dx

≤ 2

∫ 1

0

∫ t

t−h

Ds(t, s)(t − s)

∫ t

s

[uxx(v, x) − fxx(v, x)]2 dv ds dx

+ 2

∫ 1

0

∫ t

t−h

Ds(t, s)

(∫ t

s

fxx(v, x)dv

)2

ds dx.

In view of (2.4) and (2.6) we write

(2.13)

∫ 1

0

[u(t, x) − f(t, x)]2 dx ≤ PV (t, u)

≤ 2Q

∫ 1

0

∫ t

t−h

[uxx(v, x) − fxx(v, x)]2 dv dx+ 2F (t)

from which (i) follows.

To get (iii) we multiply by u− f , integrate from 0 to 1, and obtain
∫ 1

0

[u(t, x) − f(t, x)]2 dx =

∫ 1

0

∫ t

t−h

D(t, s)uxx(s, x)[u(t, x) − f(t, x)] ds dx

≤

[∫ 1

0

(ux(t, x) − fx(t, x))2 dx

]1/2 ∫ t

t−h

D(t, s)

(∫ 1

0

u2
x(s, x)dx

)1/2

ds

≤ |u− f |H1(t)Ph
1/2|u|B1(t)

13



proving (iii).

If (2.7) holds, then the inequality in (iv) is true; since (ii) yields |f |2H1(t) ∈ L1[t0+h,∞),

the conclusion of (iv) holds and Theorem 1 is true.

Proof of Theorem 2. If t0 ∈ R, ϕ ∈ C(t0), u = u(t, x; t0, ϕ), and W is defined by (2.11)

and V by (2.10), then for t0 ≤ t ≤ t0 + h we have

V (t, u(·)) =

∫ t0

t−h

Ds(t, s)

∫ 1

0

(∫ t

s

uxx(v, x)dv

)2

dxds

+

∫ t

t0

Ds(t, s)

∫ 1

0

(∫ t

s

uxx(v, x)dv

)2

dxds.

Since Ds(t, s) ≥ 0 and Dst(t, s) ≤ 0 it follows that

V (t, u) =

∫ t0

t−h

Ds(t, s)

∫ 1

0

(∫ t0

s

ϕxx(v, x)dv +

∫ t

t0

uxx(v, x)dv

)2

dxds

+

∫ t

t0

Ds(t, s)

∫ 1

0

(∫ t

s

uxx(v, x)dv

)2

dxds

≤ 2

∫ t0

t−h

Ds(t, s)

∫ 1

0

[(∫ t0

s

ϕxx(v, x)dv

)2

+

(∫ t

t0

uxx(v, x)dv

)2]
dxds

+

∫ t

t0

Ds(t, s)

∫ 1

0

(∫ t

s

uzz(v, x)dv

)2

dxds

≤ 2

∫ t0

t0−h

Ds(t0, s)

∫ 1

0

(∫ t0

s

ϕxx(v, x)dv

)2

dxds

(since Ds(t, s) ≥ 0)

+ 2

∫ t0

t−h

Ds(t, s)

∫ 1

0

(∫ t

t0

uxx(v, x)dv

)2

dxds

+

∫ t

t0

Ds(t, s)

∫ 1

0

(∫ t

s

uxx(v, x)dv

)2

dxds

≤ 2V (t0, ϕ) + 2[D(t, t0) −D(t, t − h)]

∫ 1

0

(∫ t

t0

uxx(v, x)dv

)2

dx

+

∫ t

t0

Ds(t, s)

∫ 1

0

(∫ t

s

uxx(v, x)dv

)2

dxds

≤ 2V (t0, ϕ) + 2W (t, u)

proving (i).
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Next,

W ′(t, u) ≤

∫ 1

0

2uxx(t, x)

∫ t

t0

Ds(t, s)

∫ t

s

uxx(v, x)dv ds dx

+

∫ 1

0

Dt(t, t0)

(∫ t

t0

uxx(v, x)dv

)2

dx

+ 2

∫ 1

0

D(t, t0)uxx(t, x)

∫ t

t0

uxx(v, x)dv dx.

Integrating the first term on the right by parts yields

2

∫ 1

0

uxx(t, x)[D(t, s)

∫ t

s

uxx(v, x)dv

∣∣∣∣
s=t

s=t0

+

∫ t

t0

D(t, s)uxx(s, x)ds] dx

= 2

∫ 1

0

uxx(t, x)[−D(t, t0)

∫ t

t0

uxx(v, x)dv + u(t, x) −G(t, x, ϕ)] dx

from (2.1a) which defined G. Hence, (consult the material with (2.9))

W ′(t, u) ≤ 2

∫ 1

0

uxx(t, x)[u(t, x) −G(t, x, ϕ)] dx

= −2

∫ 1

0

ux(t, x)[ux(t, x) −Gx(t, x, ϕ)] dx

≤ −

∫ 1

0

[ux(t, x) −Gx(t, x, ϕ)]2 dx+

∫ 1

0

G2
x(t, x, ϕ)dx

proving (ii).

Now t0 ≤ t ≤ t0 + h implies that (integrating (ii))

W (t, u) ≤

∫ t0+h

t0

∫ 1

0

G2
x(t, x, ϕ)dxdt

=

∫ t0+h

t0

∫ 1

0

[fx(t, x) +

∫ t0

t−h

D(t, s)ϕxxx(s, x)ds]2 dxdt

≤ 2

∫ t0+h

t0

∫ 1

0

f2
x(t, x)dxdt + 2

∫ 1

0

∫ t0+h

t0

∫ t0

t−h

D2(t, s)ds

∫ t

t−h

ϕ2
xxx(s, x)dt dx

≤ 2|f |2B1(t0+h) + 2∆2h2|ϕ|2B3

from which (iii) will follow when we write

|ϕ|2B3 ≤ 2

(
|ϕ− f |2B3 + |f |2B3

)
.
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To obtain (iv) from (2.1) we have

∫ 1

0

(u(t, x) − f(t, x))2 dx

=

∫ 1

0

(∫ t0

t−h

D(t, s)ϕxx(s, x)ds +

∫ t

t0

D(t, s)uxx(s, x)ds

)2

dx

≤ 2

∫ 1

0

(∫ t0

t−h

D(t, s)ϕxx(s, x)ds

)2

dx+ 2

∫ 1

0

(∫ t

t0

D(t, s)uxx(s, x)ds

)2

dx

≤ 2∆2|ϕ|2B2

+ 2

∫ 1

0

[−D(t, s)

∫ t

s

uxx(v, x)dv

∣∣∣∣
s=t

s=t0

+

∫ t

t0

Ds(t, s)

∫ t

s

uxx(v, x)dv ds]2 dx

≤ 2∆2|ϕ|2B2 + 4

∫ 1

0

(D(t, t0)

∫ t

t0

uxx(v, x)dv

)2

dx

+ 4

∫ 1

0

∫ t

t0

Ds(t, s)ds

∫ t

t0

Ds(t, s)

(∫ t

s

uxx(v, x)dv

)2

ds dx

≤ 2∆2|ϕ|2B2 + 8∆W (t, u)

which will yield (iv) and prove Theorem 2.

Proof of Cor. Let (2.2) – (2.6) hold, B1 > 0 be given. We must find B2 > 0 such that

[t0 ∈ R, ϕ ∈ C(t0), |ϕ− f |B3 < B1, t ≥ t0] imply that |u− f |H0(t) < B2. From (iv) and

(iii) of Theorem 2, if t0 ≤ t ≤ t0 + h then

|u− f |2H0(t) ≤ 4∆2B1 + 4∆2|f |B2(t0+h)

+ 8∆

(
4∆2h2B1 + 2|f |2B1(t0+h) + 4∆2h2|f |B3(t0+h)

)

=: B2

Next, from (i) and (iii) of Theorem 2 we have

V (t0 + h, u) ≤ 2V (t0, ϕ) + 2W (t0 + h, u)

≤
2

P

[
2Q|ϕ− f |2B2 + 2F (t0)

]
+ 2

[
4∆2h2B1 + 2|f |2B1(t0+h)

+4∆2h2|f |B3(t0+h)

]
=: B̃2.
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Then from (ii) and (i) of Theorem 1 for t ≥ t0 + h we have

|u− f |2H0 ≤ PV (t, u) ≤ P

[
V (t0 + h) +

∫ t

t0+h

|f |2H1(s)

]
ds

≤ P

[
B̃2 +

∫
∞

t0+h

|f |2H1(s)

]
ds =: B∗

2 .

Hence, B2 = max[B2, B̃2, B
∗

2 ] satisfies the uniform boundedness requirement.

Since F (t) → 0 as t→ ∞ and (2.5) holds, a completely parallel proof yields the eventual

stability.

For any solution we see from Theorem 1 (ii) that
∫ t

t0+h |u − f |2H1(s) ds < ∞ and so

|u− f |2B1(t) → 0 as t→ ∞.

The H0-attractivity is clear.

If |u − f |H1 is bounded, then from Theorem 1(ii) we have |u|2B1(t) → 0 as t → ∞ and

so by Theorem 1(iii) we see that |u− f |2H0(t) → 0 as t→ ∞. This proves the corollary.
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