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1. Introduction. We consider three systems of integral equations

x(t) = a(t) −

∫ t

0

D(t, s, x(s)) ds,(1)

x(t) = a(t) −

∫ t

−∞

D(t, s, x(s)) ds,(2)

and

(3) x(t) = p(t) −

∫ t

−∞

P (t, s, x(s))ds,

where p is T -periodic, P (t+ T, s + T, x) = P (t, s, x) and where a(t) converges to p(t) and

D(t, s, x) converges to P (t, s, x).

Under continuity and convergence conditions to be given later, if ϕ : (−∞, t0) → Rn

is a given bounded and continuous initial function, then both (2) and (3) have solutions

denoted by x(t, t0 , ϕ) with x(t, t0, ϕ) = ϕ(t) for t < t0, satisfying (2) or (3) on an interval

[t0, α), with α = ∞ provided that the solution remains bounded. (cf. Burton [1; p. 79],

Corduneanu [6], or Gripenberg-Londen-Staffans [7].) To fit that theory to (2), for example,

write (2) as

x(t) = −

∫ t

t0

D(t, s, x(s)) ds + a(t) −

∫ t0

−∞

D(t, s, ϕ(s))ds

and treat the last two terms as a forcing function.
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In the same way, for a given continuous initial function ϕ : [0, t0) → Rn, (1) has a

solution x(t, t0, ϕ) which agrees with ϕ on [0, t0) and satisfies (1) on some interval [t0, α).

In all cases, x(t, t0 , ϕ) may have a discontinuity at t0.

Concerning our contribution here, we first present some lemmas on limiting equations

and then show that if (1) has an asymptotically T -periodic solution, then (3) has a T -

periodic solution.

Next, we use Schauder’s fixed point theorem to show that (1) does have an asymptoti-

cally T -periodic solution, thus yielding a T -periodic solution of (3). As a consequence, we

show that if (3) has a unique solution which is bounded on (−∞,∞), then it is periodic

and any bounded solution of (1) converges to it. Parallel results between (2) and (3) are

also obtained.

We also infer directly that (3) has T -periodic solutions using Schauder’s theorem and a

growth condition on P .

Finally, we give a detailed list of relations between solutions of (1) and (3).

Concerning the relationship between this work and the literature, it may be noted that

much is known about the existence of periodic solutions of integrodifferential equation

counterparts for (3); a great many of those results can be conveniently seen in the books

Burton [2], Corduneanu [6], Gripenberg-Londen-Staffans [7], for example.

On p. 631 of that last reference there is an asymptotic periodic result for (1) under

growth, monotonicity, and sign conditions on D and its derivatives. We have also studied

(3) in ([4], [5]) under sign conditions on P and its derivatives by means of a Liapunov

functional and Schaefer’s fixed point theorem.

The problem of deducing the existence of a periodic solution from that of a bounded

solution is an old one in the theory of ordinary and functional differential equations. Dis-

cussion and references are found in Yoshizawa [11; pp. 164–165].

Basic facts about limiting equations for differential euqtions are found in Hino and

Murakami [8], Kato and Yoshizawa [9], and in Yoshizawa [11].

2



2. Preliminaries. Consider the systems of Volterra equations

x(t) = a(t) −

∫ t

0

D(t, s, x(s)) ds, t ∈ R+,(1)

x(t) = a(t) −

∫ t

−∞

D(t, s, x(s))ds, t ∈ R,(2)

and

(3) x(t) = p(t) −

∫ t

−∞

P (t, s, x(s))ds, t ∈ R,

where a : R → Rn, p : R → Rn, D : R × R × Rn → Rn and P : R × R × Rn → Rn are

continuous, and throughout this paper suppose that

(4) a(t) = p(t) + q(t), p(t + T ) = p(t) and q(t) → 0 as t→ ∞,

where q : R→ Rn and T > 0 is constant,

(5) D(t, s, x) = P (t, s, x) +Q(t, s, x) and P (t+ T, s + T, x) = P (t, s, x),

where Q : R × R × Rn → Rn, and for any J > 0 there are continuous functions PJ :

R×R→ R+ and QJ : R ×R→ R+ such that

PJ (t+ T, s + T ) = PJ (t, s) if t, s ∈ R,

|P (t, s, x)| ≤ PJ (t, s) if t, s ∈ R and |x| ≤ J,

where | · | denotes the Euclidean norm,

|Q(t, s, x)| ≤ QJ (t, s) if t, s ∈ R and |x| ≤ J,

and

(6)

∫ t

−∞

PJ (t+ τ, s)ds → 0 uniformly for t ∈ R as τ → ∞.

In this paper, we discuss the existence of periodic and asymptotically periodic solutions

of (1), (2), and (3) using the following theorem, which we state without proof.
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Theorem 1 (Schauder’s first theorem). Let (C, ‖ · ‖) be a normed space, and let S

be a compact convex nonempty subset of C. Then every continuous mapping of S into S

has a fixed point.

Schauder’s second theorem deletes the compactness of S and asks that the map be

compact. (cf. Smart [10; p. 25].)

3. Asymptotically periodic solutions of (1). For any t0 ∈ R+, let C(t0) be a set

of bounded functions ξ : R+ → Rn such that ξ(t) is continuous on R+ except at t0, and

ξ(t0) = ξ(t0+). For any ξ ∈ C(t0), define ‖ξ‖+ by

‖ξ‖+ := sup{|ξ(t)| : t ∈ R+}.

Then clearly ‖ · ‖+ is a norm on C(t0), and (C(t0), ‖ · ‖+) is a Banach space. For any

ξ ∈ C(t0) define a map H on C(t0) by

(Hξ)(t) :=

{

ξ(t), 0 ≤ t < t0,

a(t) −
∫ t

0
D(t, s, ξ(s))ds, t ≥ t0.

Moreover, for any J > 0 let CJ(t0) := {ξ ∈ C(t0) : ‖ξ‖+ ≤ J}. In this section, we need

the following assumption.

(7)

∫ t

0

QJ (t, s)ds → 0 as t→ ∞.

Then we have the following lemmas.

Lemma 1. If (4)–(7) hold, then for any t0 ∈ R+ and any J > 0 there is a continuous

increasing positive function δ = δt0,J (ε) : (0,∞) → (0,∞) with

(8) |(Hξ)(t1) − (Hξ)(t2)| ≤ ε if ξ ∈ CJ (t0) and t0 ≤ t1 < t2 < t1 + δ.

Proof. For any ξ ∈ CJ (t0), t1 and t2 with t0 ≤ t1 < t2 we have

|(Hξ)(t1) − (Hξ)(t2)| ≤ |a(t1) − a(t2)| +

∣

∣

∣

∣

∫ t1

0

D(t1, s, ξ(s))ds −

∫ t2

0

D(t2, s, ξ(s))ds

∣

∣

∣

∣

≤ |a(t1) − a(t2)| +

∫ t1

0

|P (t1, s, ξ(s)) − P (t2, s, ξ(s))| ds +

∫ t2

t1

PJ (t2, s)ds(9)

+

∫ t1

0

|Q(t1, s, ξ(s)) −Q(t2, s, ξ(s))| ds +

∫ t2

t1

QJ (t2, s)ds.
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Since a(t) is uniformly continuous on R+ from (4), for any ε > 0 there is a δ1 > 0 with

(10) |a(t1) − a(t2)| ≤
ε
5

if t0 ≤ t1 < t2 < t1 + δ1.

From (6), for the ε there is a τ1 > max(t0, 1) with

(11)

∫ t−τ1

−∞

PJ (t, s)ds ≤ ε
15

if t ∈ R.

Since P (t, s, x) is uniformly continuous on U1 := {(t, s, x) : t − 2τ1 ≤ s ≤ t and |x| ≤ J},

for the ε there is a δ2 such that 0 < δ2 < 1 and

(12) |P (t1, s, x) − P (t2, s, x)| ≤
ε

15τ1

if (t1, s, x), (t2 , s, x) ∈ U1 and |t1 − t2| < δ2.

From (11) and (12), if τ1 ≤ t1 < t2 < t1 + δ2, then we have

∫ t1

0

|P (t1, s, ξ(s)) − P (t2, s, ξ(s))| ds

≤

∫ t1−τ1

−∞

PJ (t1, s)ds +

∫ t1−τ1

−∞

PJ (t2, s)ds +

∫ t1

t1−τ1

|P (t1, s, ξ(s)) − P (t2, s, ξ(s))| ds ≤
ε

5
.

(13)

On the other hand, if t0 ≤ t1 < τ1 and t1 < t2 < t1 + δ2, then from (12) we obtain

∫ t1

0

|P (t1, s, ξ(s)) − P (t2, s, ξ(s))| ds ≤
ε

15
,

which together with (13) implies

(14)

∫ t1

0

|P (t1, s, ξ(s)) − P (t2, s, ξ(s))| ds ≤
ε

5
if t0 ≤ t1 < t2 < t1 + δ2.

Now let A := sup{PJ (t, s) : t − 1 ≤ s ≤ t}. Then, for the ε there is a δ3 such that

0 < δ3 < min( ε
5A
, 1) and

(15)

∫ t2

t1

PJ (t2, s)ds ≤
ε
5

if t0 ≤ t1 < t2 < t1 + δ3.

Next from (7), for the ε there is a τ2 > max(t0, 1) with

(16)

∫ t

0

QJ (t, s)ds ≤ ε
10

if t ≥ τ2,
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which yields

(17)
∫ t1

0

|Q(t1, s, ξ(s))−Q(t2 , s, ξ(s))| ds ≤

∫ t1

0

QJ (t1, s)ds+

∫ t1

0

QJ (t2, s)ds ≤
ε
5

if τ2 ≤ t1 < t2.

On the other hand, since Q(t, s, x) is uniformly continuous on U2 := {(t, s, x) : 0 ≤ s ≤

t ≤ τ2 + 1 and |x| ≤ J}, for the ε there is a δ4 such that 0 < δ4 < 1 and

|Q(t1, s, x) −Q(t2, s, x)| ≤
ε

5τ2

if (t1, s, x), (t2 , s, x) ∈ U2 and |t1 − t2| < δ4,

which together with (17) implies

(18)

∫ t1

0

|Q(t1, s, ξ(s)) −Q(t2, s, ξ(s))| ds ≤ ε
5

if t0 ≤ t1 < t2 < t1 + δ4.

Finally let B := sup{QJ (t, s) : 0 ≤ s ≤ t ≤ τ2 + 1}. Then, for the ε there is a δ5 such that

0 < δ5 < min( ε
5B , 1) and

∫ t2

t1

QJ (t2, s)ds ≤
ε
5

if t0 ≤ t1 < t2 < t1 + δ5 ≤ τ2 + 1,

which together with (16) yields

(19)

∫ t2

t1

|Q(t2, s, ξ(s))| ds ≤
ε
5

if t0 ≤ t1 < t2 < t1 + δ5.

Thus, from (9), (10), (14), (15), (18) and (19), for the δ6 := min{δi : 1 ≤ i ≤ 5} we have

(8) with δ = δ6. Since we may assume that δ6(ε) is nondecreasing, we can easily conclude

that there is a continuous increasing function δ = δt0,J : (0,∞) → (0,∞) which satisfies

(8).

Lemma 2. If (4)–(7) hold, then for any asymptotically T -periodic function ξ(t) on R+

such that ξ(t) = π(t) + ρ(t), ξ, π ∈ C(t0) for some t0 ∈ R+, π(t + T ) = π(t) on R+ and

ρ(t) → 0 as t→ ∞, the function

d(t) :=

∫ t

0

D(t, s, ξ(s)) ds, t ∈ R+
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is continuous, asymptotically T -periodic, and the T -periodic part of d(t) is given by
∫ t

−∞
P (t, s, π(s))ds.

Proof. By (5) and (6), one can easily check that the functions d(t) and ϕ(t) :=
∫ t

−∞
P (t, s, π(s))ds belong to the space C(t0) and that ϕ(t+ T ) = ϕ(t) on R+. Therefore,

in order to establish the lemma, it is sufficient to show that d(t)−ϕ(t) → 0 as t→ ∞. Let

J > 0 be a number with ‖ξ‖+ ≤ J . Then clearly we have ‖π‖+ ≤ J . From (6), for any

ε > 0 there is a τ1 > 0 with

∫ t

−∞

PJ (t+ τ1, s)ds < ε if t ∈ R+.

Let t ≥ τ1. Then

|d(t) − ϕ(t)|

=

∣

∣

∣

∣

∫ t

0

P (t, s, ξ(s))ds −

∫ t

−∞

P (t, s, π(s))ds +

∫ t

0

Q(t, s, ξ(s))ds

∣

∣

∣

∣

≤

∫ t−τ1

0

PJ (t, s)ds +

∫ t−τ1

−∞

PJ (t, s)ds +

∫ t

t−τ1

|P (t, s, π(s)) − P (t, s, ξ(s))|ds +

∫ t

0

QJ (t, s)ds

< 2ε +

∫ t

t−τ1

|P (t, s, π(s)) − P (t, s, ξ(s))|ds +

∫ t

0

QJ (t, s)ds.

Since P (t, s, x) is uniformly continuous on U3 := {(t, s, x) : t − τ1 ≤ s ≤ t and |x| ≤ J},

for the ε there is a δ > 0 with

|P (t, s, x) − P (t, s, y)| < ε/τ1 if (t, s, x), (t, s, y) ∈ U3 and |x− y| < δ.

Moreover, since ρ(t) → 0 as t→ ∞, for the δ there is a τ2 > 0 with

|ρ(t)| = |ξ(t) − π(t)| < δ if t ≥ τ2.

By (7), we can assume that

∫ t

0

QJ (t, s)ds < ε if t ≥ τ2.

Then, if t ≥ τ1 + τ2, then |d(t) − ϕ(t)| < 4ε. This proves that |d(t) − ϕ(t)| → 0 as t→ ∞.
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Theorem 2. If (4)–(7) hold, and if (1) has an asymptotically T -periodic solution with

an initial time t0 in R+, then the T -periodic extension to R of its T -periodic part is a

T -periodic solution of (3). In particular, if the asymptotically T -periodic solution of (1) is

asymptotically constant, then (3) has a constant solution.

Proof. Let x(t) be an asymptotically T -periodic solution of (1) with an initial time

t0 ∈ R+ such that x(t) = y(t) + z(t), y ∈ C(t0), y(t + T ) = y(t) on R+ and z(t) → 0 as

t→ ∞. Then we have

(20) y(t) + z(t) = p(t) + q(t) −

∫ t

0

D(t, s, x(s)) ds, t ≥ t0.

From Lemma 2, taking the T -periodic part of the both sides of (20) we obtain

y(t) = p(t) −

∫ t

−∞

P (t, s, y(s))ds, t ≥ t0.

From this, it is easy to see that y(t) is a T -periodic solution of (3).

The latter part follows easily from the above conclusion.

In order to prove the existence of an asymptotically T -periodic solution of (1) using

Schauder’s first theorem, we need more assumptions. In addition to (4)–(7), suppose that

for some t0 ∈ R+ and J > 0 the inequality

(21) ‖a‖t0 +

∫ t

0

PJ (t, s)ds +

∫ t

0

QJ (t, s)ds ≤ J if t ≥ t0

holds, where ‖a‖t0 := sup{|a(t)| : t ≥ t0}, and that there are continuous functions LJ :

R×R→ R+ and qJ : [t0,∞) → R+ such that LJ (t+ T, s + T ) = LJ(t, s) and

(22) |P (t, s, x) − P (t, s, y)| ≤ LJ (t, s)|x − y| if t, s ∈ R, |x| ≤ J and |y| ≤ J,

(23) qJ (t) → 0 as t→ ∞,

and

(24)

|q(t)|+

∫ t0

−∞

PJ (t, s)ds+

∫ t0

0

PJ (t, s)ds+

∫ t

0

QJ (t, s)ds+

∫ t

t0

LJ (t, s)qJ (s)ds ≤ qJ (t) if t ≥ t0.
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Then we have the following theorem.

Theorem 3. If (4)–(7) and (21)–(24) with some t0 ∈ R+ and J > 0 hold, then for

any continuous initial function ϕ0 : [0, t0) → Rn with sup{|ϕ0(s)| : 0 ≤ s < t0} ≤ J ,

(1) has an asymptotically T -periodic solution x(t) = y(t) + z(t) such that x, y ∈ CJ (t0),

y(t + T ) = y(t) on R+, x(t) satisfies (1) and |z(t)| ≤ qJ (t) on [t0,∞), and the T -periodic

extension to R of y(t) is a T -periodic solution of (3).

Proof. Let S be a set of functions ξ ∈ CJ(t0) such that ξ = π+ρ, π ∈ CJ (t0), ξ(t) = ϕ0(t)

on [0, t0), π(t + T ) = π(t) on R+ and

(25) |ρ(t)| ≤ qJ (t) if t ≥ t0,

and that for the function δ = δt0,J (ε) in (8), |ξ(t1) − ξ(t2)| ≤ ε if t0 ≤ t1 < t2 < t1 + δ.

First we prove that S is a compact convex nonempty subset of C(t0). Since any ξ ∈

CJ(t0) such that ξ(t) = ϕ0(t) on [0, t0) and ξ(t) ≡ ξ(t0) on [t0,∞) is contained in S, S is

nonempty. Clearly S is a convex subset of C(t0). In order to prove the compactness of S,

let {ξk} be an infinite sequence in S such that ξk = πk +ρk, πk ∈ CJ (t0), πk(t+T ) = πk(t)

on R+ and |ρk(t)| ≤ qJ (t) on [t0,∞). From the definition of S, if k, ` ∈ N and t0 ≤ t1 <

t2 < t1 + δ, then we have

|πk(t1) − πk(t2)| = |πk(t1 + `T ) − πk(t2 + `T )|

≤|ξk(t1 + `T ) − ξk(t2 + `T )| + |ρk(t1 + `T ) − ρk(t2 + `T )|

≤ε + qJ (t1 + `T ) + qJ (t2 + `T ),

which implies |πk(t1)− πk(t2)| ≤ ε by letting `→ ∞, where δ = δt0,J (ε) is the function in

(8). Hence the sets of functions {πk} and {ρk} are uniformly bounded and equicontinuous

on [t0,∞). Thus, taking a subsequence if necessary, we may assume that the sequence

{πk} converges to a π ∈ CJ(t0) uniformly on R+, and the sequence {ρk} converges to a

ρ ∈ C(t0) uniformly on any compact subset of R+. Clearly π(t) is T -periodic on R+, and

ρ(t) satisfies (25), and hence the sequence {ξk} converges to the asymptotically T -periodic
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function ξ := π + ρ uniformly on any compact subset of R+ as k → ∞. It is clear that

ξ ∈ S. Now we show that ‖ρk − ρ‖+ → 0 as k → ∞. From (23), for any ε > 0 there is a

τ ≥ t0 with

qJ (t) < ε
2

if t ≥ τ,

which yields

(26) |ρk(t) − ρ(t)| ≤ 2qJ (t) < ε if k ∈ N and t ≥ τ.

On the other hand, since {ρk(t)} converges to ρ(t) uniformly on [0, τ ] as k → ∞, for the ε

there is a κ ∈ N with

|ρk(t) − ρ(t)| < ε if k ≥ κ and 0 ≤ t ≤ τ,

which together with (26) implies ‖ρk − ρ‖+ < ε if k ≥ κ. This yields ‖ρk − ρ‖+ → 0 as

k → ∞, and hence ‖ξk − ξ‖+ → 0 as k → ∞. Thus S is compact.

Next we prove that H maps S into S continuously. For any ξ ∈ S such that ξ = π + ρ,

π ∈ CJ (t0), π(t + T ) = π(t) on R+ and |ρ(t)| ≤ qJ (t) on [t0,∞), let ϕ := Hξ. Then from

(21), for t ≥ t0 we have

|ϕ(t)| ≤ |a(t)| +

∫ t

0

|P (t, s, ξ(s))| ds +

∫ t

0

|Q(t, s, ξ(s))| ds

≤ ‖a‖t0 +

∫ t

0

PJ(t, s)ds +

∫ t

0

QJ (t, s)ds ≤ J,

which together with ξ ∈ CJ (t0) and Lemma 1 implies that ϕ ∈ CJ(t0). Now from Lemma

2, ϕ has the unique decomposition ϕ = ψ + µ, ψ ∈ CJ (t0), ψ(t + T ) = ψ(t) on R+, and

µ(t) → 0 as t→ ∞, where the restriction of µ(t) on [t0,∞) is given by

µ(t) := q(t) +

∫ t0

−∞

P (t, x, π(s))ds −

∫ t0

0

P (t, s, ξ(s))ds −

∫ t

0

Q(t, s, ξ(s))ds

−

∫ t

t0

(P (t, s, ξ(s)) − P (t, s, π(s)))ds, t ≥ t0.
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Thus from (24), for t ≥ t0 we obtain

|µ(t)| ≤ |q(t)| +

∫ t0

−∞

|P (t, s, π(s))| ds +

∫ t0

0

|P (t, s, ξ(s))| ds

+

∫ t

0

|Q(t, s, ξ(s))| ds +

∫ t

t0

|P (t, s, ξ(s)) − P (t, s, π(s))| ds

≤ |q(t)| +

∫ t0

−∞

PJ (t, s)ds +

∫ t0

0

PJ (t, s)ds +

∫ t

0

QJ (t, s)ds +

∫ t

t0

LJ(t, s)qJ (s)ds ≤ qJ (t).

Moreover, Lemma 1 implies that for the function δ = δt0,J (ε) in (8) the inequality

|ϕ(t1) − ϕ(t2)| ≤ ε if t0 ≤ t1 < t2 < t1 + δ

holds. Thus H maps S into S. We must prove that H is continuous. For any ξi ∈ S (i =

1, 2) and t ≥ t0 we have

|(Hξ1)(t) − (Hξ2)(t)| ≤

∫ t

0

|D(t, s, ξ1(s)) −D(t2, s, ξ2(s))| ds

≤

∫ t

0

|P (t, s, ξ1(s)) − P (t, s, ξ2(s)| ds +

∫ t

0

|Q(t, s, ξ1(s)) −Q(t, s, ξ2(s))| ds.

(27)

From (6), for any ε > 0 there is a τ1 > t0 with

(28)

∫ t−τ1

−∞

PJ (t, s)ds < ε
6

if t ∈ R.

Since P (t, s, x) is uniformly continuous on U3 := {(t, s, x) : t− τ1 ≤ s ≤ t and |x| ≤ J}, for

the ε there is a δ1 > 0 with

(29) |P (t, s, x) − P (t, s, y)| < ε
6τ1

if (t, s, x), (t, s, y) ∈ U3 and |x− y| < δ1.

From (28) and (29), for the ε we obtain

(30)

∫ t

0

|P (t, s, ξ1(s)) − P (t, s, ξ2(s))| ds <
ε
6

if t0 ≤ t < τ1 and ‖ξ1 − ξ2‖+ < δ1,

and if t ≥ τ1 and ‖ξ1 − ξ2‖+ < δ1, then we have

∫ t

0

|P (t, s, ξ1(s)) − P (t, s, ξ2(s))| ds

≤2

∫ t−τ1

−∞

PJ (t, s)ds +

∫ t

t−τ1

|P (t, s, ξ1(s)) − P (t, s, ξ2(s))| ds <
ε
2
,
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which together with (30) yields

(31)

∫ t

0

|P (t, s, ξ1(s)) − P (t, s, ξ2(s))| ds <
ε
2

if ‖ξ1 − ξ2‖+ < δ1.

Next from (7), for the ε there is a τ2 > 0 with

∫ t

0

QJ (t, s)ds < ε
4

if t > τ2,

which implies

(32)

∫ t

0

|Q(t, s, ξ1(s)) −Q(t, s, ξ2(s))| ds ≤ 2

∫ t

0

QJ (t, s)ds < ε
2

if t > τ2.

Since Q(t, s, x) is uniformly continuous on U4 := {(t, s, x) : 0 ≤ s ≤ t ≤ τ2 and |x| ≤ J},

for the ε there is a δ2 > 0 with

|Q(t, s, x) −Q(t, s, y)| < ε
2τ2

if (t, s, x), (t, s, y) ∈ U4 and |x− y| < δ2,

which yields

∫ t

0

|Q(t, s, ξ1(s)) −Q(t, s, ξ2(s))| ds <
ε
2

if 0 ≤ t ≤ τ2 and ‖ξ1 − ξ2‖+ < δ2.

This together with (32) implies

(33)

∫ t

0

|Q(t, s, ξ1(s)) −Q(t, s, ξ2(s))| ds <
ε
2

if ‖ξ1 − ξ2‖+ < δ2.

Thus, from (27), (31) and (33), for the δ := min(δ1, δ2, ε) we obtain

‖Hξ1 −Hξ2‖+ < ε if ξ1, ξ2 ∈ S and ‖ξ1 − ξ2‖+ < δ,

and hence H is continuous.

Now, applying Theorem 1, H has a fixed point in S, which is a desired asymptotically

T -periodic solution of (1).

The latter part is a direct consequence of Theorem 2.
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From this theorem and the argument in the proof of Theorem 1 in [5], we have the

following corollary.

Corollary 1. In addition to the assumptions of Theorem 3, if the uniqueness of solutions

of (1) with initial conditions t0 and ϕ holds for any ϕ, where sup{|ϕ(s)| : 0 ≤ s < t0} ≤ J ,

then the following hold.

(i) For any continuous initial function ϕ : [0, t0) → Rn with sup{|ϕ(s)| : 0 ≤ s < t0} ≤

J , the solution x(t) = x(t, t0, ϕ) = y(t) + z(t) of (1) is asymptotically T -periodic, where x,

y ∈ CJ (t0), y(t+ T ) = y(t) on R+, |z(t)| ≤ qJ (t) on [t0,∞), and the T -periodic extension

to R of y(t) is a T -periodic solution of (3).

(ii) If (3) has a unique R-bounded solution η(t) such that ‖η‖ ≤ J and η(t) satisfies (3)

on R, then η(t) is T -periodic on R, and any solution x(t) = x(t, t0 , ϕ) of (1) approaches

η(t) as t→ ∞, provided that ‖x‖+ ≤ J .

Now we show two examples of a linear equation and a nonlinear equation.

Example 1. Consider the scalar linear equation

(34) x(t) = p(t) + ρe−t −

∫ t

0

(e−t+s cos t sin s + 1

5
e−t−s)x(s)ds, t ∈ R+,

where p : R → R is a continuous 2π-periodic function, and ρ is constant. Equation (34)

is obtained from (1) taking n = 1, T = 2π, a(t) = p(t) + ρe−t, q(t) = ρe−t, D(t, s, x) =

(e−t+s cos t sin s + e−t−s/5)x, P (t, s, x) = e−t+s(cos t sin s)x and Q(t, s, x) = e−t−sx/5.

Define a function r : R→ R+ by

r(t) :=

∫ t

−∞

e−t+s| sin s| ds, t ∈ R.

Then clearly r(t) is a π-periodic function, and it is easy to see that

(35) α := sup{r(t) : t ∈ R}

satisfies 1

2
< α < 19/20. For J := 20(‖p‖+ |ρ|)/(19− 20α) with ‖p‖ = sup{|p(t)| : t ∈ R},
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we can take the following functions as PJ , QJ and LJ .

PJ (t, s) := Je−t+s| sin s| if t, s ∈ R,

QJ (t, s) := J
5
e−t−s if t, s ∈ R+,

and

LJ(t, s) := e−t+s| sin s| if t, s ∈ R.

It is easy to see that above functions satisfy (4)–(7) and (22). Moreover (21) with t0 = 0

holds for the J , since we have ‖a‖+ ≤ ‖ρ‖ + |ρ|,
∫ t

0
PJ (t, s)ds < αJ and

∫ t

0
QJ (t, s)ds ≤

J/20 on R+. Now define a function qJ : R+ → R+ by

qJ (t) :=

(

|ρ|+αJ+
J

5

∫ t

0

exp

(

−s−

∫ s

0

| sinu| du

)

ds

)

exp

(

−t+

∫ t

0

| sin s| ds

)

, t ∈ R+.

We show that (23) and (24) with t0 = 0 hold. Since we have

∫ t

0

exp

(

−s−

∫ s

0

| sinu| du

)

ds ≤

∫ t

0

e−s ds < 1 if t ∈ R+

and

exp

(

−t+

∫ t

0

| sin s| ds

)

= exp

(

−

∫ t

0

(1 − | sin s|)ds

)

→ 0 as t→ ∞,

clearly (23) holds. Moreover it is easy to see that for any t ∈ R+ we have

qJ (t) = (|ρ| + αJ + J
5
)e−t − J

5
e−2t +

∫ t

0
e−t+s| sin s|qJ (s)ds

≥ |q(t)| +

∫ 0

−∞

PJ (t, s)ds +

∫ t

0

QJ (t, s)ds +

∫ t

0

LJ (t, s)qJ (s)ds,

that is, (24) with t0 = 0 holds. Thus by Theorem 3, (34) has an asymptotically 2π-periodic

solution x(t) = y(t)+z(t) such that x, y ∈ CJ := CJ (0), y(t+2π) = y(t) and |z(t)| ≤ qJ (t)

on R+, and the 2π-periodic extension to R of y(t) is a 2π-periodic solution of the equation

(36) x(t) = p(t) −

∫ t

−∞

e−t+s(cos t sin s)x(s)ds, t ∈ R.
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Example 2. Corresponding to (34), consider the scalar nonlinear equation

(37) x(t) = p(t) + ρe−t −

∫ t

0

(σe−t+s sin s+ τe−t−s)x2(s)ds, t ∈ R+,

where p : R → R is a continuous 2π-periodic function, and ρ, σ and τ are constants

such that ‖p‖ + |ρ| > 0 and 64(‖p‖ + |ρ|)σ2 + (4α|σ| + |τ |)π2 < 16|σ|π, where α is the

number defined in (35). Equation (37) is obtained from (1) taking n = 1, T = 2π, a(t) =

p(t)+ρe−t, q(t) = ρe−t, D(t, s, x) = (σe−t+s sin s+τe−t−s)x2, P (t, s, x) = σe−t+s(sin s)x2

and Q(t, s, x) = τe−t−sx2. Let J be a number defined by

(38) J :=
2

4α|σ| + |τ |

(

1 − (1 − (‖p‖ + |ρ|)(4α|σ| + |τ |))1/2

)

.

Then it is easy to see that ‖p‖ + |ρ|+ (α|σ| + |τ |/4)J2 = J and 0 < 4|σ|J < π. For this J

we can take the following functions as PJ , QJ and LJ here.

PJ (t, s) := J2|σ|e−t+s| sin s| if t, s ∈ R,

QJ (t, s) := J2|τ |e−t−s if t, s ∈ R+,

and

LJ (t, s) := 2J |σ|e−t+s| sin s| if t, s ∈ R.

It is easy to see that these functions satisfy (4)–(7) and (22). Moreover (38) implies (21)

with t0 = 0, since we have ‖a‖+ ≤ ‖p‖ + |ρ|,
∫ t

0
PJ (t, s) ≤ α|σ|J2 and

∫ t

0
QJ (t, s)ds ≤

|x|J2/4 on R+. Now define a function qJ : R+ → R+ by

qJ (t) :=

(

|ρ|+ α|σ|J2 + |τ |J2

∫ t

0

exp

(

−s− 2|σ|J

∫ s

0

| sinu| du

)

ds

)

× exp

(

−t+ 2|σ|J

∫ t

0

| sin s| ds

)

, t ∈ R+.

As in Example 1, it is easy to see that (23) and (24) with t0 = 0 hold. Thus by Theorem

3, (37) has an asymptotically 2π-periodic solution x(t) = y(t) + z(t) such that x, y ∈ CJ ,
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y(t + 2π) = y(t) and |z(t)| ≤ qJ (t) on R+, and the 2π-periodic extension to R of y(t) is a

2π-periodic solution of the equation

x(t) = p(t) − σ

∫ t

−∞

e−t+s(sin s)x2(s)ds, t ∈ R.

4. Asymptotically periodic solutions of (2). Using Theorem 1 and arguments

similar to those in the previous section, we can discuss the existence of asymptotically T -

periodic solutions of (2). For any t0 ∈ R, let C(t0) denote again a set of bounded functions

ξ : R → Rn such that ξ(t) is continuous on R except at t0, and ξ(t0) = ξ(t0+). Then

‖ξ‖ := sup{|ξ(t)| : t ∈ R} is a norm on C(t0), and (C(t0), ‖ · ‖) is a Banach space. In this

section, we need the following assumptions for Q(t, s, x).

(39)

∫ t

−∞

QJ (t, s)ds → 0 as t→ ∞,

and

(40)

∫ t

−∞

QJ (t+ τ, s)ds → 0 uniformly for t ∈ R as τ → ∞.

As in the previous section, for any ξ ∈ C(t0) define a map H on C(t0) by

(Hξ)(t) :=

{

ξ(t), t < t0,

a(t) −
∫ t

−∞
D(t, s, ξ(s))ds, t ≥ t0.

For any J > 0, let CJ(t0) denote again the set {ξ ∈ C(t0) : ‖ξ‖ ≤ J}. Then, corresponding

to Lemmas 1 and 2, and Theorem 2, we have the following which we state without proofs.

Lemma 3. If (4)–(6), (39) and (40) hold, then for any t0 ∈ R and any J > 0 there is

a continuous increasing positive function δ = δt0,J(ε) : (0,∞) → (0,∞) with

(41) |(Hξ)(t1) − (Hξ)(t2)| ≤ ε if ξ ∈ CJ (t0) and t0 ≤ t1 < t2 < t1 + δ.

Lemma 4. If (4)–(6), (39) and (40) hold, then for any asymptotically T -periodic func-

tion ξ(t) on R such that ξ(t) = π(t)+ρ(t), ξ, π ∈ C(t0) for some t0 ∈ R, π(t+T ) = π(t) on
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R, and ρ(t) → 0 as t → ∞, the function
∫ t

−∞
D(t, s, ξ(s))ds is continuous asymptotically

T -periodic on [t0,∞), and its T -periodic part is given by
∫ t

−∞
P (t, s, π(s))ds.

Theorem 4. If (4)–(6), (39) and (40) hold, and if (2) has an asymptotically T -periodic

solution with an initial time t0 ∈ R, then the T -periodic extension to R of its T -periodic

part on [t0,∞) is a T -periodic solution of (3). In particular, if the asymptotically T -periodic

solution of (2) is asymptotically constant, then (3) has a constant solution.

In order to obtain a theorem similar to Theorem 3, we need more assumptions. In

addition to (4)–(6), (39) and (40), suppose that for some t0 ∈ R and J > 0, (22), (23) and

the following inequalities hold.

(42) ‖a‖t0 +

∫ t

−∞

PJ (t, s)ds +

∫ t

−∞

QJ (t, s)ds ≤ J if t ≥ t0,

and

(43) |q(t)| +

∫ t

−∞

QJ (t, s)ds + 2m(t) +

∫ t

t0

LJ (t, s)qJ (s)ds ≤ qJ (t) if t ≥ t0,

where m(t) := min(J
∫ t0
−∞

LJ(t, s)ds,
∫ t0
−∞

PJ (t, s)ds). Then, corresponding to Theorem 3

we have the following theorem.

Theorem 5. If (4)–(6), (22), (23), (39), (40), (42) and (43) with some t0 ∈ R and

J > 0 hold, then for any continuous initial function ϕ : (−∞, t0) → Rn with sup{|ϕ(s)| :

s < t0} ≤ J , (2) has an asymptotically T -periodic solution x(t) = y(t) + z(t) such that

x, y ∈ CJ(t0), x(t) satisfies (2) and |z(t)| ≤ qJ (t) on [t0,∞), and y(t) is a T -periodic

solution of (3).

This theorem can be proved easily from Lemmas 3 and 4 by similar arguments to those

in the proof of Theorem 3 letting S be a set of functions ξ ∈ CJ(t0) such that ξ = π + ρ,

π ∈ CJ(t0), ξ(t) = ϕ(t) if t < t0, π(t+ T ) = π(t) on R, ρ(t) satisfies (25), and that for the

function δ = δt0,J (ε) in (31), |ξ(t1) − ξ(t2)| ≤ ε if t0 ≤ t1 < t2 < t1 + δ.

Next, corresponding to Corollary 1, we have the following corollary.
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Corollary 2. In addition to the assumptions of Theorem 5, if the uniqueness of solutions

of (2) with initial conditions t0 and ϕ holds for any ϕ, where sup{|ϕ(s)| : s < t0} ≤ J ,

then the following hold.

(i) For any continuous initial function ϕ : (−∞, t0) → Rn with sup{|ϕ(s)| : s < t0} ≤ J ,

the solution x(t) = x(t, t0 , ϕ) = y(t) + z(t) of (2) is asymptotically T -periodic, where x,

y ∈ CJ (t0), |z(t)| ≤ qJ (t) on [t0,∞), and y(t) is a T -periodic solution of (3).

(ii) If (3) has a unique R-bounded solution η(t) such that ‖η‖ ≤ J and η(t) satisfies (3)

on R, then η(t) is T -periodic, and any solution x(t) = x(t, t0, ϕ) of (2) approaches η(t) as

t→ ∞ provided that ‖x‖ ≤ J .

Finally, corresponding to Example 1 we show an example of a linear equation.

Example 3. Consider the scalar linear equation

(44) x(t) = p(t) − ρe−t −

∫ t

−∞

e−t+s

(

sin s +
1

20
e−s2

)

x(s)ds, t ∈ R,

where p : R → R is a continuous 2π-periodic function, and ρ is constant. It is easy to see

that (4)–(6), (22), (39), (40) and (42) hold. Now define a function qJ on R+ by

qJ (t) :=

(

|ρ|+ 2αJ +
J

20
+

J

20

∫ t

0

(1 − 2s) exp(s − s2 −

∫ s

0

| sinu| du)ds

)

× exp

(

−t+

∫ t

0

| sin s| ds

)

, t ∈ R+.

Using an integration by parts, we can easily see that

−1 <

∫ t

0

(1 − 2s) exp

(

s − s2 −

∫ s

0

| sinu| du

)

ds < e+ e1/4 − 1,

which implies that qJ (t) > 0 on R+ and satisfies (23). As in Example 1, it is easy to see

that (43) with t0 = 0 holds. Moreover, since (44) is a linear equation, the uniqueness of

solutions of (44) with initial conditions t0 and ϕ holds for any ϕ with sup{|ϕ(s)| : s <

0} ≤ J . Thus by Corollary 2, for any continuous initial function ϕ : (−∞, 0) → R with

sup{|ϕ(s)| : s < 0} ≤ J , the solution x(t) = x(t, t0 , ϕ) = y(t)+z(t) of (44) is asymptotically
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2π-periodic, where x, y ∈ CJ , |z(t)| ≤ qJ (t) on R+, and y(t) is a 2π-periodic solution of

(36).

5. Periodic solutions. Although Theorems 3 and 5 assure the existence of T -periodic

solutions of (3), we can prove directly the existence of T -periodic solutions of (3) under

weaker assumptions than those in Theorems 3 and 5 using Schauder’s first theorem.

Let (PT , ‖ · ‖) be the Banach space of continuous T -periodic functions ξ : R→ Rn with

the supremum norm. For any ξ ∈ PT , define a map H on PT by

(Hξ)(t) := p(t) −

∫ t

−∞

P (t, s, ξ(s))ds, t ∈ R.

Then, by a method similar to the method used in the proof of Lemma 1, we can prove the

following lemma which we state without proof.

Lemma 5. If (4)–(6) with Q(t, s, x) ≡ 0 hold, then for any J > 0 there is a continuous

increasing positive function δ = δJ (ε) : (0,∞) → (0,∞) with

(45) |(Hξ)(t1) − (Hξ)(t2)| ≤ ε if ξ ∈ PT , ‖ξ‖ ≤ J and |t1 − t2| < δ.

Now we have the following theorem.

Theorem 6. In addition to (4)–(6) with Q(t, s, x) ≡ 0, suppose that for some J > 0

the inequality

(46) ‖p‖ +

∫ t

−∞

PJ(t, s)ds ≤ J if t ∈ R

holds. Then (3) has a T -periodic solution x(t) with ‖x‖ ≤ J .

Proof. Let S be a set of functions ξ ∈ PT such that ‖ξ‖ ≤ J and for the function

δ = δJ (ε) in (45), |ξ(t1) − ξ(t2)| ≤ ε if |t1 − t2| < δ.

First we can prove that S is a compact convex nonempty subset of PT by a method

similar to the method used in the proof of Theorem 3.
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Next we prove that H maps S into S. For any ξ ∈ S, let ϕ := Hξ. Then, clearly ϕ(t)

is T -periodic. In addition, from (46) we have

|ϕ(t)| ≤ ‖p‖ +

∫ t

−∞

PJ (t, s)ds ≤ J if t ∈ R,

and hence ‖ϕ‖ ≤ J . Moreover, Lemma 5 implies that for the δ in (45) we obtain

|ϕ(t1) − ϕ(t2)| ≤ ε if ξ ∈ PT , ‖ξ‖ ≤ J and |t1 − t2| < δ.

Thus H maps S into S.

The continuity of H can be proved similarly as in the proof of Theorem 3.

Finally, applying Theorem 1 we can conclude that H has a fixed point x in S, which is

a T -periodic solution of (3) with ‖x‖ ≤ J .

Remark 1. (i) In addition to the continuity of the map H, we can easily prove that H

maps each bounded set of PT into a compact set of PT . Thus Theorem 6 can be proved

using Schauder’s second theorem.

(ii) Theorem 1 in [4] also assures the existence of T -periodic solutions of (3) under

suitable assumptions including differentiability conditions on P , while Theorem 6 does not

require any differentiability condition on P .

6. Relation of (1) and (3). In Theorems 2 and 4, we showed relations between an

asymptotically T -periodic solution of (1) or (2) and a T -periodic solution of (3). Moreover,

concerning a relation between (1) and (3) we have the following theorem.

Theorem 7. Under the assumptions (4)–(7), the following five conditions are equiva-

lent:

(i) Equation (3) has a T -periodic solution.

(ii) For some q(t) and Q(t, s, x) ≡ 0, (1) has a T -periodic solution which satisfies (1)

on R+.

(iii) For some q(t) and Q(t, s, x) ≡ 0, (1) has an asymptotically T -periodic solution with

an initial time in R+.
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(iv) For some q(t) and Q(t, s, x), (1) has a T -periodic solution which satisfies (1) on

R+.

(v) For some q(t) and Q(t, s, x), (1) has an asymptotically T -periodic solution with an

initial time in R+.

Proof. First we prove that (i) implies (ii). Let π(t) be a T -periodic solution of (3), and

let

q(t) := −

∫ 0

−∞

P (t, s, π(s))ds, t ∈ R+.

Then, clearly q(t) is continuous and q(t) → 0 as t→ ∞. Thus it is easy to see that for the

q(t) and Q(t, s, x) ≡ 0, (1) has a T -periodic solution π(t), which satisfies (1) on R+.

Next, it is clear that (ii) and (iii) imply (iii) and (v) respectively. Moreover, from

Theorem 2, (v) yields (i).

Finally, since it is trivial that (ii) implies (iv), we prove that (iv) yields (ii). Let ψ(t)

be a T -periodic solution of (1) with some q(t) and Q(t, s, x) which satisfies (1) on R+, and

let

r(t) := −

∫ t

0

Q(t, s, ψ(s))ds, t ∈ R+.

Then, clearly r(t) is continuous and r(t) → 0 as t → ∞. Thus it is easy to see that for

a(t) = p(t)+q(t)+r(t) and Q(t, s, x) ≡ 0, (1) has a T -periodic solution ψ(t) which satisfies

(1) on R+.

Remark 2. From the proof of Theorem 7, it is easy to see that the equivalence among

(i)–(iii) can be obtained without (7).

In [5], we discussed a relation between the equation

(47) x(t) = a(t) −

∫ t

0

E(t, s)x(s)ds −

∫ t

0

Q(t, s, x(s))ds, t ∈ R+

and the linear equation

(48) x(t) = p(t) −

∫ t

−∞

E(t, s)x(s)ds, t ∈ R,
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where a, p and Q satisfy (4) and (7), and E : R×R→ Rn×n is a continuous function such

that E(t+ T, s+ T ) = E(t, s) and
∫ t

−∞
|E(t+ τ, s)| ds → 0 uniformly for t ∈ R as τ → ∞,

where |E| := sup{|Ex| : |x| = 1}. Concerning (47) and (48), we state a theorem. For the

proof, see Lemma 1 and Theorem 7 in [5].

Theorem 8([5]). Under the above assumptions for (47) and (48), the following hold.

(i) If (47) has an R+-bounded solution with an initial time in R+, then (48) has an

R-bounded solution which satisfies (48) on R.

(ii) If (48) has an R-bounded solution which satisfies (48) on R, then (48) has a T -

periodic solution.

Now we have the following theorem concerning a relation between (47) and (48).

Theorem 9. Under the above assumptions for (47) and (48), the following eight con-

ditions are equivalent:

(i) Equation (48) has a T -periodic solution.

(ii) For some q(t) and Q(t, s, x) ≡ 0, (47) has a T -periodic solution which satisfies (47)

on R+.

(iii) For some q(t) and Q(t, s, x) ≡ 0, (47) has an asymptotically T -periodic solution

with an initial times in R+.

(iv) For some q(t) and Q(t, s, x) ≡ 0, (47) has an R+-bounded solution with an initial

time in R+.

(v) For some q(t) and Q(t, s, x), (47) has a T -periodic solution which satisfies (47) on

R+.

(vi) For some q(t) and Q(t, s, x), (47) has an asymptotically T -periodic solution with

an initial time in R+.

(vii) For some q(t) and Q(t, s, x), (47) has an R+-bounded solution with an initial time

in R+.

(viii) Equation (48) has an R-bounded solution which satisfies (48) on R.

22



Proof. The equivalence among (i)–(iii), (v) and (vi) is a direct consequence of Theorem

7. From this and the trivial implication from (iii) to (iv), it is clear that (i) and (iv) imply

(iv) and (vii) respectively. Next, from Theorem 8(i), (vii) yields (viii). Moreover, from

Theorem 8(ii), (viii) implies (i), which completes the proof.
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