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Abstract. In this paper we study Volterra integral equations with a view to proving

the existence of periodic solutions. Our techniques center on limiting equations,
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1. INTRODUCTION AND SUMMARY

In this paper we study the behavior of solutions of

x(t) = a(t) −

∫ t

0

D(t, s, x(s)) ds,(1A)

x(t) = a(t) −

∫ t

−∞

D(t, s, x(s)) ds,(1B)

and

(2) x(t) = p(t) −

∫ t

−∞

P (t, s, x(s))ds

and their relation to each other. Equation (2) is a limiting equation of (1A), while

Equation (1B) is a perturbed equation of (2). Conditions on a, p, D, and P are
given later, but all of them are at least continuous.
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These equations have two very different types of solutions. Equation (1A) may have
a solution x(t) satisfying (1A) on [0,∞) =: R+; similarly, (1B) or (2) may have a
solution x(t) satisfying (2) on (−∞,∞) =: R, such as a periodic solution of (2). By

contrast, given a continuous initial function ϕ on [0, t0), we write (1A) as

x(t) = a(t) −

∫ t0

0

D(t, s, ϕ(s))ds −

∫ t

t0

D(t, s, x(s)) ds

=: Φ(t) −

∫ t

t0

D(t, s, x(s)) ds.

With Φ and D continuous, there is a solution x(t, t0, ϕ) on an interval [t0, α) with

x(t, t0, ϕ) = ϕ(t) for 0 ≤ t < t0, x(t0, t0, ϕ) = Φ(t0), and x(t, t0 , ϕ) satisfying the
equation on [t0, α); if the solution remains bounded then α = ∞, as may be seen for
example in [1; p. 79]. Clearly, x(t, t0, ϕ) may have a discontinuity at t0. In the same

way, for a given continuous initial function ϕ which is defined on (−∞, t0), if P

and p(t) −
∫ t0

−∞
P (t, s, ϕ(s))ds are continuous, then there is a solution x(t, t0, ϕ) of

(2) as just described. Under certain conditions, this last solution can be translated

to the left, ultimately producing a solution of (2) which satisfies (2) on the whole
line R; this is part of the theory of limiting equations. Solutions of (2) on all of R

can also be obtained by contraction mappings and by other fixed point theorems,

notably that of Schaefer [6], parallel to methods used in [2].

Excellent up to date collections of results for these equations are found in Cor-

duneanu [3] and Gripenberg-Londen-Staffans [4].

We are interested in boundedness, periodicity, and convergence of solutions. Our

methods include contraction mappings, Liapunov functions, minimal solutions, and
limiting equations. Several lemmas are given of some independent interest, but the
following overview will assist the reader in understanding the direction of the paper.

In Theorem 1 we suppose that (2) has a unique solution x0(t) on all of R which is
bounded. Then it is periodic and any bounded solution of (1A) with initial function
approaches x0(t) as t → ∞.

Continuing the idea in Theorem 2, we suppose that (2) has a unique solution x0(t)
on all of R which is bounded. We conclude that any bounded solution x(t) of (1B)

or (2) with bounded initial function converges to x0(t) as t → ∞.

Thus, it is crucial to be able to detect a unique solution of (2) on all of R which is
bounded. Theorems 3–6 show that when P (t, s, x) = E(t, s)g(t, x), then there are
conditions establishing such solutions of (2). Under additional conditions on peri-
odicity and growth, we obtain a solution of (2) on all of R which is bounded, unique,

periodic, and which attracts all bounded solutions of (1A) with initial functions.

Theorem 7 yields a T -periodic solution of a linear form of (2) using the theory of

minimal solutions.



2. QUALITATIVE BEHAVIOR

Consider the systems of Volterra equations

x(t) = a(t) −

∫ t

0

D(t, s, x(s)) ds, t ∈ R+,(1A)

x(t) = a(t) −

∫ t

−∞

D(t, s, x(s))ds, t ∈ R,(1B)

and

(2) x(t) = p(t) −

∫ t

−∞

P (t, s, x(s))ds, t ∈ R,

where a : R → Rn, p : R → Rn, D : R × R × Rn → Rn and P : R × R × Rn → Rn

are continuous, and

(3) p(t + T ) = p(t) and q(t) := a(t) − p(t) → 0 as t → ∞,

where T > 0 is constant,

(4) P (t + T, s + T, x) = P (t, s, x) and Q(t, s, x) := D(t, s, x) − P (t, s, x),

and for any J > 0 there are continuous functions PJ : R × R → R+ and QJ :

R × R → R+ such that

PJ (t + T, s + T ) = PJ(t, s) if t, s ∈ R,

|P (t, s, x)| ≤ PJ (t, s) if t, s ∈ R and |x| ≤ J,

where | · | denotes the Euclidean norm of Rn, and

|Q(t, s, x)| ≤ QJ (t, s) if t, s ∈ R and |x| ≤ J,
∫ t

−∞

PJ (t + τ, s)ds → 0 uniformly for t ∈ R as τ → ∞,(5)

(6A)

∫ t

0

QJ (t, s)ds → 0 as t → ∞

or

(6B)
∫ t

−∞

QJ (t, s)ds → 0 as t → ∞, and

∫ t

−∞

QJ (t+τ, s)ds → 0 uniformly for t ∈ R as τ → ∞.

First we discuss a relation between solutions of (1A) and (2).



Lemma 1. Suppose that (3)–(5) and (6A) hold, and that (1A) has an R+-
bounded solution x(t) with an initial time t0 ∈ R+. Then, for any non-decreasing
sequence {sk} of nonnegative numbers with sk → ∞ as k → ∞, the sequence of

functions {xk(t)} contains a subsequence which converges to an R-bounded solution
y(t) of the equation

(2σ) x(t) = p(t + σ) −

∫ t

−∞

P (t + σ, s + σ, x(s))ds, t ∈ R

uniformly on any compact subset of R, where xk(t) is defined by

xk(t) :=

{

x(0), t < −sk,

x(t + sk), t ≥ −sk,
t ∈ R,

σ is a number with 0 ≤ σ < T , and y(t) satisfies (2σ) on R.

Proof. It is clear that the set {xk(t)} is uniformly bounded on R. Let x(t) denote
again the R-extension of the solution x(t) obtained by defining x(t) = x(0) for
t < 0. From (3)–(5), (6A) and the R-boundedness of x(t), it is easy to see that x(t)
is uniformly continuous on [t0,∞), and since xk(t) is obtained by an sk-translation

to the left of x(t), for any j ∈ N , the set {xk(t)}k≥j is equicontinuous on [t0 −
sj ,∞), where N denotes the set of positive integers. Thus, taking a subsequence
if necessary, we may assume that the sequence {xk(t)} converges to a bounded

continuous function y(t) uniformly on any compact subset of R.

Now we show that y(t) satisfies (2σ) on R for some σ with 0 ≤ σ < T . For each

k ∈ N , let νk be an integer with νkT ≤ sk < (νk + 1)T , and let σk := sk − νkT .
Then, taking a subsequence if necessary, we may assume that {σk} converges to
some σ with 0 ≤ σ ≤ T . From (1A) we have
(7)

xk(t) = p(t+σk)+q(t+sk)−

∫ t

−sk

P (t+σk, s+σk, xk(s))ds−

∫ t+sk

0

Q(t+sk, s, x(s))ds.

Let J > 0 be a number with ‖x‖ := sup{|x(t)| : t ∈ R} ≤ J . From (5), for any
ε > 0 there is a τ > 0 with

(8)

∫ t

−∞

PJ (t + τ, s)ds < ε for all t ∈ R.

Now from (3) and (6A), for any t ∈ R we obtain

lim
k→∞

q(t + sk) = 0

and

lim sup
k→∞

∣

∣

∣

∣

∫ t+sk

0

Q(t + sk, s, x(s))ds

∣

∣

∣

∣

≤ lim sup
k→∞

∫ t+sk

0

QJ (t + sk, s)ds = 0.



Moreover, from (8), for any t ∈ R we have

lim sup
k→∞

∣

∣

∣

∣

∫ t

−sk

P (t + σk, s + σk, xk(s))ds −

∫ t

−∞

P (t + σ, s + σ, y(s))ds

∣

∣

∣

∣

≤ lim sup
k→∞

∣

∣

∣

∣

∫ t

t−τ

(P (t + σk, s + σk, xk(s)) − P (t + σ, s + σ, y(s)))ds

∣

∣

∣

∣

+ lim sup
k→∞

∫ t−τ

−∞

PJ(t + σk, s + σk)ds +

∫ t−τ

−∞

PJ (t + σ, s + σ)ds < 2ε.

which implies lim
k→∞

∫ t

−sk

P (t + σk, s + σk, xk(s))ds =
∫ t

−∞
P (t + σ, s + σ, y(s))ds.

Thus, letting k → ∞ in (7), we obtain

(9) y(t) = p(t + σ) −

∫ t

−∞

P (t + σ, s + σ, y(s))ds, t ∈ R.

Since (2T ) is equivalent to (20), (9) shows that y(t) is an R-bounded solution of
(2σ) with 0 ≤ σ < T which satisfies (2σ) on R.

Similarly, we can prove the following lemma, which we state without proof.

Lemma 2. Suppose that (3)–(5) and (6B) hold, and that (1B) has an R-bounded
solution x(t) with an initial time in R. Then, for any sequence {sk} with sk → ∞
as k → ∞, the sequence of functions {xk(t)} with xk(t) := x(t+ sk), t ∈ R contains
a subsequence which converges to an R-bounded solution y(t) of (2σ) uniformly on

any compact subset of R, where σ is a number with 0 ≤ σ < T , and y(t) satisfies
(2σ) on R. In particular, if (2) has an R-bounded solution x(t) which satisfies (2)
on R, then the same conclusion holds for any sequence {sk} without (6B).

Here we note that for any ρ and σ with 0 ≤ ρ, σ < T , if (2ρ) has an R-bounded
solution which satisfies (2ρ) on R, then (2σ) has an R-bounded solution which
satisfies (2σ) on R. From this fact and Lemmas 1 and 2, we have the following two

theorems.

Theorem 1. Suppose that (3)–(5) and (6A) hold, (2) has a unique R-bounded

solution x0(t) which satisfies (2) on R. Then x0(t) is T -periodic and any R+-
bounded solution of (1A) with an initial time in R+ is asymptotically T -periodic
and approaches x0(t) as t → ∞.

Proof. Let x1(t) be a function obtained by the T -translation to the left of x0(t).
Then, clearly x1(t) is also an R-bounded solution of (2) which satisfies (2) on R.
Thus, from the uniqueness of R-bounded solutions which satisfy (2) on R, x0(t) and

x1(t) must be identical on R, that is, x0(t) is T -periodic.

Next, let x(t) be an R+-bounded solution of (1A) with an initial time in R+, and

let xk(t) be the sequence of functions as in Lemma 1 with sk = kT . Then, from
Lemma 1 and the uniqueness of R-bounded solutions which satisfy (2) on R, it



is easy to see that xk(t) converges to x0(t) uniformly on [0, T ]. This implies that
x(t) is asymptotically T -periodic and its T -periodic part is given by x0(t). This
completes the proof.

Similarly, we can prove the following theorem, which we state without proof.

Theorem 2. In addition to the assumptions of Lemma 2, suppose that (2) has a
unique R-bounded solution x0(t) which satisfies (2) on R. Then x0(t) is T -periodic
and any R-bounded solution of (1B) with an initial time in R is asymptotically T -

periodic and approaches x0(t) as t → ∞. In particular, any R-bounded solution of
(2) with an initial time in R approaches x0(t) as t → ∞ without (6B).

Among the assumptions in Theorems 1 and 2, the uniqueness of R-bounded so-

lutions of (2) which satisfy (2) on R seems to be most crucial. Here we give two
different conditions which assure the uniqueness of R-bounded solutions of (2) which
satisfy (2) on R.

First we seek a condition for the equation

(11) x(t) = p(t) −

∫ t

−∞

E(t, s)g(s, x(s)) ds, t ∈ R,

where p : R → Rn, E : R ×R → Rn×n and g : R × Rn → Rn are continuous, and

(12) Es(t, s) is continuous, symmetric, and Est(t, s) is continuous,

(13)

∫ t

−∞

(|E(t, s)| + |Es(t, s)|(t − s)2 + |Est(t, s)|(t − s)2)ds is R-bounded,

where |E| = sup{|Ex| : x ∈ Rn and |x| = 1}, and

(14)

∫ t−τ

−∞

|Es(t, s)|(t − s)2 ds → 0 uniformly for t ∈ R as τ → ∞,

(15) lim
s→−∞

sE(t, s) = 0 for each fixed t,

(16) Est(t, s) is negative (positive) semi-definite,

and

(17) g(t, x) − g(t, y) = H(t, x, y)(x − y) if t ∈ R, x ∈ Rn and y ∈ Rn,

where H : R × Rn × Rn → Rn×n is continuous, symmetric and positive (negative)

definite, and for any J > 0 there are AJ > 0 and BJ with

AJ ≤ |H(t, x, y)| ≤ BJ if t ∈ R, |x| ≤ J and |y| ≤ J.



For (11), which is a special case of (2), we have the following theorem.

Theorem 3. If (12)–(17) hold, then (11) has at most one R-bounded solution

which satisfies (11) on R.

Proof. Let xi(t) (i = 1, 2) be R-bounded solutions of (11) which satisfy (11) on

R with ‖xi‖ ≤ J (i = 1, 2), and let z(t) := x1(t) − x2(t), t ∈ R.

Next we consider the case where Est(t, s) is negative semi-definite and H(t, x, y) is

positive definite. Then, from (11) and (17) we have

(18) z(t) = −

∫ t

−∞

E(t, s)H(s)z(s) ds, t ∈ R,

where H(s) := H(s, x1(s), x2(s)). Let v(t) be a function defined by

v(t) :=

∫ t

−∞

(
∫ t

s

z∗(v)H(v)dv

)

Es(t, s)

∫ t

s

H(v)z(v)dv ds, t ∈ R,

where z∗ denotes the transpose of z. Then, from (12)–(18) we obtain

(19)

v′(t) =

∫ t

−∞

z∗(t)H(t)Es(t, s)

∫ t

s

H(v)z(v)dv ds

+

∫ t

−∞

(
∫ t

s

z∗(v)H(v)dv

)

Est(t, s)

∫ t

s

H(v)z(v)dv ds

+

∫ t

−∞

(
∫ t

s

z∗(v)H(v)dv

)

Es(t, s)H(t)z(t)ds

≤ 2z∗(t)H(t)

∫ t

−∞

Es(t, s)

∫ t

s

H(v)z(v)dv ds

≤ 2z∗(t)H(t)

([

E(t, s)

∫ t

s

H(v)z(v)dv

]t

−∞

+

∫ t

−∞

E(t, s)H(s)z(s) ds

)

= −2z∗(t)H(t)z(t) ≤ −2AJ |z(t)|2,

which together with the R-boundedness of v(t) implies

Z :=

∫ ∞

−∞

|z(s)|2 ds < ∞.

Thus we have
∫ t

s
|z(v)|2 dv → 0 uniformly for s < t as t → −∞. This together with

(20)

|v(t)| ≤

∫ t

−∞

|Es(t, s)|

(
∫ t

s

BJ |z(v)| dv

)2

ds ≤ B2
J

∫ t

−∞

|Es(t, s)|(t−s)

∫ t

s

|z(v)|2 dv ds

yields that v(t) → 0 as t → −∞. Thus, from (19) we obtain that v(t) ≤ 0 on R. If
v(t) ≡ 0 on R, then (19) implies AJ |z(t)|2 ≤ 0, and hence z(t) ≡ 0 on R. Otherwise,
for some β > 0 and t0 ∈ R we have

(21) v(t) ≤ −β for t ≥ t0.



For Π := sup

{

∫ t

−∞
|Es(t, s)|(t − s)ds : t ∈ R

}

and β there is a G > 0 with

∫ ∞

G

|z(s)|2 ds <
β

2B2
JΠ

.

Moreover, from (14), for β and G there is a t1 ≥ G with

∫ G

−∞

|Es(t, s)|(t − s)ds <
β

2B2
JZ

for t ≥ t1.

Thus from (20), for t ≥ t1 we obtain

|v(t)| ≤ B2
J

(
∫ G

−∞

|Es(t, s)|(t − s)

∫ t

s

|z(v)|2 dv ds +

∫ t

G

|Es(t, s)|(t − s)

∫ t

s

|z(v)|2 dv ds

)

≤ B2
J

(
∫ G

−∞

|Es(t, s)|(t − s)

∫ ∞

−∞

|z(v)|2 dv ds

+

∫ t

G

|Es(t, s)|(t − s)

∫ t

G

|z(v)|2 dv ds

)

<
β

2
+

β

2
= β,

which contradicts (21). Thus we have z(t) ≡ 0 on R.

In the case where Est(t, s) is positive semi-definite and H(t, x, y) is negative definite,
taking −v instead of v, we can similarly conclude that z(t) ≡ 0, which completes
the proof.

Next we give a condition of a contraction type. Suppose that p : R → Rn and
P : R×R×Rn → Rn are continuous, and that for any J > 0 there is a continuous

function LJ : R ×R → R+ with

(22) |P (t, s, x) − P (t, s, y)| ≤ LJ(t, s)|x − y| if t, s ∈ R, |x| ≤ J and |y| ≤ J.

Then we have the following lemma.

Lemma 3. In addition to (22), if for any J > 0

(23) λJ := sup

{
∫ t

−∞

LJ (t, s)ds : t ∈ R

}

< 1

holds, then (2) has at most one R-bounded solution which satisfies (2) on R.

Proof. Let xi(t) (i = 1, 2) be R-bounded solutions of (2) which satisfy (2) on R

with ‖xi‖ ≤ J (i = 1, 2), and let z(t) := x1(t) − x2(t), t ∈ R. Then, from (2) we
have

z(t) = −

∫ t

−∞

(P (t, s, x1(s)) − P (t, s, x2(s)))ds, t ∈ R,



which together with (22) yields

(24) |z(t)| ≤

∫ t

−∞

LJ(t, s)|z(s)| ds ≤ λJ‖z‖, t ∈ R.

Thus, (23) and (24) imply that z(t) ≡ 0 on R.

Using Theorem 2 and Lemma 3, we have the following theorem.

Theorem 4. In addition to (3)–(5) with q(t) ≡ 0 and Q(t, s, x) ≡ 0, (22) and
(23), if

(25) λ := sup{λJ : J > 0} < 1

holds, then (2) has a unique T -periodic solution, and it is a unique R-bounded
solution which satisfies (2) on R. Moreover, any R-bounded solution of (2) with an
initial time t0 ∈ R and a bounded continuous initial function ϕ : (−∞, t0) → Rn,

approaches the T -periodic solution as t → ∞.

Proof. First we prove that (2) has a unique T -periodic solution. Let (PT , ‖ ·‖) be

the Banach space of continuous T -periodic functions ξ : R → Rn with the supremum
norm ‖ · ‖, and define a map H on PT by

(Hξ)(t) := p(t) −

∫ t

−∞

P (t, s, ξ(s))ds, t ∈ R.

Then, from (3)–(5) with q(t) ≡ 0 and Q(t, s, x) ≡ 0, it is easy to see that H maps

PT into PT . Moreover, for any ξi ∈ PT with ‖ξi‖ ≤ J (i = 1, 2) for some J > 0, we
have

|(Hξ1)(t) − (Hξ2)(t)| ≤

∫ t

−∞

LJ (t, s)|ξ1(s) − ξ2(s)| ds ≤ λJ‖ξ1 − ξ2‖, t ∈ R,

which together with (25) yields

‖Hξ1 − Hξ2‖ ≤ λ‖ξ1 − ξ2‖.

Thus H : PT → PT is a contraction mapping. Hence H has a unique fixed point in
PT , which gives a unique T -periodic solution of (2), say π(t).

Next, from Lemma 3, π(t) is the unique R-bounded solution of (2) which satisfies
(2) on R. Thus, the latter part is a direct consequence of Theorem 2.

This theorem does not necessarily give asymptotic behavior of all solutions of (2).
But, for some linear equations, we can obtain asymptotic behavior of all solutions.
Consider the linear equation

(26) x(t) = p(t) −

∫ t

−∞

P (t, s)x(s)ds, t ∈ R,



where p : R → Rn and P : R × R → Rn×n are continuous. First we prove a simple
lemma.

Lemma 4. If

(27) b(t) :=

∫ t

−∞

|P (t, s)| ds < 1, t ∈ R

holds, then for any t0 ∈ R and any bounded continuous function ϕ : (−∞, t0) → Rn,
the solution x(t) = x(t, t0, ϕ) of (26) satisfies

|x(t)| ≤ X(t) := max(sup{B(s) : t0 ≤ s ≤ t}, sup{|ϕ(s)| : s ≤ t0}, |x(t0+)|), t ≥ t0,

where

B(s) :=
1

1 − b(s)
sup{|p(u)| : t0 ≤ u ≤ s}, s ≥ t0.

Proof. Suppose that the conclusion is false. Then there is a τ > t0 with J :=
|x(τ )| > X(τ ). Replacing τ if necessary, we may assume that |x(t)| ≤ J on (−∞, τ ].
Thus we have

|x(τ )| ≤ |p(τ )| +

∫ τ

−∞

|P (τ, s)||x(s)| ds

≤ sup{|p(s)| : t0 ≤ s ≤ τ} + b(τ )J < J = |x(τ )|,

which is a contradiction.

Combining Theorem 4 and Lemma 4, we have the following theorem, which we state

without proof.

Theorem 5. Suppose that p(t + T ) = p(t) and P (t + T, s + T ) = P (t, s). In

addition to (27), if b(t) is continuous, then (26) has a unique R-bounded solution
which satisfies (26) on R, and it is T -periodic and globally attractive.

In Theorem 1, the existence of an R+-bounded solution of (1A) with an initial time
in R+ is assumed. Here we consider a few cases where the existence of R+-bounded
solutions of (1A) with Q(t, s, x) ≡ 0 is assured.

First consider the equation

(28) x(t) = a(t) −

∫ t

0

P (t, s, x(s)), ds, t ∈ R+,

where a : R+ → Rn is bounded continuous, and P : R×R×Rn → Rn is continuous

and satisfies (22), (23) and (25). Let (B, ‖ · ‖+) be the Banach space of bounded
continuous functions ξ : R+ → Rn with the supremum norm ‖ · ‖+, and define a
map H on B by

(Hξ)(t) := a(t) −

∫ t

0

P (t, s, ξ(s))ds, t ∈ R+.



Then it is easy to see that H is a contraction mapping from B into B. Thus H has a
unique fixed point, which gives a unique R+-bounded solution of (28) which satisfies
(28) on R+. From this and Theorems 1 and 4, we have the following theorem.

Theorem 6. Suppose that (3)–(5) with Q(t, s, x) ≡ 0, (22), (23) and (25) hold.
Then (28) has a unique R+-bounded solution which satisfies (28) on R+ and (2) has

a unique T -periodic solution. Moreover, any R+-bounded solution x(t) = x(t, t0, ϕ)
of (28) approaches the unique T -periodic solution of (2) as t → ∞, where t0 ∈ R+

and ϕ : [0, t0) → Rn is continuous.

Proof. From the argument just before this theorem, it is easy to see that (28) has
a unique R+-bounded solution which satisfies (28) on R+, say ξ(t). Let ξ(t) denote
again the R-extension of the given ξ(t) obtained by defining ξ(t) := ξ(0) = a(0) for

t < 0, and for any k ∈ N , let ξk(t) = ξ(t + kT ), t ∈ R. Since Theorem 4 implies
that (2) has a unique T -periodic solution, say π(t), and it is a unique R-bounded
solution of (2) satisfying (2) on R, by Lemma 1, it is easily seen that ξk(t) converges
to π(t) uniformly on [0, T ] as k → ∞. Thus we obtain ξ(t) − π(t) → 0 as t → ∞.

The latter part follows directly from Theorem 1.

Next consider the linear equation

(29) x(t) = a(t) −

∫ t

0

P (t, s)x(s)ds, t ∈ R+,

where a : R+ → Rn and P : R × R → Rn×n are continuous. Corresponding to
Lemma 4, we have the following lemma, which we state without proof.

Lemma 5. If (27) holds, then for any t0 ∈ R+ and any bounded continuous
function ϕ : [0, t0) → Rn, the solution x(t) = x(t, t0 , ϕ) of (29) satisfies

|x(t)| ≤ max(sup{c(s) : t0 ≤ s ≤ t}, sup{|ξ(s)| : 0 ≤ s ≤ t0}, |x(t0+)|), t ≥ t0,

where

c(s) :=
1

1 − b(s)
sup{|a(u)| : t0 ≤ u ≤ s}, s ≥ t0.

From this lemma and Theorem 6, we obtain the following corollary.

Corollary 1. In addition to (3), P (t + T, s + T ) = P (t, s) and (27), if b(t) is
continuous, then (29) has a unique R+-bounded solution which satisfies (29) on R+,

and (26) has a unique T -periodic solution. Moreover, any solution x(t) = x(t, t0, ϕ)
of (29) approaches the unique T -periodic solution of (26) as t → ∞, where t0 ∈ R+

and ϕ : [0, t0) → Rn is continuous.

Finally consider (2) under (3)–(5) with q(t) ≡ 0 and Q(t, s, x) ≡ 0, and suppose
that (2) has a unique R-bounded solution satisfying (2) on R, say π(t). Then it is



T -periodic and it is easy to see that π(t) is a solution of the equation

(30) x(t) = p(t) + r(t) −

∫ t

0

P (t, s, x(s))ds, t ∈ R+,

where r(t) := −
∫ 0

−∞
P (t, s, π(s))ds, t ∈ R+. Moreover, from (5) we have that

r(t) is continuous and r(t) → 0 as t → ∞. Thus (30) is a special case of (1) with
q(t) = r(t) and Q(t, s, x) ≡ 0. From Theorem 1 and the argument in the proof of

Theorem 6, we obtain the following corollary.

Corollary 2. Suppose that (3)–(5) with q(t) ≡ 0 and Q(t, s, x) ≡ 0 hold, and

that (2) has a unique R-bounded solution satisfying (2) on R, say π(t). Then it is
T -periodic and π(t) is a unique R+-bounded solution of (30) which satisfies (30)
on R+, and any R+-bounded solution x(t) = x(t, t0, ϕ) of (30) approaches π(t) as
t → ∞, where t0 ∈ R+ and ϕ : [0, t0) → Rn is continuous.

Now we show an example.

Example 1. Consider the scalar linear equation

(31) x(t) = p(t) − µ

∫ t

−∞

e−t+s(sin t)x(s)ds, t ∈ R,

where p : R → R is continuous T -periodic, and µ is a constant with |µ| < 1.
Equation (31) is a special case of (2) with n = 1 and P (t, s, x) = µe−t+s(sin t)x.
Thus, (3) with q(t) ≡ 0, (4) with Q(t, s, x) ≡ 0, (11) with LJ(t, s) = |µ|e−t+s, (12)
with λJ = |µ|, (25) with λ = |µ|, and (27) with b(t) = |µ sin t| hold. Thus, from

Theorems 5 and 6, (31) has a unique R-bounded solution satisfying (31) on R, say
π(t), and it is T -periodic and globally attractive.

On the other hand, π(t) is a unique R+-bounded solution of the equation

(32) x(t) = p(t) − µ

∫ 0

−∞

e−t+s(sin t)π(s)ds − µ

∫ t

0

e−t+s(sin t)x(s)ds, t ∈ R+,

which satisfies (32) on R+. Moreover, from Corollary 2, the T -periodic solution

π(t) of (32) is globally attractive.

In the above discussions, the existence of an R+-bounded solution of (1A) does
not necessarily imply the existence of T -periodic solutions of (2). But, if P (t, s, x)
is linear in x, then we can prove such an implication using the theory of minimal
solutions as we see later.

Consider the equations (26) and

(33A) x(t) = a(t) −

∫ t

0

P (t, s)x(s)ds −

∫ t

0

Q(t, s, x(s)) ds, t ∈ R+



or

(33B) x(t) = a(t) −

∫ t

−∞

P (t, s)x(s)ds −

∫ t

−∞

Q(t, s, x(s)) ds, t ∈ R,

where a(t) and D(t, s, x) := P (t, s)x + Q(t, s, x) satisfy (3)–(6) with PJ (t, s) =
J |P (t, s)|. If (33A) (or (33B)) has an R+(orR)-bounded solution with an initial
time in R+ (or R), then taking sk = kT in the proof of Lemma 1 (or 2), clearly we

have that (26) has an R-bounded solution which satisfies (26) on R.

Following [5] of Hino and Murakami, let h : R → R+ be a continuous positive

function with
∫ ∞

−∞
h(s)ds < ∞. For any bounded continuous function x : R → Rn,

define a function λ(x) by

λ(x) := sup

{
∫ ∞

−∞

|x(s + t)|2h(s)ds : t ∈ R

}

,

and set

Λ = inf







x is an R-bounded solution of (26)
λ(x) :

such that x solves (26) on R and ‖x‖ ≤ J







,

where J > 0 is a fixed constant. Then we have the following two lemmas.

Lemma 6. If (3)–(5) and (6A)(or (6B))hold with D(t, s, x) = P (t, s)x+Q(t, s, x)
and PJ (t, s) = J |P (t, s)|, and if (33A) (or (33B)) has an R+(or R)-bounded solution
x(t) such that its initial time is in R+ (or R) and ‖x‖+ (or ‖x‖) ≤ J for some

J > 0, then (26) has a minimal solution, that is, an R-bounded solution of (26)
which attains the value Λ.

Proof. Lemma 1 (or 2) assures the existence of an R-bounded solution y(t) of (26)
which solves (26) on R and ‖y‖ ≤ J . From the definition of Λ, there is a sequence
{xk(t)} of R-bounded solutions of (26) which satisfies λ(xk) ≤ Λ+ 1

k
and ‖xk‖ ≤ J .

Clearly the set of functions {xk(t)} is uniformly bounded on R. Moreover it is easy

to see that for any ε > 0 there is a δ > 0 with

|xk(t1) − xk(t2)| < ε if k ∈ N and |t1 − t2| < δ,

which implies that the set {xk(t)} is equicontinuous on R. Thus the sequence

{xk(t)} has a subsequence which converges to an R-bounded solution c(t) of (26)
which satisfies (26) on R and ‖c‖ ≤ J . Moreover, since we have

∫ ∞

−∞
|xk(s +

t)|2h(s)ds ≤ λ(xk) ≤ Λ + 1

k
, we obtain

∫ ∞

−∞

|c(s + t)|2h(s)ds ≤ Λ,

and hence λ(c) ≤ Λ. Thus we have λ(c) = Λ, because λ(c) ≥ Λ from the definition
of Λ.



Lemma 7. In addition to the assumptions of Lemma 6, if ck(t) (k = 1, 2) are
minimal solutions of (26), then there is a sequence {tk} with c1(t+tk)−c2(t+tk) → 0
uniformly on any compact subset of R as k → ∞.

Proof. Define functions d, e : R → Rn by

d(t) :=
c1(t) + c2(t)

2
and e(t) :=

c1(t) − c2(t)

2
, t ∈ R.

By the parallelogram theorem, we have

∫ ∞

−∞

|d(s + t)|2h(s)ds +

∫ ∞

−∞

|e(s + t)|2h(s)ds

=
1

2

(
∫ ∞

−∞

|c1(s + t)|2h(s)ds +

∫ ∞

−∞

|c2(s + t)|2h(s)ds

)

≤ Λ,

which implies

∫ ∞

−∞

|d(s + t)|2h(s)ds ≤ Λ − inf

{
∫ ∞

−∞

|e(s + t)|2h(s)ds : t ∈ R

}

.

This together with the definition of Λ yields

inf

{
∫ ∞

−∞

|e(s + t)|2h(s)ds : t ∈ R

}

= 0,

and hence, inf

{

∫ ∞

−∞
|c1(s + t) − c2(s + t)|2h(s)ds : t ∈ R

}

= 0. From this, there is

a sequence {tk} with

(34) lim
k→∞

∫ ∞

−∞

|c1(s + tk) − c2(s + tk)|2h(s)ds = 0.

Since the set of functions {c1(t+ tk)−c2(t+ tk)} is uniformly bounded and equicon-
tinuous on R, taking a subsequence if necessary, we may assume that the sequence
{c1(t + tk) − c2(t + tk)} converges to a continuous function γ(t) uniformly on any

compact subset of R as k → ∞. From (34), for any τ1 and τ2 with τ1 < τ2 we have

∫ τ2

τ1

|γ(s)|2h(s)ds = 0,

which together with the positivity of h(t) on R implies γ(t) ≡ 0 on R. This com-

pletes the proof.

Now we have the following theorem.

Theorem 7. Under the assumptions of Lemma 6, (26) has a T -periodic solution.



Proof. Let c(t) be a minimal solution of (26) assured in Lemma 6. Clearly c(t+T )
is also a minimal solution of (26). Thus, from Lemma 7 there is a sequence {tk}
with c(t + tk) − c(t + T + tk) → 0 as k → ∞ uniformily on any compact subset

of R. For each k ∈ N , let νk be an integer with νkT ≤ tk < (νk + 1)T , and let
σk := tk − νkT . Taking a subsequence if necessary, we may assume that σk → σ as
k → ∞ for some σ with 0 ≤ σ ≤ T , and that for some bounded continuous function
γ(t) on R, c(t + tk) → γ(t) uniformly on any compact subset of R as k → ∞, since

the set {c(t + tk)} is uniformly bounded and equicontinuous on R. Clearly γ(t) is
T -periodic. Moreover, since (5) holds with PJ (t, s) = J |P (t, s)|, from Lemma 2,
γ(t) is an R-bounded solution of

(26σ) x(t) = p(t + σ) −

∫ t

−∞

P (t + σ, s + σ)x(s)ds, t ∈ R

for some σ with 0 ≤ σ < T . Thus we have

γ(t) = p(t + σ) −

∫ t

−∞

P (t + σ, s + σ)γ(s)ds, t ∈ R.

For δ(t) := γ(t − σ), this equation can be rewritten as

δ(t) = p(t) −

∫ t

−∞

P (t, s)δ(s)ds, t ∈ R,

and hence δ(t) is a T -periodic solution of (26).

Among the assumptions of Theorem 7, the existence of an R+-bounded solution
of (33A) seems to be most crucial. Although a few cases are discussed just after
Theorem 5 for the existence of R+-bounded solutions of (1A) with Q(t, s, x) ≡ 0,

for some scalar equation, a boundedness result is obtained under suitable conditions
different from those assumed in the above cases. Consider the scalar equation

(35) x(t) = a(t) −

∫ t

0

E(t, s)g(s, x(s))ds, t ∈ R+,

where a : R+ → R, E : R+ × R+ → R+ and g : R+ ×R → R are continuous, and

(36) E(v, s)E(t, u) ≤ E(t, s)E(v, u) if s ≤ u ≤ v ≤ t,

(37) there is an M ≥ 0 with E(t, s) ≤ ME(u, s) if 0 ≤ s ≤ u ≤ t

and

(38) xg(t, x) ≥ 0 if t ∈ R+ and x ∈ R.

We can find the following result in [4, p. 620] of Gripenberg-Londen-Staffans.



Proposition. If (36)–(38) hold, then

|x(t)| ≤ (M + 1) sup{|a(s)| : 0 ≤ s ≤ t}, t ∈ R+,

where x(t) is a solution of (35) which satisfies (35) on R+.

From Theorem 7 and Proposition, we have the following corollary.

Corollary 3. If n = 1, and if (3), P (t+T, s+T ) = P (t, s), and (36)–(38) hold,
then (26) with n = 1 has a T -periodic solution x(t) with ‖x‖ ≤ (M + 1)‖a‖+.

Finally we show an example.

Example 2. Consider the scalar linear equation

(39) x(t) = a(t) −

∫ t

0

e−t+s(2 + sin t)x(s)ds, t ∈ R+,

where a : R+ → R is continuous and satisfies (3) with n = 1 and T = 2π. Then
(39) is a special case of (35) with E(t, s) = e−t+s(2 + sin t) and g(s, x) = x, and it
is easy to see that the assumptions of Corollary 3 are satisfied with M = 1. Thus,

Corollary 3 implies that the equation

(40) x(t) = p(t) −

∫ t

−∞

e−t+s(2 + sin t)x(s)ds, t ∈ R

has a 2π-periodic solution x(t) with ‖x‖ ≤ 2‖a‖+, while Theorems 4, 5 and 6 are
not applicable to (40) since neither (25) nor (27) holds in this case.

REFERENCES

1. Burton, T.A., Volterra Integral and Differential Equations. Academic Press, Or-
lando, 1983.

2. Burton, T.A., Eloe, P.W., and Islam, M.N., Periodic solutions of linear integro-
differential equations. Math. Nachr., Vol 147(1990)pp. 175-184.

3. Corduneanu, C., Integral Equations and Applications. Cambridge Univ. Press,
Cambridge, 1991.

4. Gripenberg, G., Londen, S.O., and Staffans, O., Volterra Integral and Functional
Equations. Cambridge Univ. Press, Cambridge, 1990.

5. Hino, Y., and Murakami, S., Periodic solutions of a linear Volterra system. Proc.
Equadiff Conference, ed. by C.M. Dafermos, G. Ladas, and G. Papanicolaou,
Dekker, New York, 1989 pp. 319–326.
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