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Abstract. The well-known Hopfield neural network has an equilibrium set which is asymp-

totically stable. That network is an approximation in that the neuron has a zero threshold

and, hence, charges are immediately passed on. In this expository note we present a mathe-

matical model which suggests that for certain values of the threshold there will be periodic

solutions.

1. Introduction. In this expository article we examine a physiological neural network,

following a description of Hopfield [11], and present a mathematical model which takes into

account both the averaging and the threshold. We discuss the equation without threshold

and present reasoning which casts doubt on the existence of periodic solutions. We also

present a mechanical model, attributed to van der Pol in a different context, which strongly

suggests that there will be periodic solutions. The background for the problem will now

be discussed.

Cohen, Grossberg, and Hopfield ([7], [10], [11]) consider systems of differential equations

governing a neural network. Their work inspired a large industry, as may be seen in the

survey book of Miller [15] and in ([5], [6], [8], [9]), for example. The book by Miller is

interesting since both the investigators and their work is discussed in some detail.

Hopfield describes n neurons connected at a synapse by

(1a) Ci(dui/dt) =

n
∑

j=1

TijVj − Ii − (ui/Ri), i = 1, 2, . . . , n.

Here, ui is the charge on the ith neuron, Tij = Tji is the efficiency of the synapse, Ci and

Ri are the capacitance and resistance of the cell membrane, Ii is any other input to the

ith neuron, while Vj(uj) is the input-output relation at the synapse and is sigmoidal with
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Vj(0) = 0, V ′

j (uj) > 0, and |Vj(r)| → 1 as |r| → ∞. For Hopfield, Ci, Ri, Ii, and Tij are

all constants.

Equation (1) is an approximation in two important aspects. First, charges from the jth

neurons reaching the synapse sum; next, if the sum reaches a certain threshold, the neuron

fires, while these charges rapidly dissipate and are gone in 3–4 miliseconds if the threshold

is not reached. It is, therefore, very clear that the problem needs to be formulated as a

delay equation with a distributed delay and with a fading memory.

While we do not attempt to model it mathematically, the threshold has two stages. If

the neuron has not recently fired, then it has a threshold T1; but if it has recently fired,

then it has a threshold T2 < T1. Our mechanical model shows such a two-stage threshold

in an interesting way.

System (1a) has been studied by computer simulation (e.g., [13]). In the process a

delay is introduced owing to switching times. This delay seems to give rise to sustained

oscillations, as suggested by Marcus and Westervelt [13], and further confirmed by Wu [16].

But it is well-known that (1a) does not have sustained oscillations; the equilibrium set is

globally asymptotically stable, as shown by both Hopfield [11], and, more generally, by

Cohen and Grossberg [7] who used an invariance principle. This introduces an interesting

question. An invariance principle is generally used when the derivative of the Liapunov

function is only negative semi-definite (cf. LaSalle [12]). Equation (1a) is an approximation

and the natural conjecture is that with a small perturbation, sustained oscillations might

appear; and this is consistent with the idea of a Liapunov function yielding asymptotic

stability through a negative semi-definite derivative.

But, to the contrary, we note here that such a conjecture of sustained oscillations is

unsound because (1a) is a near gradient system so that the Liapunov function yields

extremely strong asymptotic stability under large (autonomous) perturbations. Moreover,

if the entire right-hand-side of (1a) is averaged, this strong asymptotic stability remains.

It is to be carefully noted that the delay introduced by switching times and the dis-
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tributed delay owing to the properties of the neuron are entirely independent.

We have studied (1a) in two earlier papers ([2], [3]). In the first one [2], we averaged the

right-hand-side of (1a), except for the term ui/Ri, and gave conditions under which the

equilibrium set of (1a) was still asymptotically stable. Next, we studied (1a) by averaging

the entire right-hand-side of (1a) and found that the equilibrium set was still asymptotically

stable, using an argument parallel to an invariance principle. We point out here that that

system is still nearly gradient so that it is strongly stable under perturbations.

Thus, the evidence was growing that sustained oscillations would not exist. This paper

was motivated by a chance encounter with a mechanical model attributed to van der Pol

which seems to strongly resemble the model described by Hopfield. And van der Pol’s

model not only has periodic solutions, but suggests where we should search for periodic

solutions in the distributed Hopfield model.

2. Gradient systems. System (1a) is analysed by use of the Liapunov function

(2) E(u) = −
1

2

n
∑

i=1

n
∑

j=1

TijViVj −
n

∑

i=1

IiVi +
n

∑

i=1

1

Ri

∫ Vi

0

g−1

i (s)ds

and it is readily shown that (1a) is really

(1b) Cidui/dt = −(∂E/∂ui)/g′

i(ui).

Thus, (1b) is almost a gradient system and if u(t) is a solution of (1b), then

dE(u(t))/dt = −

n
∑

i=1

(∂E/∂ui)
2/Cig

′

i(ui)

= −

n
∑

i=1

Cig
′

i(ui)dui/dt)2.

If, for brevity, we ask that
∫ Vi

0
g−1

i (s)ds → ∞ as |Vi| → ∞, then all solutions are bounded.

It readily follows from (3) that solutions have finite arc length. Moreover, for a positive

definite Liapunov function H(u) and a system

(4) du/dt = f(u),
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the derivative of H along a solution of (4) satisfies

(5) dH(u(t))/dt = (gradH) · f = | gradH| |f | cos θ

where θ is the angle between gradH (the outward drawn normal to the set H(u) =

constant) and f . If dH/dt < 0, then f points inside the aforementioned set. But if

(4) is a gradient system,

(6) du/dt = − gradH,

then

(7) dH(u)/dt = −| gradH|2;

that is, θ = Π and it will require a very large perturbation in (6) to change from asymptotic

stability to sustained oscillations.

A far more precise discussion of contours of Liapunov functions was recently given by

Chamberland and Lewis [4].

In [3] we formed a weighted average of the right-hand-side of (1a), writing

(1c) dui/dt = −

(

1/
√

g′

i(ui)

)
∫ t

t−T

{(

ai(t − s)∂E(u(s))/∂ui

)

/
√

g′

i(ui)

}

ds

where

(8) ai(0) > 0, a′

i(t) ≤ 0, ai(T ) = 0, a′′

i (t) > 0.

The effect of ai(t − s) is to weight the recent charges more heavily than the earlier ones,

which die out entirely within T -time units. The integral sums all surviving charges. We

proved the following result.

Theorem 1. If (8) is satisfied then solutions of (1c) converge to the equilibrium set of

(1a).
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The proof is based on the Liapunov functional

(9) V (u) = 2E(u) −
n

∑

i=1

∫ t

t−T

a′

i(t − s)

(
∫ t

s

(

∂E(u(v))/∂ui

)

/
√

g′

i(ui(v)) dv

)2

ds

which yields

(10) dV (u(t))/dt ≤ −β
n

∑

i=1

(dui/dt)2,

along any bounded solution, where β is a positive constant (possibly) depending on the

bound on the solution. Thus, the strong asymptotic stability persists and no sustained

oscillations can be expected. Clearly, we must take a closer look at Hopfield’s description.

3. An average and a threshold. With E defined in (2), let

(11) F (u) = E(u) −
n

∑

i=1

1

Ri

∫ Vi

0

g−1

i (s)ds −
n

∑

i=1

IiVi

so that Hopfield’s system is

(12) Cidui/dt = −
1

Ri

ui + Ii − (∂F (u)∂ui)/g′

i(ui)

which we write in the obvious way as

(13) dui/dt = −γiui + Ii − fi(ui).

Note that if there is no charge transmitted from the neuron, then ui exponentially ap-

proaches its resting potential from the relation

dui/dt = −γiui + Ii.

Now, consider weighting functions ai : [0, T ] → [0,∞) satisfying (8). We average the

charge to the neuron and form

(1d) dui/dt = −γiui + Ii −

∫ t

t−T

[

ai(t − s)(∂F (u(s))/∂ui)/g′

i(ui(s))

]

ds
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where
∫ t

t−T
ai(t − s)ds = 1/Ci. Thus, (1d) has the same equilibrium set as (1a).

In [2] we considered a generalization of (1d), which included infinite delay, and proved

under very restrictive conditions that all solutions approach the equilibrium set of (1a).

The reader may consult [2] for a theorem for (1d) parallel to Theorem 1.

Here, we complete the model by defining

(14) Hi(r) =

{

0 if |r| < ri

r if |r| ≥ ri

with ri being the threshold of the ith synapse. Then

(1e) dui/dt = −γiui + Ii − Hi

(
∫ t

t−T

[

ai(t − s)(∂F (u(s))/∂ui)/g′

i(ui(s))

]

ds

)

is a descriptive model that follows Hopfield’s discussion. It is descriptive in the sense

discussed by Maynard Smith [14; p. 19]. However, it falls short of our discussion in that

is has only a one-stage threshold.

The system is more than complicated. It is formidable; and any serious investigation

needs to be preceeded and, in some sense, directed by a mechanical model which convinces

the investigator that there may be periodic solutions and where to look for them. Such a

model is discussed in the next section.

4. A mechanical model. B. van der Pol was one of the early investigators of nonlinear

oscillations and he constructed a number of ingenious devices to generate them. His papers

are now hard to locate and some of them are in the Dutch language, but a typical example

is easily accessible in [1].

An interesting model, thought to be of his design, can be found in the lobby of the

Holiday Inn near the Narita airport outside Tokyo, Japan. It is placed in a beautiful setting

and exhibits a striking parallel to the Hopfield description. We embellish it slightly to fit

our description here. It displays periodic motion and it clearly directs us to assumptions

which should lead to such motion. Still, the analysis is expected to be non-trivial. In our

model we imagine that all charges come together at one synapse and when the threshold
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is reached the synapse delivers the charges to the neuron. This delivery causes the neuron

to fire.

Several small streams of water trickle down the face of a cliff to meet and form a single

stream (the charges in many neurons are delivered to a single synapse) which runs into a

large wooden dipper (the synapse). The wooden dipper has a long heavy handle. A bolt

runs through the handle near the cup and into a post, while the end of the handle rests

on the top of another post so that the dipper handle is horizontal when the dipper is less

than full of water.

The two-stage threshold is accomplished as follows. There is a small hole in the bottom

of the dipper cup. If the water runs into the cup no faster than it runs out the hole, then

the cup never fills (charges dissipate so that the threshold is never reached). If the water

runs into the cup faster than it leaks out the hole, then the dipper fills (the threshold is

reached); the full cup then over-balances the heavy handle, and very quickly the handle

raises and part of the contents of the cup empties (the neuron fires) into a container

below the cup ( the ith neuron). Since the dipper cup only partially empties, if the water

continues to run into the cup at least as quickly as before, then less water is required to fill

the cup the second time and so the threshold is reached more quickly. This is the second

stage threshold.

We now describe the container (the ith neuron) below the dipper cup which catches the

emptied water. This container has sides which are a seive above a height Ii (the resting

potential of neuron i). Water runs out the seive at a rate proportional to the volume above

Ii (neuron i transmits its charge). See Figure 1.
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We interpret this in two ways.

First, if the water runs too slowly, the dipper never fills and the water level in the seive

container approaches Ii. If the water runs too fast, the dipper is always in the emptying

position and the seive is always full. There is an interval of flow between these two extremes

so that the dipper empties periodically and the level of water in the seive container rises

and falls in a periodic manner. One observes this periodic motion in the mechanical model

at Narita.

But for our problem we focus on the threshold. If the threshold is zero, then the dipper

is always in the emptying position and the system approaches the equilibrium set. If the

threshold is infinite (the end of the handle is attached to its post), the cup never empties

and the level in the container approaches Ii, a new equilibrium set.
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Conjecture. There is a range for ri in (14), say r0

i ≤ ri ≤ r1

i , such that (1e) has a

periodic solution.
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