
AN EXTENSION OF KRASOVSKII’S STABILITY THEORY
Dedicated to Professor N. N. Krasovskii

T.A. Burton
Department of Mathematics
Southern Illinois University

Carbondale, Illinois 62901 USA

1. Introduction. Let F : [0,∞) × CH → Rn be continuous and take bounded sets

into bounded sets and consider the system of functional differential equations

(1) x′(t) = F (t, xt)
′ = d/dt

where xt(s) = x(t + s) for −h ≤ s ≤ 0 and h is a positive constant. Here, (C, ‖ · ‖) is the

Banach space of continuous functions φ : [−h, 0] → Rn with the supremum norm and for

H > 0 then CH is the H-ball in C . Thus, from standard theory (e.g., [3; pp. 186–191]), if

φ ∈ CH and t0 ≥ 0, then there is a solution x(t, t0, φ) of (1) on an interval [t0, t0 +α) and,

if there is an H0 < H with |x(t, t0, φ)| ≤ H0, then α = ∞.

It is to be understood that F takes bounded (t, φ) sets into bounded sets in Rn.

Thus, no assumption is being made that |F (t, φ)| is bounded for φ bounded. Also, for

an ordinary differential equation, when a function is written without its argument, that

argument is t; but in the PDE case, it is (t, x).

In the study of stability for ordinary, functional, and partial differential equations

by means of Liapunov functions or functionals there is the challenging problem of showing

that a solution does not move too rapidly in a region in which the Liapunov function
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has a negative derivative. Marachkov [14] faced this problem for an ordinary differential

equation x′ = f(t, x) by asking that |f(t, x)| be bounded for x bounded. That condition

was adopted by Krasovskii for functional differential equations (see Theorem K1 below).

It has two faults. First, there are too many interesting systems which do not satisfy the

condition. But, what is perhaps more important, while there is a growing theory of stability

which applies in a unified way to ordinary, functional, and partial differential equations,

the Marachkov condition does not seem to extend well to partial differential equations. On

the other hand, Krasovskii proved a second result (see Theorem K2 below) which we now

generalize and show that it is natural for partial differential equations as well.

For a continuous functional V : [0,∞) × CH → [0,∞) which is locally Lipschitz in

φ, we follow Yoshizawa [16; p. 186] and define the derivative of V along a solution of (1)

by

V ′

(1)(t, xt(t0, φ)) = lim sup
δ→0+

1

δ
{V (t + δ, xt+δ(t0, φ)) − V (t, xt(t0, φ))}.

We shall also use continuous strictly increasing functions Wi : [0,∞) → [0,∞) with

Wi(0) = 0, called wedges. The next two results are by Krasovskii [10; pp. 151–155].

THEOREM K1. Suppose there is a continuous functional V : [0,∞)×CH → [0,∞)

which is locally Lipschitz in φ, and a constant M such that

(i) W1(|φ(0)|) ≤ V (t, φ) ≤ W2(‖φ‖),

(ii) V ′

(1)(t, xt) ≤ −W3(|x(t)|),

and

(iii) |F (t, φ)| ≤ M if t ≥ 0 and ‖φ‖ < H.

Then x = 0 is uniformly asymptotically stable (UAS).

THEOREM K2. Let | · |2 denote the L2-norm on C . Suppose there is a continuous

functional V : [0,∞) × CH → [0,∞) which is locally Lipschitz in φ and wedges Wi such

that

(i) W1(|φ(0)|) ≤ V (t, φ) ≤ W2(|φ(0)|) + W3(|φ|2)

and
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(ii) V ′

(1)(t, xt) ≤ −W4(|x(t)|).

Then x = 0 is asymptotically stable (AS).

In [2] we showed that the conclusion in Theorem K2 is actually UAS.

In [5] Makay and the author showed that in Theorem K1 we can reduce (i), have

|F (t, φ)| ≤ M(t + 1) ln(t + 2), and retain a conclusion of AS. In [3; p. 270] we showed

that the condition |F (t, φ)| ≤ M could be transferred to a condition of bounded difference

quotient on part of V and still retain the conclusion of UAS. That work suggests that the

problem of showing that a solution does not move too fast through regions in which V ′ is

negative can be approached either by restricting the derivative of x(t) or ∂V/∂t when we

try to prove UAS. We now understand that it is more general to focus on restrictions on

V since that will apply to a wider class of problems.

In Theorem K2, Krasovskii only obtained AS, but he used properties in (i) which

yield uniform stability as well. Thus, it is reasonable to ask if we could reduce the upper

bound on V in Theorem K2 and still retain AS. We show here that this can be done.

2. Asymptotic stability. The following definitions are given for reference.

DEF. The zero solution of (1) is said to be stable if for each ε > 0 and t0 ≥ 0 there

is a δ > 0 such that [φ ∈ Cδ, t ≥ t0] imply that |x(t, t0 , φ)| < ε. The zero solution of (1) is

asymptotically stable (AS) if it is stable and if for each t0 ≥ 0 there is an η > 0 such that

φ ∈ Cη implies that |x(t, t0, φ)| → 0 as t → ∞.

THEOREM 1. Let r, V : [0,∞) → [0,∞), let h > 0, let α ≥ 0, β ≥ 0, and γ ≥ 0

with α + β > 0, and let {tn} and {λn} be positive sequences with tn+1 ≥ tn + 2h and
∑

1/λn = ∞. Suppose there are wedges Wi such that

(i) 0 ≤ V (t), V ′(t) ≤ 0,

and for t ∈ [tn − 2h, tn] we have both

(ii) V (t) ≤ λn

[

αW2(r(t)) + βW3

(

1
h

∫ t

t−h
W4(r(s))ds

)]

+ γW5(r(t))

and

(iii) V ′(t) ≤ −αW2(r(t)) − βW3

(

W4(r(t))
)

, W3 convex downward.
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Then V (t) → 0 as t → ∞.

COR. 1. Suppose there is a continuous and locally Lipschitz functional V : [0,∞)×

CH → [0,∞) and positive sequences {tn} and {λn} with tn+1 ≥ tn +2h and
∑

1/λn = ∞.

Suppose also that there are constants α ≥ 0, β ≥ 0, and γ ≥ 0 with α +β > 0 and wedges

Wi with

(i) W1(|φ(0)|) ≤ V (t, φ), V (t, 0) = 0, V ′

(1)(t, xt) ≤ 0

and that for t ∈ [tn − 2h, tn] we have both

(ii) V (t, φ) ≤ λn

[

αW2(|φ(0)|) + βW3

(

1
h

∫ 0

−h
W4(|φ(s)|)ds

)]

+ γW5(|φ(s)|)

and

(iii) V ′

(1)(t, xt) ≤ −αW2(|x(t)|) − βW3(W4(|x(t)|)), W3 convex downward.

Then x = 0 is AS.

COR. 2. Suppose there is a continuous and locally Lipschitz functional V : [0,∞)×

CH → [0,∞), constants M > 0, α ≥ 0, β ≥ 0, γ ≥ 0 with α + β > 0, and wedges Wi such

that

(i) W1(|φ(0)|) ≤ V (t, φ) ≤ M(t + 1) ln(t + 2)
[

αW2(|φ(0)|)

+ βW3

(

1
h

∫ 0

−h
W4(|φ(s)|)ds

)

]

+ γW5(|φ(0)|)

and

(ii) V ′

(1)(t, xt) ≤ −αW2(|x(t)|) − βW3(W4(|x(t)|)), W3 convex downward.

Then x = 0 is AS.

3. Proofs. To prove Theorem 1, consider the sequence Sn = [tn − h, tn]. Let {qn}

be chosen so that r(qn) ≤ r(t) on Sn. We claim that r(qn) → 0 as n → ∞. For if

this is false, then there is a subsequence and an ε > 0 with |r(t)| ≥ ε on {Snk
} so that

V ′(t) ≤ −αW2(ε) − βW3(W4(ε)) on {Snk
} and so V (t) → −∞ as t → ∞, a contradiction.

Let Jn = [qn − h, qn] and note that tn − 2h ≤ qn − h, qn ≤ tn, and the Jn are disjoint.
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If V (t) 9 0 as t → ∞, then there is a c ≥ 0 with V (t) ≥ c. It then follows that for

large n, say n ≥ N , we have

c ≤ V (qn) ≤ λn

[

αW2(r(qn)) + βW3

(

1

h

∫ qn

qn−h

W4(r(s))ds

)]

+ W5(r(qn))

≤ (c/2) + λn

[

αW2(r(qn)) + βW3

(

1

h

∫ qn

qn−h

W4(r(s))ds

)]

.

Case 1. Suppose that for a given n ≥ N we have

(*) αW2(r(qn)) ≥ βW3

(

1

h

∫ qn

qn−h

W4(r(s))ds

)

.

Then c/(4αλn) ≤ W2(r(qn)) ≤ W2(r(t)) on Sn. Hence, on Sn we have V ′(t) ≤ −αW2(r(t))

≤ −c/(4λn) so V (tn) − V (tn − h) ≤ −ch/(4λn).

Case 2. Suppose that (*) fails for some n ≥ N . Then we have

W3

(

1
h

∫ qn

qn−h
W4(r(s))ds

)

≥ c/(4βλn). But an integration of (iii) and use of Jensen’s

inequality yields V (qn) − V (qn − h) ≤ −βh W3

(

1
h

∫ qn

qn−h
W4(r(s))ds

)

≤ −ch/4λn. Since
∑

1/λn = ∞, V (t) → −∞, a contradiction. This proves Theorem 1.

To prove Cor. 1, we note that (i) implies that x = 0 is stable. Thus, let ε < H/2

and t0 ≥ 0 be given. There is then a δ > 0 such that φ ∈ Cδ implies that |x(t, t0, φ)| < ε

for t ≥ t0 and, hence, x(t, t0, φ) exists for t ≥ t0. Let r(t) = |x(t, t0, φ)| and V (t) =

V (t, x(t, t0 , φ)). By Theorem 1, V (t) → 0 as t → ∞. Thus, |x(t, t0, φ)| → 0 as t → ∞.

Cor. 2 is proved by taking tn = t0 +2nh, λn = M(tn +1) ln(tn +2), and proceeding

as in the proof of Cor. 1.

4. Examples.

EXAMPLE 1. Let 0 < h < 1
4 and write the equation

x′′ + tx′ + tx(t − h) = 0
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as

x′ = y − x

y′ = −(t − 1)(y − x) − tx((t − h)

= −(t − 1)y + (t − 1)x + t

∫ t

t−h

x′(s)ds − tx

= −(t − 1)y − x + t

∫ t

t−h

x′(s)ds

or

x′ = y − x

y′ = −(t − 1)y − x + t

∫ t

t−h

(y(s) − x(s))ds.

Define

V = tx2 + 2y2 + 2

∫ 0

−h

∫ t

t+s

(v − s)(y(v) − x(v))2dv ds

so that

V ′ = x2 + 2tx(y − x) + 4y

[

−(t − 1)y − x + t

∫ t

t−h

(y(s) − x(s))ds

]

+ 2

∫ 0

−h

(t − s)(y(t) − x(t))2ds − 2

∫ 0

−h

t(y(t + s) − x(t + s))2ds

≤ x2 + 2txy − 2tx2 − 4(t − 1)y2 − 4xy + 4ty

∫ t

t−h

(y(s) − x(s))ds

+ 2h(t + h)(y − x)2 − 2t

∫ t

t−h

(y(s) − x(s))2ds

≤ −(2t − 1)x2 + (2t − 4)xy − 4(t − 1)y2 + 2thy2 + 2t

∫ t

t−h

(y(s) − x(s))2ds

+ 4h(t + h)(x2 + y2) − 2t

∫ t

t−h

(y(s) − x(s))2ds

≤ [−2t + 1 + t − 2 + 4h(t + h)]x2 + [−4t + 4 + t − 2 + 2th + 4h(t + h)]y2

≤ −µ(x2 + y2)

for some µ > 0 if t is large enough.
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Thus, we take γ = 0, W1 = W2 = W4, W1(r) = r2, W3(r) = r, α = β = 1
2 , and M

an appropriate constant. The conditions of Cor. 2 can then be readily satisfied.

EXAMPLE 2. Let α > h and α + h < 1. Then there is an a > 0 such that any

solution of

utt = tuxx(t − h, x) + αtuxxt, u(t, 0) = u(t, 1) = 0,

which exists on [a,∞) satisfies

∫ 1

0

(u2
x + u2

t )dx → 0 as t → ∞.

PROOF. We will define two Liapunov functionals and add them together. Write

the equation as

utt = tuxx − t

∫ t

t−h

uxxt(s, x)ds + αtuxxt

and define

V1(t) =

∫ 1

0

[

tu2
x + u2

t +

∫ 0

−h

∫ t

t+s

(v − s)u2
tx(v, x)dv ds

]

dx

along any solution which exists on [a,∞), where a is to be determined. Denote the last

term in V1 by P and formally differentiate V1 to obtain

V ′

1(t) =

∫ 1

0

{

u2
x + 2tuxuxt + 2ut

[

tuxx − t

∫ t

t−h

uxxt(s, x)ds + αtuxxt

]

+ P ′(t)

}

dx.

Upon integration by parts and use of the boundary condition we obtain

V ′

1(t) =

∫ 1

0

{u2
x − 2tuxxut + 2tuxxut

+ 2t

∫ t

t−h

utx(t, x)uxt(s, x)ds − 2αtu2
tx + P ′(t)}dx

≤
∫ 1

0

{u2
x + htu2

tx + t

∫ t

t−h

u2
xt(s, x)ds − 2αtu2

tx

+ h(t + h)u2
tx −

∫ t

t−h

tu2
tx(s, x)ds}dx

or

V ′

1(t) ≤
∫ 1

0

[u2
x − (2αt − 2ht− h2)u2

tx]dx.
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As α > h, there is an a1 > 0 and an ξ > 0 such that if t ≥ a1 then

V ′

1(t) ≤
∫ 1

0

[u2
x − tξu2

tx]dx.

Next, define

V2(t) =

∫ 1

0

[

(u + ut)
2 + 2

∫ 0

−h

∫ t

t+s

(v − s)u2
tx(v, x)dv ds

]

dx

so that

V ′

2(t) =

∫ 1

0

{

2(u + ut)

[

ut + tuxx − t

∫ t

t−h

uxxt(s, x)ds + αtuxtx

]

+ 2h(t + h)u2
tx − 2t

∫ t

t−h

u2
tx(s, x)ds

}

dx

≤
∫ 1

0

{

2uut − 2tu2
x + 2t

∫ t

t−h

ux(t, x)uxt(s, x)ds − 2αtuxutx

+ 2u2
t − 2tutxux + 2t

∫ t

t−h

utx(t, x)uxt(s, x)ds − 2αtu2
tx

+ 2h(t + h)u2
tx − 2t

∫ t

t−h

u2
tx(s, x)ds

}

dx

≤
∫ 1

0

{u2 + 3u2
t − 2tu2

x + αtu2
x + αtu2

tx + tu2
x + tu2

tx

− 2αtu2
tx + htu2

x + 2t

∫ t

t−h

u2
tx(s, x)ds + htu2

tx

+ 2h(t + h)u2
tx − 2t

∫ t

t−h

u2
tx(s, x)ds}dx

≤
∫ 1

0

{u2 − (t − αt − ht)u2
x − (αt − 3 − t − 3ht − 2h2)u2

tx}dx

since
∫ 1

0
u2

tdx ≤
∫ 1

0
u2

txdx. As α + h < 1, there are positive constants a2, A, B so that

t ≥ a2 implies V ′

2(t) ≤
∫ 1

0 [−Atu2
x +Btu2

tx]dx. Thus, there is a C > 0, a > max[a1, a2], and

µ > 0 so that if t ≥ a then

V (t) = V1(t) + CV2(t)

satisfies

V ′(t) ≤ −µ

∫ 1

0

[u2
x + u2

tx]dx =: −2µr(t).
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We may then take W2 = W3 = W4 with W2(s) = ks for some k > 0. Then let tn = 2nh

and λn = 2Knh for some K > 0. Also, take γ = 0. By Theorem 1 we see that V (t) → 0

as t → ∞; in particular,
∫ 1

0

(u2
x + u2

t )dx → 0 as t → ∞.

REMARK. A second Liouville transformation (cf. [3; p. 65]) will map the equation

of Example 2 into a form

wtt = F (t) + αwxxt

where F contains a delay, and, hence, an initial function. An integration will then yield

wt = H(t) + αwxx

which is a forced heat equation and can be readily solved by the variation of parameters

formula and the method of steps. The details require a degree of smoothness in the initial

functions. Thus, existence theory can be established; but, again, our bounds are a priori.

This problem is considered in [7] with r = 0. In some sense uxxt introduces a memory;

when r > 0 the memory is explicit.

5. Relation to the literature. Theorem K1 was crippled by the condition

(iii) |F (t, φ) ≤ M if ‖φ‖ < H;

yet, it was the standard on UAS until 1977, as may be seen in Hale [9; p. 105]. When

condition (i) in Theorem K1 is changed to

(i)′ W1(|φ(0)|) ≤ V (t, φ), V (t, 0) = 0,

then the conclusion is AS and that, along with Theorem K2, remained the standard for

many years. Investigators have been quite interested in reducing the boundedness condition

on F and the upper bound on V .

Busenberg and Cooke [6] consider systems of the form

x′ = F (t, xt) − G(t, x(t))
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where it is assumed that for given positive numbers η and γ, there exists T > 0 such that

∫ t+T

t

|F (s, φ)|ds < η for all t ≥ 0 and all ‖φ‖ < γ,

so long as xT DG(t, x) ≥ 0 for some positive definite matrix D. These conditions can

replace (iii) of Theorem K1; in effect, F need not be bounded, but must be bounded on

average.

Hatvani and the author [4] avoid (iii) of Theorem K1 by asking for an L1-norm of

xt in the derivative of V . But still a bound of the type in Theorem K2, condition (i), is

required.

Makay [13] shows by example that it is unlikely that condition (iii) of Theorem K1

can be entirely eliminated.

Becker, Zhang, and the author [1] continue the work in [4] (see p. 156) and give an

example in which the upper bound on V can grow of order
√

t.

Lakshmikantham, Matrosov, and Sivasundaram (for example) focus on relations of

the form V ′(t) ≤ f(t, V (t)) with a view to showing that V (t) → 0 whenever solutions of

r′ = f(t, r) tend to zero. Such work does not necessarily concern itself with the relations

displayed here. One frequently finds that by carefully modifying the Liapunov functionals

in the examples, then suitable differential inequalities can be obtained. But it is very

unclear to us how to deal with Theorem 1 itself as a differential inequality.

At base, our work stemmed from a conjecture derived from a paper of Smith [15]

concerning

x′′ + a(t)x′ + x = 0, a(t) ≥ a0 > 0,

in which he showed that solutions tend to zero provided that a(t) behaves well and does

not grow much faster than t ln t. Moreover, his work was sharp in a certain sense. Makay

and the author [5] showed that a similar bound could replace (iii) in Theorem K1. Since

[3; p. 270] suggested that the bound on F could be replaced by a similar bound on ∂V/∂t,

Theorem 1 became a natural conjecture. A significant bonus was obtained when it was
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noted that Theorem 1 had natural applications to partial differential equations, while

Theorem K1 does not extend in the way we would like. For example, in Example 2 we

have V ′ ≤ 0 and so V is bounded; but the bound on V translates into very little in terms

of bounds on the variables in the equation. Hale [8] formally advanced Theorem K1 (and

extensions) to PDEs. Boundedness conditions in Rn translate into complex compactness

conditions in Sobolev spaces, leading one to essentially autonomous systems. Nothing of

the kind is needed when we focus on bounds on V instead of on F .
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