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Theodore A. Burton
Abstract. Liapunov’s direct method has been used very effectively for a hundred

years on various types of differential equations. It has not, however, been used with much
success on non-differentiated equations. In this paper we construct a Liapunov function for
a nonlinear integral equation with an infinite delay which is of nonconvolution type. From
that Liapunov function we deduce conditions for boundedness, stability, and the existence
of periodic solutions. The kernel of the integral equation is a perturbation of a positive
kernel and there are estimates showing how large the perturbation can be. The advantage
of the Liapunov approach over classical methods for integral equations is the simplicity of
analysis, once a Liapunov function is constructed.
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1. Introduction

Liapunov functions and functionals have been used very effectively on ordinary,

functional, and partial differential equations, but have had little application to non-

differentiated equations (cf. Miller [12; p. 337] and Gripenberg et al [5; p. 426]). The

reason for this is simple. Given

x′ = f(t, x), ′ = d/dt,

and any differentiable scalar function

V (t, x),

if x(t) is a solution, then V (t, x(t)) is a scalar function of t and we can compute

dV (t, x(t))/dt = grad V · f + ∂V/∂t.

That is, we can find the derivative of V along the solution directly from the differen-

tial equation. If it turns out, for example, that dV/dt ≤ 0, then this may yield much

information about the behavior of the unknown solution.

By contrast, if

x(t) = a(t) +

∫ t

−∞

g(t, s, x(s))ds,

it seems unclear how to relate the derivative of a scalar function V (t, x) to the unknown

solution. Indeed, Miller [12; p. 337] proceeds only under the assumption that the integral

equation can be differentiated. Gripenberg et al [5; p. 426] dismiss Liapunov’s direct

method out of hand saying that the analogues “for integral and functional equations are

of little practical interest.”

Our thesis here is that the direct method of Liapunov is of great interest in functional

equations and we present examples to support that view.

In this paper we construct Liapunov functionals for equations of the form

(1) x(t) = a(t) −

∫ t

−∞

D(t, s)g(s, x(s))ds
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which are closely related to a combination of Liapunov functionals constructed by Levin

([7], [8]) for variants of

x′(t) = −

∫ t

0

D(t, s)g(x(s))ds

and by the author [1] for

x′(t) = Ax +

∫ t

0

B(t, s)x(s)ds.

These Liapunov functionals have properties in sharp contrast to those for differential equa-

tions.

In the classical theory of Liapunov’s direct method for a functional differential equation

of the form

x′ = F (t, xt)

(see Lakshmikantham and Leela [6] or Yoshizawa [14] for standard theory and explanation

of notation), one seeks a functional V (t, φ) with at least the property that

W (|φ(0)|) ≤ V (t, φ), V (t, 0) = 0

where W is a strictly increasing function. Thus, if V ′(t, xt) ≤ 0, then the zero solution is

stable. Such functions W are prominently missing for integral equations and one is forced

to other methods. The interesting part is that one can frequently derive the required W

along solutions; and that is all that is needed to prove the classical relations.

Equations of this sort are often written as

(F ) x(t) = A(t) −

∫ t

0

D(t, s)g(s, x(s))ds

where A(t) now contains both a(t) and
∫ 0

−∞
D(t, s)g(s, φ(s))ds, and where φ is a given

initial function. Conditions commonly required on D will ensure that A(t) ∈ L1[0,∞) for

a bounded initial function φ.

Much has been written about this equation when D is of convolution type, often

using the theory of positive kernels. A selection may be found in Levin [9], Londen [10],
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MacCamy [11], and Staffans [13]. Physical problems described by such equations are found

in Gripenberg et al [5; pp. 4–13], MacCamy [11; pp. 570–574], and Miller [12; pp. 62–73],

for example.

If we begin with (F), as is done in [5;pp. 552-556, 620-631], then much less is required

than for the infinite delay equation (1). Indeed, the very statement of (1) asks stringent

convergence conditions on D which are not needed for (F). Thus, comparison of the results

is not mathematically possible. The closest comparison which can be made would seem to

concern the periodic result of [5;p. 631]with our Cor. 6; in their separate frameworks, Cor.

6 is at least as strong as the result in [5;p. 631]. Finally, the Liapunov approach certainly

yields simpler analysis.

2. A scalar integral equation

Let D : R×R → R with both D and
∫ t

−∞
|D(t, s)|ds being continuous, let a : R → R

be continuous, and let g : R × R → R and gi : R → R all be continuous with xg(t, x) > 0

if x 6= 0, |g1(x)| ≤ |g(t, x)| ≤ |g2(x)|, xg1(x) > 0 if x 6= 0. Consider the equation

(1) x(t) = a(t) −

∫ t

−∞

D(t, s)g(s, x(s))ds.

If φ : (−∞, t0] → R is a given bounded and continuous initial function, then there is

a continuous solution x(t, t0 , φ) defined on an interval [t0, α) and satisfying (1) on that

interval, while agreeing with φ on (−∞, t0], provided that ϕ is chosen so that (1) is an

identity at t = t0 (see, [12] and [5; p. 538]). If the solution remains bounded then it can

be continued for all future time. It is always assumed that ϕ is chosen so that the solution

is continuous.
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We suppose that there are continuous functions B,Q : R × R → R with

B(t, s) = D(t, s) + Q(t, s),(2)

Bs(t, s) ≥ 0, Bst(t, s) ≤ 0,(3)
∫ t

−∞

[

|B(t, s)| + Bs(t, s)(t − s)2 + |Bst(t, s)| + |Q(t, s)|
]

ds continuous,(4)

lim
s→−∞

(t − s)B(t, s) = 0 for fixed t,(5)

∫ ∞

0

|Q(u + t, t)|du +

∫ t

−∞

∫ ∞

t−s

|Q(u + s, s)|du ds exists for t ≥ 0.(6)

Much can be deduced from the following result. We shall give a few possibilities.

THEOREM 1. If x(t) is a solution of (1) on [t0, α), then the functional

(7)

V (t, x(·)) =

∫ t

−∞

Bs(t, s)

(
∫ t

s

g(v, x(v))dv

)2

ds

+ k

∫ t

−∞

∫ ∞

t−s

|Q(u + s, s)|du g2(s, x(s))ds

satisfies

(8)

[

a(t) − x(t) +

∫ t

−∞

Q(t, s)g(s, x(s))ds

]2

≤ V (t, x(·))B(t, t)

and

(9)

V ′
(1)(t, x(·)) ≤ 2g(t, x(t))

[

a(t) − x(t)
]

− (k − 1)

∫ t

−∞

|Q(t, s)|g2(s, x(s))ds

+

[
∫ t

−∞

|Q(t, s)|ds + k

∫ ∞

0

|Q(u + t, t)|du

]

g2(t, x).

PROOF. We apply Schwarz’s inequality to (7) and have

V (t, x(·)) ≥

(
∫ t

−∞

Bs(t, s)

∫ t

s

g(v, x(v))dv ds

)2
/

B(t, t).

Integrate by parts and use (5), together with the fact that there is a bounded initial

function to obtain

V (t, x(·))B(t, t) ≥
[

B(t, s)

∫ t

s

g(v, x(v))dv

∣

∣

∣

∣

s=t

s=−∞

+

∫ t

−∞

B(t, s)g(v, x(v))dv

]2

.
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The first term on the right is zero. When B is separated as in (2) and (1) is used, we have

V (t, x(·))B(t, t) ≥

[

a(t) − x(t) +

∫ t

−∞

Q(t, s)g(s, x(s))ds

]2

so that (8) holds.

Denote the last term in V by Z(t) and compute

V ′(t, x(·)) =

∫ t

−∞

Bst(t, s)

(
∫ t

s

g(v, x(v))dv

)2

ds

+

∫ t

−∞

Bs(t, s)2

∫ t

s

g(v, x(v))dv ds g(t, x(t)) + Z ′(t)

≤ 2g(t, x(t))

[

B(t, s)

∫ t

s

g(v, x(v))dv

∣

∣

∣

∣

s=t

s=−∞

+

∫ t

−∞

B(t, s)g(s, x(s))ds

]

+ Z ′(t)

= 2g(t, x(t))

[
∫ t

−∞

D(t, s)g(s, x(s))ds

+

∫ t

−∞

Q(t, s)g(s, x(s))ds

]

+ Z ′(t)

≤ 2g(t, x(t))
[

a(t) − x(t)
]

+ g2(t, x(t))

∫ t

−∞

|Q(t, s)|ds

+

∫ t

−∞

|Q(t, s)|g2(s, x(s))ds

+ k

∫ ∞

0

|Q(u + t, t)|du g2(t, x(t))

− k

∫ t

−∞

|Q(t, s)|g2(s, x(s))ds

= 2g(t, x(t))
[

a(t) − x(t)
]

+ g2(t, x(t))

[
∫ t

−∞

|Q(t, s)|ds + k

∫ ∞

0

|Q(u + t, t)|du

]

− (k − 1)

∫ t

−∞

|Q(t, s)|g2(s, x(s))ds,

as required.

Many interesting consequences can be derived from (8) and (9). We begin with two

extreme cases.
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COROLLARY 1. If a(t) = Q(t, s) = 0 and if
∫ t

−∞
Ds(t, s)ds ≤ 1/M for some M , then

along any solution x(t) we have

Mx2(t) ≤ V (t, x(·))

and

V ′(t, x(·)) ≤ −2g(t, x(t))x(t) ≤ −2g1(x(t))x(t).

Thus, x(t) is bounded, x = 0 is stable, and

∫ ∞

g1(x(t))x(t)dt < ∞.

We later give three kinds of conditions to ensure that x(t) → 0 as t → ∞ when α = 0.

Remark. Notice that Cor. 1 has no growth condition on g, but there will be in Cor.

2 and 3 when Q(t, s) 6= 0. In effect, Q is a “perturbation term” and the bounds on Q

offer a measure of how far D can deviate from the conditions on B. In addition, Condition

(10) will itself be a growth condition on g when Q 6= 0. To start the completion of Cor.

1, examine Cor. 4 and note that when Q = 0, then no growth condition on g is required

to conclude that x(t) → 0. Cor. 5 asks that g satisfy a local Lipschitz condition in order

to conclude that x(t) → 0. Compare this with the discussion of MacCamy [11; pp. 556–

7] who surveys convolution counterparts of our problems. In those results, Q(t, s) = 0

and growth conditions on g are required of the form |g(u)| ≤ M
(

1 +
∫ u

0
g(ξ)dξ

)

and,

sometimes, lim sup
u→0

g(u)/u < ∞.

COROLLARY 2. If k = 1, B(t, s) = a(t) = 0 (so that Q(t, s) = −D(t, s)), and if

there is a β < 2 with

βxg(t, x) ≥

[
∫ t

−∞

|D(t, s)|ds +

∫ ∞

0

|D(u + t, t)|du

]

g2(t, x)

then
∫ ∞

x(t)g(t, x(t))dt < ∞ holds for any solution x(t) on [t0,∞).
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There are many possible variants of the next lemma. It is the natural extension of the

statement that the convolution of an L1-function with a function tending to zero, itself

tends to zero.

LEMMA 1. Let h : [0,∞) → [0,∞) with
∫ ∞

0
h(s)ds < ∞ and let C : R × R → R be

continuous with |C(t, s)| ≤ K if 0 ≤ s ≤ t for some K > 0. Suppose also that for each

P > 0 we have lim sup
t→∞ 0≤s≤P

|C(t, s)| = 0. Then
∫ t

0
C(t, s)h(s)ds → 0 as t → ∞.

PROOF. Let ε > 0 be given and choose P > 0 so that
∫ ∞

P
K h(t)dt < ε/2. Then

∫ t

0

|C(t, s)|h(s)ds ≤

∫ P

0

|C(t, s)|h(s)ds + K

∫ ∞

P

h(s)ds

≤ sup
0≤s≤P

|C(t, s)|

∫ P

0

h(s)ds + ε/2.

The next lemma will be used repeatedly.

LEMMA 2. Let xg(t, x) > 0 if x 6= 0, g be continuous and bounded for x bounded,

|a(t)| ≤ A/2 for some A > 0 and all t, and let c1 > 0. Then there is an M > 0 with

−2c1xg(t, x) + 2|g(t, x)| |a(t)| ≤ −c1xg(t, x) + M |a(t)|.

PROOF. We have

K(t, x) : = −2c1xg(t, x) + 2|g(t, x)a(t)|

≤ −c1xg(t, x) + |g(t, x)|[−c1|x| + 2|a(t)|].

If |x| ≥ 2A/c1, then −c1|x| + 2|a(t)| ≤ −2A + A < 0. If |x| ≤ 2A/c1, then 2|g(t, x)| ≤ M

for some M > 0, and the proof is complete.

COROLLARY 3. Suppose there is a k ≥ 1 and a β < 2 such that

(10) βxg(t, x) ≥

[
∫ t

−∞

|Q(t, s)|ds + k

∫ ∞

0

|Q(u + t, t)|du

]

g2(t, x)

and that a(t) is both bounded and L1[0,∞). Then for any solution x(t) of (1) on [t0,∞) we

have
∫ ∞

t0
x(t)g(t, x(t))dt < ∞. If, in addition,

∫ t

−∞
Ds(t, s)ds is bounded, |g(t, x)| ≤ J |x|
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for some J > 0, if
∫ t0
−∞

|D(t, s)|ds → 0 as t → ∞, if
∫ t

t0
|D(t, s)|ds is bounded, and if for

each P > 0 we have lim sup
t→∞ 0≤s≤P

|D(t, s)| = 0, then x(t) → a(t) as t → ∞.

PROOF. By (9), (10), and Lemma 2 we have V ′(t, x(·)) ≤ −c1x(t)g(t, x(t))+M |a(t)|.

Since V ≥ 0, the first conclusion holds. Next, if φ is the bounded initial function on

(−∞, t0] with g∗ ≥ |g(t, φ(t))| on (−∞, t0], then

(∗)

∣

∣

∣

∣

∫ t

−∞

D(t, s)g(s, x(s))ds

∣

∣

∣

∣

≤

[
∫ t

t0

|D(t, s)|ds

∫ t

t0

|D(t, s)|g2(s, x(s))ds

]1/2

+

∫ t0

−∞

|D(t, s)|g∗ds.

Since |g(t, x)| ≤ J |x|, it follows that
∫ ∞

t0
g2(s, x(s))ds < ∞ because

∫ ∞

t0
x(s)g(s, x(s))ds <

∞. Thus, by Lemma 1, (∗) tends to zero as t → ∞ and the conclusion follows from (1).

A classical result for a finite delay equation x′ = F (t, xt) states (see [14; p. 191]) that

if there is a V (t, φ) and increasing function Wi with

(i) W1(φ(0)|) ≤ V (t, φ) ≤ W2(‖φ‖),

(ii) V ′(t, xt) ≤ −W3(|x(t)|), and

(iii) |F (t, φ)| is bounded for φ bounded,

then x = 0 is uniformly asymptotically stable. Condition (iii) assures us that a bounded

solution is Lipschitz; hence,
∫ ∞

W3(|x(t)|)dt < ∞ implies that x(t) must tend to zero. The

following result is a counterpart for integral equations and it leads us to a priori bounds

for periodic solutions.

COROLLARY 4. Let a(t) ∈ L1[0,∞), a(t) → 0 as t → ∞, and either Q(t, s) = 0 or

|g(t, x)| ≤ J |x| for some J > 0. Also, for each t0 ∈ R and each P > 0 let both

∫ t0

−∞

|Q(t, s)|ds → 0 as t → ∞ and lim sup
t→∞ 0≤s≤P

Q(t, s) = 0.

Finally, suppose there are k ≥ 1 and β < 2 such that (10) holds and an M > 0 such that

|a(t1) − a(t2)| ≤ M |t1 − t2|,
∫ t

−∞
|Bs(t, s)|ds ≤ M ,

∫ t

t0
|Q(t, s)|ds ≤ M , and

(11)

∫ t1

−∞

|D(t1, s) − D(t2, s)|ds ≤ M |t1 − t2| for 0 ≤ t1 ≤ t2 < ∞
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and |t1 − t2| small. Then every solution x(t) is defined on [t0,∞) and x(t) → 0 as t → ∞.

PROOF. By the proof of Cor. 3 we have V bounded and
∫ ∞

t0
x(t)g(t, x(t))dt < ∞.

By assumption |g1(x)| ≤ |g(t, x)| ≤ |g2(x)| where xg1(x) > 0 if x 6= 0. If x(t) 6→ 0, then

there is an ε > 0 and a sequence {tn} ↑ ∞ with |x(tn)| ≥ ε. Since V is bounded, if Q = 0,

then from (8) and a(t) → 0, we have x(t) bounded. If Q 6= 0, then |g(t, x)| ≤ J |x| so
∫ ∞

x(t)g(t, x(t))dt < ∞ yields
∫ ∞

g2(t, x(t))dt < ∞; and this implies that
∣

∣

∣

∣

∫ t

−∞

Q(t, s)g(s, x(s))ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t0

−∞

Q(t, s)g(s, x(s))ds

∣

∣

∣

∣

+

[
∫ t

t0

|Q(t, s)|ds

∫ t

t0

|Q(t, s)|g2(s, x(s))ds

]1/2

and this tends to zero. By (8), again, x(t) is bounded and so, in any case, |g(t, x(t))| ≤ L

for some L > 0.

From the boundedness of x(t) and
∫ ∞

xg1(x)dt < ∞, we can suppose that |x(tn)| = ε

and choose another sequence {sn} ↑ ∞ with |x(sn)| = ε/2 and ε ≥ |x(t)| ≥ ε/2 for

tn ≤ t ≤ sn.

Thus,

ε/2 ≤ |x(tn) − x(sn)| ≤ |a(tn) − a(sn)|

+

∣

∣

∣

∣

∫ tn

−∞

D(tn, s)g(s, x(s))ds −

∫ tn

−∞

D(sn, s)g(s, x(s))ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ tn

−∞

D(sn, s)g(s, x(s))ds −

∫ sn

−∞

D(sn, s)g(s, x(s))ds

∣

∣

∣

∣

≤ M |tn − sn| + L

∫ tn

−∞

|D(tn, s) − D(sn, s)|ds

+

∣

∣

∣

∣

∫ tn

sn

D(sn, s)g(s, x(s))ds

∣

∣

∣

∣

≤ (M + LM + LB)|tn − sn|

where
∫ sn

tn

|D(sn, s)|ds ≤ B. This yields |tn − sn| ≥ δ for some δ > 0, contradicting
∫ ∞

x(t)g1(x(t))dt < ∞ while |x(t)| ≥ ε/2 on [tn, sn]. This completes the proof.

There is a third way to drive x(t) to zero.

COROLLARY 5. Let Q(t, s) = 0, a(t) → 0 as t → ∞, a(t) ∈ L1[0,∞), and
∫ t

−∞
Ds(t, s)ds be bounded. Suppose also that for each P > 0 we have

∫ P

−∞
Ds(t, s)(t −
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s)2ds → 0 as t → ∞ and that there is an M independent of P with
∫ t

P
Ds(t, s)(t − s)ds ≤

M . If, in addition, for each K > 0 there is a J > 0 such that |x| ≤ K implies |g(t, x)| ≤ J |x|,

then x(t) → 0 as t → ∞.

PROOF. From (8), if V (t, x(·)) → 0, so does x(t). Since x(t) is bounded by (8) and

the fact that V is bounded, we have
∫ ∞

g2(t, x(t))dt < ∞. By Schwarz’s inequality we

obtain

V (t, x(·)) ≤

∫ t

−∞

Ds(t, s)(t − s)

∫ t

s

g2(v, x(v))dv ds

≤

∫ P

−∞

Ds(t, s)(t − s)

∫ t

s

g2(v, x(v))dv ds

+

∫ t

P

Ds(t, s)(t − s)

∫ ∞

P

g2(v, x(v))dv ds

≤ J2

∫ P

−∞

Ds(t, s)(t − s)2ds

+

(
∫ ∞

P

g2(v, x(v))dv

)
∫ t

P

Ds(t, s)(t − s)ds.

The last integral is bounded by M , while its coefficient tends to zero as P → ∞. This

completes the proof.

Remark. In the next result, notice that the a priori bound does not require V to be

positive, as in [3]. The a priori bound comes from V’ alone.

COROLLARY 6. Let (10) hold and suppose there is a T > 0 with a(t + T ) = a(t),

g(t+T, x) = g(t, x), D(t+T, s+T ) = D(t, s), and Bs(t+T, s+T ) = Bs(t, s). Suppose, in

addition, that xg1(x) → ∞ as |x| → ∞, and that there is an M > 0 with |g(t, x)| ≤ M |x|,

sup
0≤t≤T

∫ t

−∞
|D(t, s)|ds ≤ M , |a(t1) − a(t2)| ≤ M |t1 − t2|, |g(t, x1) − g(t, x2)| ≤ M |x1 − x2|,

and that
∫ t1
−∞

|D(t1, s) − D(t2, s)|ds ≤ M |t1 − t2| for 0 ≤ t1 ≤ t2 ≤ T . Then there is a

K > 0 such that if x(t) is any T -periodic solution of (1), then sup
0≤t≤T

|x(t)| =: ‖x‖ ≤ K

and there is a T -periodic solution.

PROOF. Let 0 ≤ λ ≤ 1 and write (1) as

(1λ) x(t) = λa(t) −

∫ t

−∞

D(t, s)λg(s, x(s))ds
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so that if

V (t, x(·)) =

∫ t

−∞

Bs(t, s)

(
∫ t

s

λg(v, x(v))dv

)2

ds

then we obtain

V ′(t, x(·)) ≤ −c1x(t)λg(t, x(t)) + Mλ|a(t)|.

We now show that there is an a priori bound on any T -periodic solution x(t) of (1λ). If

λ = 0, then ‖x‖ = 0. If λ > 0, since V is also T -periodic, 0 = V (T, x(·)) − V (0, x(·)) ≤

−c1

∫ T

0
x(s)λg(s, x(s))ds + Gλ where G = MT‖a‖; thus, λ divides out and we have

∫ T

0
x(s)g(s, x(s))ds ≤ G/c1. Next, let 0 ≤ t1 ≤ t2 ≤ T , |x(t1)| = ‖x‖, and consider

(recalling that |g(t, x)| ≤ M |x|)

|x(t1) − x(t2)| ≤ λ|a(t1) − a(t2)|

+ λ

∣

∣

∣

∣

∫ t1

−∞

[

D(t1 , s) −D(t2 , s)
]

g(s, x(s))ds

∣

∣

∣

∣

+ λ

∣

∣

∣

∣

∫ t1

−∞

D(t2, s)g(s, x(s))ds −

∫ t2

−∞

D(t2, s)g(s, x(s))ds

∣

∣

∣

∣

≤ M |t1 − t2| + M2|t1 − t2| ‖x‖ + M‖x‖

∫ t2

t1

|D(t2, s)|ds

≤
(

M + M2‖x‖ + BM‖x‖
)

|t1 − t2| ≤ J
(

1 + ‖x‖
)

|t1 − t2|

for |D(t2, s)| ≤ B if 0 ≤ s ≤ T and some J > 0. If J |t1 − t2| ≤ 1/2, then |x(t1)| − |x(t2)| ≤

|x(t1) − x(t2)| ≤
(

1 + ‖x‖
)

/2 and |x(t1)| = ‖x‖ so ‖x‖/2 ≤ 1/2 + |x(t2)|. If ‖x‖ ≤ 2,

then this is an a priori bound. If ‖x‖ ≥ 2, then ‖x‖ ≤ 1 + 2|x(t2)| ≤ ‖x‖/2 + 2|x(t2)| or

‖x‖/2 ≤ 2|x(t2)| so that |x(t2)| ≥ ‖x‖/4 if |t1 − t2| ≤ 1/2J . But

∫ T

0

x(t)g1(x(t))dt ≤

∫ T

0

x(t)g(t, x(t))dt ≤ G/c1

and xg1(x) → ∞ as |x| → ∞, while |x(t2)| ≥ ‖x‖/4 if |t1 − t2| ≤ 1/2J . Thus, the required

bound on ‖x‖ exists for 0 ≤ λ ≤ 1.

Next, let (P, ‖ · ‖) be the Banach space of continuous T -periodic functions with the

supremum norm. For 0 ≤ λ ≤ 1 we define a mapping Hλ : P → P by φ ∈ P implies that

(12) Hλ(φ)(t) = λ

[

a(t) −

∫ t

−∞

D(t, s)g(s, φ(s))ds

]

.
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The degree-theoretic work of Granas [4], as discussed in [2] and [3], will show that (1) has

a T -periodic solution provided so we can show that:

(a) Hλ : P → P ;

(b) For fixed λ, Hλ maps bounded subsets of P into compact subsets of P ;

(c) Hλ is jointly continuous in (λ, φ); and

(d) There is a number B such that any T -periodic solution x of (1λ)

satisfies ‖x‖ ≤ B.

We have already shown (d). To show (a) we compute

Hλ(φ)(t + T ) = λ

[

a(t + T ) −

∫ t+T

−∞

D(t + T, s)g(s, φ(s))ds

]

= λ

[

a(t) −

∫ t

−∞

D(t + T, u + T )g(u + T, φ(u + T ))du

]

= λ

[

a(t) −

∫ t

−∞

D(t, u)g(u, φ(u))du

]

= Hλ(φ)(t),

whenever φ ∈ P . To show that Hλ(φ) is continuous in t and lies in a compact set we let

φ ∈ P with ‖φ‖ ≤ K, where K is an arbitrary positive number. Then

∣

∣Hλ(φ)(t1) − Hλ(φ)(t2)
∣

∣ ≤ λ

[

|a(t1) − a(t2)|

+

∣

∣

∣

∣

∫ t1

−∞

[

D(t1, s) − D(t2, s)
]

g(s, φ(s))ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t2

t1

D(t2, s)g(s, φ(s))ds

∣

∣

∣

∣

]

≤ λ
[

M |t1 − t2|+ M2‖φ‖ |t1 − t2|+ D∗M‖φ‖ |t2 − t2|
]

where D∗ = sup
0≤s≤T
0≤t2≤T

|D(t2, s)|. Hence, Hλ(φ) is equicontinuous and bounded by a function

of K. This establishes both (a) and (b). To show that H(λ, φ) is jointly continuous in λ

13



and φ, for fixed t and for φi ∈ P we have

∣

∣Hλ(φ1)(t) − Hλ(φ2)(t)
∣

∣ = λ

∣

∣

∣

∣

∫ t

−∞

D(t, s)
[

g(s, φ1(s)) − g(s, φ2(s))
]

ds

∣

∣

∣

∣

≤ λ

∫ t

−∞

|D(t, s)|M |φ1(s) − φ2(s)|ds

≤ λM‖φ1 − φ2‖

∫ t

−∞

|D(t, s)|ds

≤ U‖φ1 − φ2‖ for some U > 0.

Hence, H is continuous in φ for fixed λ, uniformly continuous in λ for fixed φ, and so is

jointly continuous in (λ, φ). This completes the proof.

Remark. When B(t, s) = 0, a more flexible Liapunov functional is

H(t, x(·)) = k

∫ t

−∞

∫ ∞

t−s

|D(u + s, s)|du|g(s, x(s))|ds

with

H ′(t, x(·)) ≤ −δ

[

|g(t, x)| +

∫ t

−∞

|C(t, s)g(s, x(s))|ds

]

+ |a(t)|

with δ > 0. From this we conclude that if a ∈ L1, then |g(t, x)| and |x| are L1. In

the previous corollaries we did not yet use the term −(k − 1)
∫ t

−∞
|C(t, s)g(s, x(s))|ds in

the derivative of V . But here it can be used effectively and we see that under suitable

assumptions relating D to one of its integrals we can obtain

H ′(t, x(·)) ≤ −γH(t, x(·)) + |a(t)|, γ > 0

and

µ
[

|x| − |a(t)|
]

≤ H(t, x(·)), µ > 0.

Other uses of the (k − 1)-term are illustrated in Burton [1].
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3. A linear vector equation

Let D be a continuous n × n matrix with
∫ t

−∞
|D(t, s)|ds continuous, a : R → Rn be

continuous, and consider the equation

(13) x(t) = a(t) −

∫ t

−∞

D(t, s)x(s)ds.

It turns out that all of the work in Section 2 can be done for (13) except that we have

been unable to obtain a counterpart of (8). Thus, we readily prove that solutions are L2,

that they converge to a(t), and that there are periodic solutions. But we must rely on

techniques independent of (8) to show boundedness. Formal counterparts of (2)–(6) are

needed. The symbol | · | will denote absolute value as well as compatible vector and matrix

norms.

Suppose there are continuous matrix functions B and Q with

B(t, s) = D(t, s) + Q(t, s), BT (t, s) = B(t, s),(14)

xT Bs(t, s)x ≥ 0, xT Bst(t, s)x ≤ 0,(15)
∫ t

−∞

[

|B(t, s)| + |Bs(t, s)|(t − s)2 + |Bst(t, s)| + |Q(t, s)|
]

ds continuous,(16)

lim
s→−∞

|t − s| |B(t, s)| = 0 for fixed t,(17)

∫ ∞

0

|Q(u + t, t)|du +

∫ t

−∞

∫ ∞

t−s

|Q(u + s, s)|du ds exists for t ≥ 0.(18)

THEOREM 2. If x(t) is a solution of (13) on [t0,∞), then the functional

(19)

V (t, x(·)) =

∫ t

−∞

{[
∫ t

s

xT (q)dq

]

Bs(t, s)

∫ t

s

x(q)dq

}

ds

+ k

∫ t

−∞

∫ ∞

t−s

|Q(u + s, s)|du|x(s)|2ds

satisfies

(20)

V ′(t, x(·)) ≤ 2|a(t)| |x(t)|

−

[

2 −

∫ t

−∞

|Q(t, s)|ds − k

∫ ∞

0

|Q(u + t, t)|du

]

|x(t)|2

− (k − 1)

∫ t

−∞

|Q(t, s)| |x(s)|2ds.
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PROOF. We have

V ′(t, x(·)) ≤

∫ t

−∞

2xT (t)Bs(t, s)

∫ t

s

x(q)dq ds

+ k

∫ ∞

0

|Q(u + t, t)|du|x(t)|2 − k

∫ t

−∞

|Q(t, s)| |x(s)|2ds

= 2xT (t)

[

B(t, s)

∫ t

s

x(q)dq

∣

∣

∣

∣

s=t

s=−∞

+

∫ t

−∞

B(t, s)x(s)ds

]

+ k

∫ ∞

0

|Q(u + t, t)|du|x(t)|2 − k

∫ t

−∞

|Q(t, s)| |x(s)|2ds

= 2xT (t)

[

a(t) − x(t) +

∫ t

−∞

Q(t, s)x(s)ds

]

+ k

∫ ∞

0

|Q(u + t, t)|du|x(t)|2 − k

∫ t

−∞

|Q(t, s)| |x(s)|2ds

≤ 2|a(t)| |x(t)| − 2|x(t)|2 + |x(t)|2
∫ t

−∞

|Q(t, s)|ds

+

∫ t

−∞

|Q(t, s)| |x(s)|2ds + k

∫ ∞

0

|Q(u + t, t)|du|x(t)|2

− k

∫ t

−∞

|Q(t, s)| |x(s)|2ds

≤ 2|a(t)| |x(t)| −

[

2 −

∫ t

−∞

|Q(t, s)|ds − k

∫ ∞

0

|Q(u + t, t)|du

]

|x(t)|2

− (k − 1)

∫ t

−∞

|Q(t, s)| |x(s)|2ds,

as required.

At this point we do not have a lower bound parallel to (8); but for linear systems this

is not so crucial since solutions can always be defined for all future time. We can prove

results for the system parallel to the ones for (1) as follows. In Cor. 1 and 2 we conclude

only that x ∈ L2[0,∞). Cor. 3 and 5 say little about the system. Cor. 4 and Cor. 6 hold

exactly as they did for (1).
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