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1. Introduction and summary. This paper is concerned with stability properties of

the zero solution of a system of functional differential equations written as

(1) x′(t) = f(t, xt)

where f : [0,∞) × C1 → Rn is continuous and takes bounded sets into bounded sets.

Here, (C, ‖ · ‖) is the Banach space of continuous functions φ : [−h, 0] → Rn with the

supremum norm, h is a positive constant, C1 is the subset of C with ‖φ‖ < 1, f(t, 0) = 0,

and xt(s) = x(t + s) for −h ≤ s ≤ 0.

The results are based on continuous functionals V : [0,∞)×C1 → [0,∞) which are

locally Lipschitz in φ and whose derivative along any solution of (1) satisfies V ′

(1)(t, xt) ≤ 0.

Such a functional is called a Liapunov functional for (1). We also use continuous strictly in-

creasing functions W : [0,∞) → [0,∞) with W (0) = 0, called wedges. Stability definitions

will be stated in the next section.

The following is the classical theorem on uniform stability (US) for the zero solution

of (1). It goes back to Krasovskii [7; pp. 143–157].

THEOREM K1. If there is a Liapunov functional for (1) and wedges satisfying

(i) W1(|φ(0)|) ≤ V (t, φ) ≤ W2(‖φ‖)
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and

(ii) V ′

(1)(t, xt) ≤ 0,

then x = 0 is uniformly stable.

This result has remained the standard in the literature to the present day. It

has been considered to be very satisfactory because examples are readily constructed and

because, when (1) is smooth enough, then it has a converse (cf. Krasovskii [7; pp. 146–

150]). In preparation for our results on asymptotic stability we offer a simple generalization

of this result which turns out to be very convenient in applications. It may be stated as

follows.

THEOREM 1. Suppose there is a Liapunov functional and wedges for (1) such that

for each γ > 0 there is a wedge Wγ such that

(i) W1(|φ(0)|) ≤ V (t, φ) ≤ Wγ(‖φ‖) + γ

and

(ii) V ′

(1)(t, xt) ≤ 0.

Then x = 0 is US.

The basic conjecture for (1) on uniform asymptotic stability (UAS) also goes back

to Krasovskii [7; pp. 143–157] and may be stated as follows.

CONJECTURE K. If there is a Liapunov functional for (1) and wedges such that

(i) W1(|φ(0)|) ≤ V (t, φ) ≤ W2(‖φ‖)

and

(ii) V ′

(1)(t, xt) ≤ −W3(|x(t)|),

then x = 0 is UAS.
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The conjecture was widely believed, but never proved and the result which remained

standard in the literature through 1977 (cf. Hale [6; p. 105]) was crippled by the Marachkov

[10] condition that |f(t, φ)| be bounded for ‖φ‖ < 1. This result can also be gleaned from

the work of Krasovskii [7; pp. 143–157].

THEOREM K2. If there is a Liapunov functional, wedges, and a constant M such

that

W1(|φ(0)|) ≤ V (t, φ) ≤ W2(‖φ‖),(i)

V ′

(1)(t, xt) ≤ −W3(|x(t)|),(ii)

and

(iii) |f(t, φ)| ≤ M if t ≥ 0 and ‖φ‖ < 1,

then x = 0 is UAS.

In 1978 a step was taken [3] toward the conjecture. Here, we denote by

|φ|p =

(
∫ 0

−h

|φ(s)|pds

)1/p

, 0 < p < ∞.

Thus, in particular, when 0 < p < 1, this is not a norm. The following result can also be

proved with |φ|2 replaced by |φ|p if p ≥ 1, as has been noted in several places. We will

extend it to 0 < p < ∞ along the lines of Theorem 1.

THEOREM B. Suppose there is a Liapunov functional and wedges such that

(i) W1(|φ(0)|) ≤ V (t, φ) ≤ W2(|φ(0)|) + W3(|φ|2)

and

(ii) V ′

(1)(t, xt) ≤ −W4(|x(t)|).

Then x = 0 is UAS.
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We noted that |φ|2 can be replaced by |φ|p for p ≥ 1 and it is known that |φ|p → ‖φ‖

as p → ∞ pointwise on C1. Thus, there has consistently been hope that the conjecture

would follow from a limiting argument with Theorem B. We offer a first step in that direc-

tion in our Theorem 3 by generalizing the Marachkov condition and using a compactness

argument. We do not state that result until a later section.

But in the same vein the next two results are well-motivated by our main example

in the next section. We state the result in two ways. The first way indicates a degree of

sharpness, while the second way is less cumbersome and easier to use; however, Theorem

3 is based on the first version.

THEOREM 2. Suppose that there is a Liapunov functional for (1) and wedges such

that for each ξ > 0 there is a Wξ such that

(i) W1(|φ(0)|) ≤ V (t, φ) ≤ Wξ(‖φ‖) + ξ

and

(ii) V ′

(1)(t, xt) ≤ −W2(|x(t)|).

Under these conditions the zero solution of (1) is UAS if and only if there is a wedge W3

and for each γ > 0 there is a p = p(γ) in (0,∞), a wedge Wγ, and a positive constant Tγ

such that t ≥ t0 + Tγ implies that

(iii) V (t, xt) ≤ W3(|x(t)|) + Wγ(|xt|p) + γ

for every solution x(t, t0 , φ) of (1) having t0 ≥ 0 and ‖φ‖ < δ, where δ is that of US for

ε = 1.

THEOREM 2A. Suppose that there is a Liapunov functional for (1) and wedges

such that for each γ > 0 there is a p = p(γ) in (0,∞) and a Wγ such that

(i) W1(|φ(0)|) ≤ V (t, φ) ≤ W2(|φ(0)|) + Wγ(|φ|p) + γ
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and

(ii) V ′

(1)(t, xt) ≤ −W3(|x(t)|).

Then the zero solution of (1) is UAS.

2. The setting and an example. Under the conditions stated with (1), for each

t0 ≥ 0 and each φ ∈ C1 there is at least one solution x(t, t0, φ) of (1) for t0 ≤ t < t0 + α

and, if the solution remains in a closed subset of C1, then α = ∞. The derivative of V

along a solution x(t, t0, φ) of (1) is frequently computed by the chain rule but is formally

defined by

V ′

(1)(t, xt(t0, φ)) = lim sup
δ→0+

(1/δ){V (t + δ, xt+δ(t0, φ)) − V (t, xt(t0, φ))}.

Basic discussions of these matters are found, for example, in Yoshizawa [11; pp. 181–182].

Since f(t, 0) ≡ 0, x(t) ≡ 0 is a solution of (1) and it is said to be:

(a) uniformly stable (US) if for each ε > 0 there is a δ > 0 such that [t0 ≥ 0, ‖φ‖ <

δ, t ≥ t0] imply that |x(t, t0, φ)| < ε;

(b) uniformly asymptotically stable (UAS) if it is uniformly stable and if there is a

λ > 0 and for each µ > 0 there is a T > 0 such that [t0 ≥ 0, ‖φ‖ < λ, t ≥ t0 + T ] imply

that |x(t, t0, φ)| < µ.

In preparation for our example we look at the delay equation

x′(t) = −a(t)x(t) + b(t)x(t − h)

where h > 0, a and b are continuous, |b(t)| ≤ K for K constant, a(t) − |b(t + h)| ≥ α for

some α > 0. Then

V (t, xt) = |x(t)| +

∫ t

t−h

|b(s + h)| |x(s)| ds
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satisfies

V ′(t, xt) ≤ −a(t)|x(t)| + |b(t)| |x(t − h)|

+ |b(t + h)| |x(t)| − |b(t)| |x(t − h)|

≤ −α|x(t)|.

We then have

|x(t)| ≤ V (t, xt) ≤ |x(t)| + K

∫ t

t−h

|x(s)| ds ≤ (1 + Kh)‖xt‖

and

V ′(t, xt) ≤ −α|x(t)|

so that Theorem K1 holds, while Theorem K2 holds only if a(t) is bounded. But Theorem

B holds even with a(t) unbounded and we have UAS. Interesting results of Busenberg and

Cooke [5] also apply to such problems, as do differential techniques presented, for example,

by Lakshmikantham, Matrosov, and Sivasundaram [8]. There are also applicable results

when a function space norm appears in V ′, as may be seen in ([1], [2], [44]), for example.

Makay [9] has also contributed significantly to this problem.

But difficulties can occur when the system ceases to be smooth enough. The fol-

lowing example illustrates the difficulties and motivates our results.

EXAMPLE 1. Let an(t) and bn(t) be continuous scalar functions on [0,∞) for

n = 0, 1, 2, 3, . . . and suppose that |x| < 1 and that

an(t) − |bn(t + 1)| ≥ 0 for all n ≥ 0,(i)

there is an η > 0 and an i ≥ 1 with ai(t) − |bi(t + 1)| ≥ η,(ii)

there is a sequence of constants Bn with

(iii) |bn(t)| ≤ Bn and B =
∞
∑

0

Bn < ∞,

6



for each T > 0 there is a sequence {An(T )} with

(iv) 0 ≤ an(t) ≤ An(T ) if 0 ≤ t ≤ T and
∞
∑

0

An(T ) < ∞.

Then the zero solution of

(E) x′(t) =
∞
∑

n=0

{

−an(t)(x(t))
1

2n+1 + bn(t)(x(t − 1))
1

2n+1

}

is UAS.

PROOF. Let

(E1) V (t, xt) = |x(t)| +
∞
∑

n=0

∫ t

t−1

|bn(s + 1)| |x(s)|
1

2n+1 ds

so that

V ′

(E)(t, xt) ≤
∞
∑

0

{

−an(t)|x(t)|
1

2n+1 + |bn(t)| |x(t − 1)|
1

2n+1

+|bn(t + 1)| |x(t)|
1

2n+1 − |bn(t)| |x(t − 1)|
1

2n+1

}

;

hence, by (i) and (ii) we have

(E2) V ′

(E)(t, xt) ≤ −η|x(t)|
1

2i+1 .

Thus, an appropriate wedge for V ′ is W (r) = ηr
1

2i+1 .

To justify this work, we note that conditions (iii) and (iv) ensure that the se-

ries in (E) converges uniformly in (t, x) for |x| < 1 and 0 ≤ t ≤ T by the Weierstrass

M-test. Moreover, the series
∑

anx
1

2n+1 converges to a function continuous in (t, x) and

∑

bnx
1

2n+1 (t−1) converges to a function continuous in (t, x(t−1)) for |x| < 1 and 0 ≤ t ≤ T .

To see this, for fixed t the series converges to a function uniformly continuous in x, while

for fixed x the limit function is continuous in t; hence, it is jointly continuous in (t, x).

Thus, the existence results hold. In the same way, we can differentiate the series for
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V term-by-term because the differentiated series converges uniformly and its terms are

continuous.

In this example the conditions of the conjecture are satisfied, but not those of

Theorem B. Thus, this illustrates the need for an intermediate theorem.

In fact, for each γ > 0 there exists N such that so long as we work in the set

‖xt‖ ≤ 1 then
∞
∑

n=N+1

∫ t

t−1

|bn(s + 1)| |x(s)|
1

2n+1 ds ≤

∞
∑

n=N+1

Bn < γ.

Thus,

|x(t)| ≤ V (t, xt) ≤ |x(t)| +
N

∑

n=0

∫ t

t−1

Bn|x(s)|
1

2n+1 ds + γ

≤ |x(t)| + B

∫ t

t−1

|x(s)|
1

2n+1 ds + γ

= |x(t)| + B
(

|xt| 1
2N+1

)
1

2N+1 +γ

so condition (iii) of Theorem 2 holds. As for the US, for the γ > 0 we find N with

V (t, xt) ≤ |x(t)| +

N
∑

0

∫ t

t−1

|bn(s + 1)| |x(s)|
1

2n+1 ds + γ

≤ |x(t)| + B‖xt‖
1

2N+1 + γ

and the conditions of Theorem 1 hold.

3. Proof of Theorem 1. Let ε > 0 be given, ε < 1, and choose γ = 1
2W1(ε) so that

there is a Wγ with

W1(|φ(0)|) ≤ V (t, φ) ≤ Wγ(‖φ‖) + γ.

Choose δ > 0 so that Wγ(δ) + γ < W1(ε). If ‖φ‖ < δ then for t0 ≥ 0 and x(t) = x(t, t0, φ)

we have

W1(|x(t)|) ≤ V (t, xt) ≤ V (t0, φ) ≤ Wγ(‖φ‖) + γ

≤ Wγ(δ) + γ < W1(ε),
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so |x(t)| < ε, as required.

4. Proof of Theorem 2A. We first show that the conditions of Theorem 1 are

satisfied. For a given γ > 0 we have

W1(|φ(0)|) ≤ V (t, φ) ≤ W2(|φ(0)|) + Wγ

((
∫ 0

−h

|φ(s)|p ds

)1/p )

+ γ

≤ W2(|φ(0)|) + Wγ

(

(h‖φ‖p)1/p
)

+ γ

≤ W ∗

γ (‖φ‖) + γ,

for some W ∗

γ , as required.

Thus, x = 0 is US and there is a δ1 > 0 such that
[

‖φ‖ < δ1, t0 ≥ 0, t ≥ t0
]

imply

that |x(t, t0, φ)| < 1.

Let µ > 0 be given. We must find T > 0 such that
[

‖φ‖ < δ1, t0 ≥ 0, t ≥ t0 + T
]

imply that |x(t, t0, φ)| < µ. Use the US to find a δ > 0 (with δ ≤ δ1) so that
[

‖φ‖ <

δ, t0 ≥ 0, t ≥ t0
]

imply that |x(t, t0, φ)| < µ.

Find δ2 > 0 with W2(δ2) < W1(δ). Then choose γ > 0 with

W1(δ) − W2(δ2) − γ =: λ > 0.

For this γ > 0 find p and Wγ of Theorem 2A(i). Fix t0 ≥ 0 and φ with ‖φ‖ < δ1

and consider the intervals

In = [t0 + (n − 1)h, t0 + nh],

n = 1, 2, 3, . . . Now consider any solution x(t) = x(t, t0 , φ). On In there are two possibili-

ties for n ≥ 3:

(a) ‖xt0+nh‖ < δ, so |x(t)| < µ for t ≥ t0 + nh, or

(b) there is a tn ∈ In with |x(tn)| ≥ δ.
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Unless there is a sn ∈ [tn − h, tn] with |x(sn)| = δ2, then V ′

(1)(t, xt) ≤ −W3(|x(t)|) implies

that V (t, xt) decreases by at least hW3(δ2) on In−1 ∪ In. But if sn exists, then

W1(δ) ≤ W1(|x(tn)|) ≤ V (tn, xtn
) ≤ V (sn, xsn

)

≤ W2(|x(sn)|) + Wγ(|xsn
|p) + γ

≤ W2(δ2) + Wγ(|xsn
|p) + γ,

so

λ = W1(δ) − W2(δ2) − γ ≤ Wγ(|xsn
|p).

This yields

W−1
γ (λ) ≤ |xsn

|p ,

so that

ξ := [W−1
γ (λ)]p ≤

∫ sn

sn−h

|x(s)|pds.

Now

V ′

(1)(t, xt) ≤ −W3(|x(t)|) = −W3

(

(|x(t)|p)1/p
)

=: −W5(|x(t)|p)

for some W5 which, by renaming if necessary, we shall assume to be convex downward

since it is always possible to write for u ≥ 0:

W6(u) =

∫ u

0

W5(s)ds ≤ uW5(u) ≤ W5(u)

since we deal with u ≤ 1. And W6 is convex downward. Thus, for V = V (t) we have

V (sn) − V (sn − h) ≤ −

∫ sn

sn−h

W5(|x(t)|p)dt

≤ −hW5

(

1

h

∫ sn

sn−h

|x(t)|pdt

)

≤ −hW5(ξ/h).
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Note that ξ and W5 depend on p; however, the dependence vanishes in the final line above.

Hence, until we reach an In with n ≥ 3 and (a) holding, then V decreases by the minimum

of

hW3(δ2) and hW5(ξ/h) on In−2 ∪ In−1 ∪ In.

As

0 ≤ V (t, xt) ≤ W2(δ) + Wγ(δ) + γ

(for γ = 1, for example) there is a fixed N independent of t0 and φ with (a) holding if

t ≥ t0 + Nh =: t0 + T . This completes the proof.

5. Remarks on Theorem 2. The proof that the conditions of Theorem 2 yield UAS

has essentially already been given in the proof since that proof dealt only with solutions,

as reflected in (iii). The US follows from Theorem 1 and, here, the In become

In = [t0 + Tγ + (n − 1)h, t0 + Tγ + nh].

The proof of the necessity of (iii) is simple to the point of disappointment. For a

given γ > 0 we take ξ = γ/2 and find Wξ. Let δ be that of US for ε = 1. There is then a

T > 0 by the UAS such that

[t0 ≥ 0, ‖φ‖ < δ, t ≥ t0 + h + T ] imply that Wξ(‖xt‖) < γ/2.

Hence, with Tγ = T +h and with p and W3 arbitrary, we have V (t, xt) ≤ Wξ(‖xt‖)+ξ < γ

and (iii) is satisfied.

6. Marachkov’s condition. If the convergence of |φ|p → ‖φ‖ as p → ∞ were uniform

on C1, then Theorem 2 would prove the conjecture. We now give a condition to ensure that

uniform convergence along solutions. In particular, we now show how to reduce condition

(iii) of Theorem K2 in the context of Theorem 2.
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THEOREM 3. Suppose there are wedges, a Liapunov functional, and a locally

integrable function M : [0,∞) → [0,∞) such that for each γ > 0 there is a wedge Wγ such

that

W1(|φ(0)|) ≤ V (t, φ) ≤ Wγ(‖φ‖) + γ,(i)

V ′

(1)(t, xt) ≤ −W3(|x(t)|),(ii)

and for t ≥ 0 and ‖φ‖ ≤ 1 that

(iii) |f(t, φ)| ≤ M(t) and

∣

∣

∣

∣

∫ t2

t1

M(t)dt

∣

∣

∣

∣

≤ W4(|t2 − t1|) for t1, t2 ≥ 0.

Then x = 0 is UAS.

PROOF. By Theorem 1, x = 0 is US. Find the δ1 > 0 of US for ε = 1; we will

show that the solutions of (1), written as xt(t0, φ) for t ≥ t0 + h and ‖φ‖ < δ1 all lie in a

compact set.

For any such solution, note that

|x(t2) − x(t1)| =

∣

∣

∣

∣

∫ t2

t1

f(s, xs)ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t2

t1

M(s)ds

∣

∣

∣

∣

≤ W4(|t2 − t1|)

and so the set of solutions xt(t0, φ) are uniformly bounded and equicontinuous. Thus, they

reside in a compact set K.

Let γ > 0 be given and find Wγ of (i) with V (t, φ) ≤ Wγ(‖φ‖) + γ
2 . We will show

that (iii) of Theorem 2 holds. Note that if W is any wedge and if a ≥ 0 and b ≥ 0, then

a ≥ b or b ≥ a so

W (a + b) ≤ W (2a) + W (2b).

Next, for the γ > 0 pick δ1 > 0 and δ2 > 0 satisfying

Wγ(2δ1) + Wγ(4δ2) + Wγ(8(1 + h)δ1) <
γ

2
.

Since the set of all δ1 neighborhoods of K cover K, there is a finite number of points

φ1, . . . , φn ∈ K with the property that φ ∈ K implies that ‖φ − φi‖ < δ1 for some φi.
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Now |φ1|p → ‖φ1‖ as p → ∞ so there is a p1 with
∣

∣ |φ1|p − ‖φ1‖
∣

∣ < δ2 if p ≥ p1.

Likewise, there is a pi for each φi with this property. We let p = max pi. (Here, p ≥ 1.)

If xt ∈ K then there is an i with

V (t, xt) ≤ Wγ(‖xt‖) +
γ

2

= Wγ(‖xt − φi + φi‖) +
γ

2

≤ Wγ(‖xt − φi‖ + ‖φi‖) +
γ

2

≤ Wγ(2‖xt − φi‖) + Wγ(2‖φi‖) +
γ

2

≤ Wγ(2δ1) + Wγ(2‖φi‖) +
γ

2

≤ Wγ(2δ1) + Wγ

(

2
∣

∣ ‖φi‖ − |φi|p
∣

∣ + 2|φi|p
)γ

2

≤ Wγ(2δ1) + Wγ

(

4
∣

∣ ‖φi‖ − |φi|p
∣

∣

)

+ Wγ(4|φi|p) +
γ

2

≤ Wγ(2δ1) + Wγ(4δ2) + Wγ(4|φi|p) +
γ

2

≤ Wγ(2δ1) + Wγ(4δ2) + Wγ(4|φi − xt + xt|p) +
γ

2

≤ Wγ(2δ1) + Wγ(4δ2) + Wγ(8|φi − xt|p) + Wγ(8|xt|p) +
γ

2

≤ Wγ(2δ1) + Wγ(4δ2) + Wγ(8h1/pδ1) + Wγ(8|xt|p) +
γ

2

≤ Wγ(8|xt|p) + γ

≤ W γ(|xt|p) + γ

where Wγ(8r) = W γ(r). In this work, i depends on t, but the result is uniform for all

solutions. Thus, (iii) of Theorem 2 can be satisfied and the proof is complete.

We can substantially reduce the conditions of Theorem 3 and obtain a result on

asymptotic stability. For reference here, the zero solution of (1) is

(a) stable if for each ε > 0 and t0 ≥ 0 there is a δ > 0 such that
[

‖φ‖ < δ, t ≥ t0
]

imply that |x(t, t0, φ)| < ε.

The zero solution of (1) is
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(b) asymptotically stable if it is stable and if for each t0 ≥ 0 there is an ξ > 0 such

that ‖φ‖ < ξ implies that |x(t, t0, φ)| → 0 as t → ∞.

THEOREM 4. Suppose there is a wedge W1 and a Liapunov functional V with

(i) W1(|φ(0)|) ≤ V (t, φ), V (t, 0) = 0,

and

(ii) V ′

(1)(t, xt) ≤ 0.

If, in addition, there are wedges, a locally integrable function M : [0,∞) → [0,∞), a

constant k ≥ h, a sequence {tn} ↑ ∞, and for each γ > 0 there is a wedge Wγ such that

for φ ∈ C1 we have

V (t, φ) ≤ Wγ(‖φ‖) + γ if t = tn,(iii)

|f(t, φ)| ≤ M(t) if t ∈ [tn − k, tn],(iv)
∣

∣

∣

∣

∫ s2

s1

M(t)dt

∣

∣

∣

∣

≤ W4(|s2 − s1|) for s1, s2 ∈ [tn − k, tn],(v)

and

(vi) V ′

(1)(t, xt) ≤ −W3(|x(t)|) for t ∈ [tn − k, tn].

Then x = 0 is AS.

PROOF. Now (i) and (ii) are the classical conditions for stability. Thus, for ε = 1

and a given t0 ≥ 0, find the δ of stability, select an arbitrary φ with ‖φ‖ < δ, and consider

a fixed solution x(t) = x(t, t0, φ). Because of (i), (ii), and (iii), if there is any subsequence

of tn along which ‖xt‖ → 0, then x(t) → 0. Hence, we suppose there is a µ > 0 with

‖xtn
‖ ≥ µ for all n. Since k ≥ h, there is then a point sn ∈ [tn − k, tn] with |x(sn)| ≥ µ;

either |x(t)| ≥ µ/2 for all t ∈ [tn − k, tn], in which case V (t, xt) decreases by at least
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kW3(µ/2) on [tn − k, tn], or there is a qn ∈ [tn − k, tn] with |x(qn)| = µ/2 and µ/2 ≤ |x(t)|

on the interval from sn to qn. In the latter case,

µ/2 ≤ |x(sn) − x(qn)| =

∣

∣

∣

∣

∫ qn

sn

f(s, xs)ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ qn

sn

M(t)dt

∣

∣

∣

∣

≤ W4(|qn − sn|),

so that

|qn − sn| ≥ W−1
4 (µ/2)

and V (t, xt) decreases by at least

W−1
4 (µ/2)W3(µ/2)

on the interval from qn to sn. Thus, in any case we have V (t, xt) → −∞ as t → ∞, a

contradiction to

0 ≤ V (t, xt) ≤ Wγ(‖xt‖) + γ.

EXAMPLE 2. Consider the scalar equation

x′(t) = −
[

1 + (t + 1)
(

| sin(t + 1)| − sin(t + 1)
)]

x(t) + t(| sin t| − sin t)x(t − 1)

with

V (t, xt) = |x(t)| +

∫ t

t−1

(s + 1)
(

| sin(s + 1)| − sin(s + 1)
)

|x(s)| ds

so that

V ′(t, xt) ≤ −|x(t)|.

Select tn = (2n + 1)π − 1 so that for t ∈ [tn − 1, tn] we have

x′(t) = −x(t)

and

V (t, xt) = |x(t)|.

The conditions of Theorem 4 are all satisfied.
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