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Abstract. The problem is to show that (1) V (t, x) = S(t,
∫ t
0 H(t, s, x(s)) ds) has a solution

where V defines a contraction, Ṽ , and S defines a compact map, S̃. A fixed point of Pϕ =

S̃ϕ + (I − Ṽ )ϕ would solve the problem. Such equations arise naturally in the search for a
solution of f(t, x) = 0 where f(0, 0) = 0, but ∂f(0, 0)/∂x = 0 so that the standard conditions

of the implicit function theorem fail. Now Pϕ = S̃ϕ + (I − Ṽ )ϕ would be in the form for

a classical fixed point theorem of Krasnoselskii if I − Ṽ were a contraction. But I − Ṽ fails

to be a contraction for precisely the same reasons that the implicit function theorem fails.
We verify that I − Ṽ has enough properties that an extension of Krasnoselskii’s theorem

still holds and, hence, (1) has a solution. This substantially improves the classical implicit

function theorem and proves that a general class of integral equations has a solution.

1. Introduction. Motivated by a problem in implicit function theory, we formulate an

existence problem in integral equations. Two fixed point theorems are proved enabling us

to solve the integral equation. The work can be introduced in three subsections.

(a) The Problem: An Integral Equation. Equations of the form

(1) V (t, x) = S

(
t,

∫ t

0

H(t, s, x(s)) ds
)

arise in a natural way. It is supposed that there is an α > 0 such that V , S : [−α, α] ×
[−α, α] → R and H : [−α, α]× [−α, α]× [−α, α] → R are continuous, S(0, 0) = V (t, 0) = 0.

The problem is to find a β > 0 and a function ϕ : [−β, β] → R, ϕ(0) = 0, and x = ϕ(t)

satisfies (1). By changes of variable, many equations will fit this form. General theory for

(1) when V (t, x) = x and S is linear is found in Corduneanu [1].
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In the present problem V will define a contraction Ṽ on the complete metric space of

continuous ψ : [−β, β] → R with the supremum metric, while S will define a compact

mapping, S̃. Thus, we will seek a fixed point of the mapping Pϕ = S̃ϕ + (I − Ṽ )ϕ. We

are using the terminology of Smart [8; p. 25] to say that a mapping is compact if it maps

a set M in a topological space X into a compact subset of X .

(b) Motivation: Implicit functions. The simplest example concerns the standard

implicit function theorem. Given the scalar equation

(2) f(t, x) = 0 with f(0, 0) = 0,

the classical problem is to find a β > 0 and a continuous function ϕ : [−β, β] → R,

ϕ(0) = 0, and f(t, ϕ(t)) ≡ 0; in other words, can we solve f(t, x) = 0 for x = ϕ(t)?

There are three classical attacks on the problem: one can use techniques of advanced

calculus (cf. Taylor and Mann [9; pp. 225–232]), fixed point theory (cf. Smart [8; p. 6]),

and differential equations (cf. Hartman [2; p. 5, 11–12]), under the common assumption

that

(3)
∂f

∂x
(0, 0) �= 0.

The intuitive reason for (3) is clear. If f is differentiable, then it can be approximated

arbitrarily well by a linear function near (0, 0) so that z = f(t, x) can be approximated by

a plane intersecting the plane z = 0. The precise statement is given as follows from Smart

[8; p. 6]; an n-dimensional analog with parameters can be found in Hartman [2; p. 5].

Theorem (Implicit function). Let N be a neighborhood of (0, 0) in which f : N → R

is continuous, ∂f/∂x exists in N , is continuous at (0, 0), ∂f(0, 0)/∂x �= 0, and f(0, 0) = 0.

Then there is a unique continuous function ϕ with f(t, ϕ(t)) = 0.

Condition (3) allows one to construct a contraction mapping on a complete metric space

with a fixed point ϕ. In the same way, when (3) holds we can reverse the following steps

to obtain ϕ. We have from (2) that

(4)
∂f

∂t
(t, x) +

∂f(t, x)
∂x

dx

dt
= 0
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and for (t, x) near (0, 0), then

(5)
dx

dt
= −(∂f(t, x)/∂t)/(∂f(t, x)/∂x) =: G(t, x)

so with x(0) = 0 we obtain

(6) x(t) =
∫ t

0

G(s, x(s)) ds.

If G is continuous, then (6) has a solution ϕ by the Peano existence theorem (cf. Hartman

[2; p. 10] or Smart [8; p. 44]).

On the other hand, if (3) fails then we write (4) as

(7) P (t, x)x′ = F (t, x), P (0, 0) = 0,

where we imphasize that P is not necessarily ∂f/∂x. We can invert that differential

operator in (7) by writing

∫ x

0

Pt(t, s) ds+ P (t, x)x′ = F (t, x) +
∫ x

0

Pt(t, s) ds

or
d

dt

∫ x

0

P (t, s) ds = F (t, x) +
∫ x

0

Pt(t, s) ds

and so an integration and use of x(0) = 0 yields

(8)
∫ x

0

P (t, s) ds =
∫ t

0

[
F (s, x(s)) +

∫ x(s)

0

Pt(s, v) dv
]
ds

which is a form of (1) with V (t, 0) = 0.

If we can prove that (8) has a solution and reverse the steps from (8) back to (2), then

the problem is solved.

The components of (8) should be no surprise. Krasnoselskii (cf. Smart [8; p. 31])

studied Schauder’s [6] work on partial differential equations and noticed that inversion of

a perturbed differential operator yields a contraction and compact map.
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Now our problem began with (2) and we should not neglect a chance which presents

itself here. Even though P (0, 0) = 0, frequently (8) can be inverted by inspection so that

(8) results in

(9) x(t) = S

(
t,

∫ t

0

H(s, x(s)) ds
)
, S(0, 0) = 0,

which is readily solved by means of Schauder’s theorem since S defines a compact mapping.

A simple example occurs when P (t, x) = (t−x)2 and this type is treated in our subsequent

Example 1.

But the general form of (8) can be formidable. It leads us to two fixed point theorems.

(c) A solution: Fixed Point Theorems. It turns out that a fixed point theorem of

Krasnoselskii [3; p. 370] (cf. Smart [8; p. 31]) readily applies to (1) when
∫ t

0
H(t, s, x(s)) ds

defines a compact map and when x− V (t, x) defines a contraction mapping. But it is the

very property that ∂f(0, 0)/∂x = 0 which frequently causes x− V (t, x) to fail to define a

contraction mapping.

The focus of the solution of (1) is then on how much we can weaken a contraction and still

complete the details of Krasnoselskii’s proof. In this paper we define a weaker contraction

property on a mapping B. It then turns out that (I−B) is a homeomorphism. A translate

of B still has a fixed point. Thus, Krasnoselskii’s theorem still holds. This allows us to

finish the problem and show that (1) has a solution. Two simple, but instructive examples

are given.

2. Two fixed point theorems. If ∂V (t, x)/∂x = 0 at (0, 0) and is continuous, then there

is a γ < 1 with |∂V (t, x)/∂x| ≤ γ for (t, x) small. Thus, V will define a contraction mapping

Ṽ on the complete metric space (X, ρ) of continuous functions ϕ : [−α, α] → R with

ρ(ϕ, ψ) = sup
t∈[−α,α]

|ϕ(t) − ψ(t)| for α, ϕ, and ψ small. We will have ρ(Ṽ ϕ, Ṽ ψ) ≤ γρ(ϕ, ψ)

where (Ṽ ϕ)(t) = V (t, ϕ(t)) for −α ≤ t ≤ α. Thus, the left-hand-side of (1) will define a

contraction mapping, while the right-hand-side will map bounded sets into compact sets.

We follow (as mentioned earlier) Smart’s terminology and say that a mapping of a set into
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a compact set is a compact map. We think of (1) as (Pϕ)(t) = (Aϕ)(t) − (Ṽ ϕ)(t) + ϕ(t).

A fixed point will solve (1). Thus, we have a compact mapping A and a mapping B =

I − Ṽ . Now B is not generally a contraction if ∂V (0, 0)/∂x = 0; but if ∂V/∂x > 0 for

(t, x) �= (0, 0), then B is a shrinking map. (If ∂V/∂x < 0 for (t, x) �= (0, 0), then use

Pϕ = −Aϕ+ Ṽ ϕ+ Iϕ.) In fact, it may be much more.

Definition. Let (M, ρ) be a metric space and B : M → M . B is said to be a large

contraction if ϕ, ψ ∈M , with ϕ �= ψ then ρ(Bϕ,Bψ) < ρ(ϕ, ψ) and if ∀ε > 0 ∃δ < 1 such

that [ϕ, ψ ∈M , ρ(ϕ, ψ) ≥ ε] ⇒ ρ(Bϕ,Bψ) ≤ δρ(ϕ, ψ).

Theorem 1. Let (M, ρ) be a complete metric space and B be a large contraction.

Suppose there is an x ∈M and an L > 0, such that ρ(x,Bnx) ≤ L for all n ≥ 1. Then B

has a unique fixed point in M .

Proof. For that x ∈ M , consider {Bnx}. If this is a Cauchy sequence, then the stan-

dard argument (cf. Smart [8; pp. 1–3]) shows that the limit is a fixed point. By way of

contradiction, if {Bnx} is not a Cauchy sequence, then ∃ ε > 0, ∃ {Nk} ↑ ∞, ∃ nk > Nk,

∃ mk > Nk, mk > nk, with ρ(Bmkx,Bnkx) ≥ ε. Thus,

ε ≤ ρ(Bmkx,Bnkx) ≤ ρ(Bmk−1x,Bnk−1x)

≤ · · · ≤ ρ(x,Bmk−nkx);

since B is a large contraction, for this ε > 0 there is a δ < 1 with

ε ≤ ρ(Bmkx,Bnkx) ≤ δρ(Bmk−1x,Bnk−1x)

≤ · · · ≤ δnkρ(x,Bmk−nkx)

≤ δnkL,

a contradiction for large nk since δ < 1 and ε > 0. This completes the proof.

Remark. Theorem 1 relates to an open question (cf. Smart [8; pp. 39]). Does a shrinking

map of the unit ball have a fixed point? It does if it is a large contraction.
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Lemma. If (S, ‖ · ‖) is a normed space, if X ⊂ S, if B : X → S is a large contraction,

then (I −B) is a homeomorphism of X onto (I −B)X.

Proof. Clearly, I −B is continuous. To see that (I −B) is 1 − 1, if x �= y, then

‖(I −B)x− (I −B)y‖ ≥ ‖x− y‖ − ‖Bx−By‖

> ‖x− y‖ − ‖x− y‖ = 0.

Hence, (I −B) is 1 − 1 and (I −B)−1 exists.

Suppose that (I −B)−1 is not continuous. Then ∃ (I −B)y and (I −B)xn → (I −B)y

but xn �→ y. Now for each ε > 0 ∃ N such that n ≥ N ⇒

(∗) ε ≥ ‖(I −B)xn − (I −B)y‖ ≥ ‖xn − y‖ − ‖By −Bxn‖.

Since xn �→ y ∃ ε0 > 0 and {xnk
} with ‖y − xnk

‖ ≥ ε0; as B is a large contraction there

is a δ < 1 with ‖By −Bxnk
‖ ≤ δ‖y − xnk

‖. Thus, from (∗) we have

ε ≥ ‖(I −B)xnk
− (I −B)y‖ ≥

‖xnk
− y‖ − δ‖xnk

− y‖

= (1 − δ)‖xnk
− y‖

≥ (1 − δ)ε0.

But ε0 is fixed, δ < 1, and a contradiction occurs as ε → 0; that is, as ε → 0, nk → ∞,

but ε0 remains fixed. This completes the proof. �

Theorem 2. Let (S, ‖ · ‖) be a Banach space, M a closed, bounded, convex, nonempty

subset of S. Suppose that A, B : M →M and that

(i) x, y ∈M ⇒ Ax+By ∈M,

(ii) A is continuous and AM is contained in a compact subset of M,
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(iii) B is a large contraction.

Then ∃ y ∈M with Ay +By = y.

Proof. For each fixed y ∈ M the mapping Hz = Bz + Ay is a large contraction on

M with unique fixed point z (since M is bounded the L is assured in Theorem 1) so

that z = Bz + Ay has a unique solution z. Thus, (I − B)z = Ay and by the lemma

Py := (I − B)−1Ay is a continuous mapping of M into M . Now AM is contained in a

compact subset of M and (I − B)−1 is a continuous mapping of AM into M ; it is then

well-known (cf. Kreyszig [4; p. 412 and 656]) that (I−B)−1AM is contained in a compact

subset of M . By Schauder’s second theorem (cf. Smart [8; p. 25]) there is a fixed point

y = (I −B)−1Ay or y = Ay +By, as required.

Theorem 3. Let α > 0, V , S : [−α, α]× [−α, α] → R, H : [−α, α]× [−α, α]× [−α, α] →
R be continuous, S(0, 0) = V (t, 0) = 0. Suppose that (X, ‖ · ‖) is the Banach space of

continuous ϕ : [−β, β] → R, with the supremum norm, 0 < β < α, M = {ϕ ∈ X |ϕ(0) =

0, ‖ϕ‖ ≤ α}, and that (Bϕ)(t) := ϕ(t)−V (t, ϕ(t)) defines a large contraction on M . Then

(1) has a solution in M .

Proof. Note that B(0) = I(0) − Ṽ (0) = 0 where V (t, ϕ) defines a mapping Ṽ . Next, if

ϕ ∈M with ‖ϕ‖ ≤ α/2 then ‖Bϕ‖ = ‖Bϕ−B0‖ ≤ ‖ϕ− 0‖ ≤ α/2. If α
2
≤ ‖ϕ‖ ≤ α, there

exists δ < 1 with ‖Bϕ‖ = ‖Bϕ−B0‖ ≤ δ‖ϕ‖ ≤ δα. Hence ‖BM‖ ≤ max[δα, α/2] =: γ <

α.

Now H is continuous on its compact domain so there is a K > 0 such that ϕ ∈ M

implies that |H(t, s, ϕ(s))| ≤ K for |t|, |s| ≤ α. Hence, |t| ≤ β < α and ϕ ∈ M ⇒
| ∫ t

0
H(t, s, ϕ(s)) ds| ≤ K|t| ≤ Kβ. Thus, there is a β > 0 such that [ϕ ∈ M, |t| ≤ β] ⇒

|S(t,
∫ t

0
H(t, s, ϕ(s)) ds)| ≤ α− γ.

With this choice of β, [ϕ, ψ ∈M, |t| ≤ β] ⇒ |S(t,
∫ t

0
H(t, s, ψ(s)) ds) + (Bϕ)(t)| ≤ α. If

we define a mapping A : M → M by (Aϕ)(t) = S(t,
∫ t

0
H(t, s, ϕ(s)) ds), then ϕ, ψ ∈ M

imply Aϕ+Bψ ∈M .
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Now we show that A maps M into a compact subset; in particular, we show that AM

is an equicontinuous set. First, S is uniformly continuous so for a given ε > 0 there is a

δ > 0 such that |t1 − t2| < δ,

∣∣∣∣
∫ t1

0

H(t1, s, ϕ(s)) ds−
∫ t2

0

H(t2, s, ϕ(s)) ds
∣∣∣∣ < δ

imply that

∣∣∣∣S
(
t1,

∫ t1

0

H(t1, s, ϕ(s)) ds
)
− S

(
t2,

∫ t2

0

H(t2, s, ϕ(s)) ds
)∣∣∣∣ < ε.

Let ϕ ∈ M be arbitrary, ε > 0 be given, and δ be the one just mentioned. Suppose that

−β ≤ t1 < t2 ≤ β, |t2 − t1| < δ. Then

∣∣∣∣
∫ t1

0

H(t1, s, ϕ(s)) ds−
∫ t2

0

H(t2, s, ϕ(s) ds
∣∣∣∣

=
∣∣∣∣
∫ t1

0

[H(t1, s, ϕ(s))−H(t2, s, ϕ(s))] ds−
∫ t2

t1

H(t2, s, ϕ(s)) ds
∣∣∣∣

≤
∫ t1

0

|H(t1, s, ϕ(s))−H(t2, s, ϕ(s))|ds+ |t2 − t1|K,

This last quantity can be bounded by δ if |t1 − t2| < δ∗ for some δ∗ > 0 by the uniform

continuity of H. Hence, AM is equicontinuous. Application of Theorem 2 yields a fixed

point ψ. Note that ϕ ∈ M implies (Aϕ)(0) = 0 and (Bϕ)(0) = ϕ(0) − V (0, ϕ(0)) = 0.

Hence, the fixed point ψ satisfies (1) and ψ(0) = 0. This completes the proof. �

Remark. While it is not a corollary, it is still clear from the proof that when V (t, x) = x,

then the integral equation (1) has a solution under the conditions of Theorem 3 on H and

S. We simply show that A is a compact map and use Schauder’s Theorem.

We now give two related examples for which the classical implicit function theorem fails.

The first example utilitzes this last remark and fulfills the promise made after (9). The

second illustrates verification of a large contraction.

Example 1. Consider the equations f(t, x) = 0, f(0, 0) = 0, and suppose that ∂f
∂xx

′ +

∂f
∂t = 0 can be written as 3(x−t)2x′ = F (t, x) with F (t, x) continuous so that the conditions
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for the implicit function theorem fail at (0, 0). We invert the differential operator by writing

−6
∫ x

0

(s− t) ds+ 3(x− t)2x′

= F (t, x) − 3(x− t)2 + 3t2

=: G(t, x)

or
d

dt

∫ x

0

3(s− t)2 ds = G(t, x)

so that ∫ x

0

3(s− t)2 ds =
∫ t

0

G(s, x(s)) ds

or

x = t+
{
−t3 +

∫ t

0

G(s, x(s)) ds
}1/3

which is a form of (1) with solution ϕ(t), ϕ(0) = 0.

Example 2. If V (x) = x3 and if (Bϕ)(t) = ϕ(t) − ϕ3(t), then B is a large contraction

of the set M of Theorem 3.

Proof. In the following computation, ϕ, ψ are evaluated at each t. We have D :=
∣∣Bϕ−

Bψ
∣∣ =

∣∣ϕ− ϕ3 − ψ + ψ3
∣∣ =

∣∣ϕ− ψ
∣∣ ∣∣1 − (ϕ2 + ϕψ + ψ2)

∣∣. Then for

ε2 ≤ |ϕ− ψ|2 = ϕ2 − 2ϕψ + ψ2 ≤ 2(ϕ2 + ψ2)

and for ϕ2 + ψ2 < 1 we have

D ≤ ∣∣ϕ− ψ
∣∣ [1 + |ϕψ| − (ϕ2 + ψ2)

]

≤ ∣∣ϕ− ψ
∣∣ [1 +

ϕ2 + ψ2

2
− (

ϕ2 + ψ2
)]

=
∣∣ϕ− ψ

∣∣ [1 − ϕ2 + ψ2

2

]
≤ ∣∣ϕ− ψ

∣∣[1 − ε2

4

]
=:

∣∣ϕ− ψ
∣∣δ.
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3. Concluding remarks. The mapping B operates on the closed α-ball. Smart lists

the open problem [8; p. 39] asking if B a shrinking map will yield a unique fixed point.

That is needed in the proof of Theorem 2 where we need to solve z = Bz + Ay. But the

crucial point is that the lemma is needed showing (I−B)−1 continuous. If B is a shrinking

map then (I −B)−1 will exist. But continuity is the big question. Rudin [5; p. 78] shows

that if the domain is compact and (I − B) is 1 − 1 then (I − B)−1 is continuous. But

we can not ask that M be the compact for the theorem would then be a poor version of

Schauder’s first theorem. Rudin [5; p. 80] gives a counterexample showing that (I −B)−1

may be discontinuous if M is not compact. A colleague, R. Kirk, privately communicated

a similar example on the closed unit ball in C[0, 1] with the supremum norm. In both of

these examples (I − B) would lose its 1 − 1 property if the domain were extended to its

closure in some topology. In Kirk’s example, the closure was pointwise convergence.

The property of being 1 − 1 is algebraic, while continuity is topological. A shrinking

map B makes (I − B) clearly 1 − 1. A reasonable conjecture might begin by trying to

prove Krasnoselskii’s theorem when B is a shrinking map, M is a closed ball, the closure

is taken in a different topology than that of the Banach space.

There is now an enormous amount known about nonexpansive maps. The book edited

by Sine [7] contains numerous papers with extensive reference lists. The paper by W.A.

Kirk in Sine [7] contains several conditions under which Krasnoselskii’s theorem might be

proved if continuity of (I −B)−1 can be independently verified.

Krasnoselskii’s observation that inversion of a perturbed differential operator yields a

compact map and a contraction is true in many contexts. Extensions of his result have

wide application.
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