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1. Introduction. The past ([1–3], [5], [7; pp. 133–6, 154–8], [11], [15]), the present ([4],

[6], [12–13]), and the future ([8–9], [16–17]) literature on delay equations is replete with

attempts to show that all solutions of variants of

x′(t) = −a(t)x(t) + g(t, x(t − r(t)))

tend to zero as t → ∞. Most of this work uses Liapunov functions or functionals V and

two problems are always encountered which we attempt to overcome.

1) We need a(t) ≥ 0 and a(t) ≥ a0 > 0 on intervals Ij with ∪Ij having infinite measure.

2) We need a(t) and g(t, x) bounded for x bounded so that if |x(tn)| ≥ b > 0, then

|x(t)| ≥ b/2 for tn ≤ t ≤ tn + α for some α > 0. This allows us to integrate the

derivative of the Liapunov function, V , over ∪Ij and drive V to 0.

Indeed, this problem has been a main driving force behind the development of Lia-

punov’s direct method. The cited literature focuses on reducing 2), with varying success.

But a(t) ≥ 0 is almost always required.

In this note we consider

(1) x′(t) = −a(t)h(x(t))x(t) + g(t, x(t − r(t))) + f(t)

with a view to proving boundedness, stability, and the existence of periodic solutions.

Instead of using Liapunov’s direct method, we transform (1) to an integral equation having
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the rather curious property that it is of delay type: x(t) depends on x(s) for s ≤ t − r(t).

Thus, when r(t) ≥ r∗ > 0, then the integral equation is actually a type of difference

equation involving an integral of the past.

In this way, we employ a contraction type argument and avoid both problems 1) and

2) when h(x) = 1, and avoid some of 1) and all of 2) when h(x) ≥ h1 > 0. In the former

case we are able to let lim supt→∞ a(t) = +∞ and lim inft→∞ a(t) = −∞. We apply the

theory to show that all solutions of

x′(t) = (4t sin t2 − 2t)x(t) + g(t, x(t − r(t)))

tend to zero when g has a linear bound.

The results are motivated by (1) and stated for that equation but they clearly will apply

to general integral equations of the forms of (1a), (12), and (17).

2. Periodic solutions: the half-linear case. Suppose there is a T > 0 with

(2) a(t + T ) = a(t), r(t + T ) = r(t), g(t + T, x) = g(t, x), and f(t + T ) = f(t)

for all t ∈ R. Let h(x) = 1 and write (1) as

(x(t)e
R

t

0
a(s)ds)′ = e

R

t

0
a(s) ds[g(t, x(t − r(t))) + f(t)]

so that upon integration from t − T to t we have

x(t) = x(t − T )e−
R

t

t−T
a(s)ds

+

∫ t

t−T

e−
R

t

u
a(s) ds[g(u, x(u − r(u))) + f(u)] du(1a)

where we now ask that
∫ T

0 a(s)ds > 0. Then

(3) exp[−

∫ t

t−T

a(s)ds] =: C < 1.
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Theorem 1. Let (2) and (3) hold, let a, g, r, and f be continuous, and let h(x) = 1.

Suppose there are positive constants L, M , and R with the property that if x is a T -periodic

function with |x(t)| ≤ M then

(4)

∣

∣

∣

∣

∫ t

t−T

e−
R

t

u
a(s)dsg(u, x(u − r(u)))du

∣

∣

∣

∣

≤ RM,

(5)

∣

∣

∣

∣

∫ t

t−T

e−
R

t

u
a(s) dsf(u)du

∣

∣

∣

∣

≤ L,

and

(6) M(C + R) + L ≤ M.

Then (1) has a T -periodic solution.

Proof. Let (PT , ‖ ·‖) be the Banach space of continuous T -periodic scalar functions with

the supremum norm.

Define H : PT → PT by

(Hϕ)(t) = ϕ(t − T )C +

∫ t

t−T

e−
R

t

u
a(s) ds[g(u, ϕ(u − r(u))) + f(u)] du

=: (Bϕ)(t) + (Aϕ)(t).(7)

As C < 1, B is a contraction and A maps bounded sets into compact sets by Ascoli’s

theorem. If S = {ϕ ∈ PT |‖ϕ‖ ≤ M} and ϕ ∈ S, then (4) - (6) yield |(Hϕ)(t)| ≤

MC +RM +L ≤ M . Clearly, H is continuous. As the bounds on Bϕ and Aϕ depend only

on the norm of ϕ, these are precisely the conditions required in Krasnoselskii’s theorem

(cf. Smart [10; p. 31] to ensure that there is a fixed point in PT . That fixed point solves

(1) and (1a). This completes the proof.

We could write (7) as

(Hϕ)(t) = {1/(1 −C)}

∫ t

t−T

[g(u, ϕ(u − r(u))) + f(u)] exp[−

∫ t

u

a(s)ds] du
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and use Schauder’s fixed point theorem.

REMARK 1. If a(t) ≡ a > 0, if h(x) = 1, if f(t) ≡ 0, and if g(t, x) = b(t)x, then for

any T > 0 we have exp[−
t
∫

t−T

a(s)ds] = e−aT =: C < 1 and for |x(t)| ≤ M , then

{

1/(1 − C)

}
∫ t

t−T

g(u, x(u − r(u))) exp[−

∫ t

u

a(s)ds] du

∣

∣

∣

∣

≤

{

M/(1 −C)

}
∫ t

t−T

|b(u)| exp[−a(t − u)] du

(and if ‖ · ‖ denotes a supremum)

≤ {M‖b‖/a(1 −C)} exp[−a(t − u)]

∣

∣

∣

∣

t

t−T

= {M‖b‖/a(1 −C)}[1 − e−aT ] = M‖b‖/a < M

if ‖b‖ < a. This is exactly the classical condition for asymptotic stability using a Liapunov

functional (cf. Hale and Lunel [7; p. 135]).

This leads us to the next section. We want to show that when f(t) = 0, then (4), (5),

and (6) imply that x(t) tends to zero.

3. Attractors: the half-linear case. We now drop all periodic assumptions. Let 0 ≤

r(t) ≤ r0 and suppose there is an M0 ≥ 0 and a continuous function λ : [M0,∞) → [0,∞)

with

(8) λ(u) < u for u > M0,

together with positive constants α, β, J , M > M0, and R such that if |x(s)| ≤ M for

t − r0 − J ≤ s ≤ t − r(t) then

(9)

∣

∣

∣

∣

∫ t

t−J

g(u, x(u − r(u))) exp[−

∫ t

u

a(s)ds] du

∣

∣

∣

∣

≤ RM,

(10) exp[−

∫ t

t−J

a(s)ds] ≤ α,

∣

∣

∣

∣

∫ t

t−J

f(u) exp[−

∫ t

u

a(s)ds] du

∣

∣

∣

∣

≤ β,
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and

(11) (α + R)M + β < λ(M).

REMARK 2. At first, (11) seems very restrictive; but the reader is urged to reserve

judgment until after studying Examples 1, 2, and their accompanying remarks. Our work

is directed at large a(t). Thus, we first make J very small to find a suitable R; then we

utilize a later Remark 5 to make t large and find a suitably small α. In Example 2 we

reverse the idea.

Denote the composition of λ k times by λk. It should be noted here that a(t) is

not assumed to be bounded in any way. On the other hand, (9) essentially asks that

|g(t, x)| ≤ µ(t)|x| for some function µ.

Theorem 2. Let h(x) = 1, (8) – (11) hold for each M > M0, and suppose that

λkM → M0 as k → ∞ for all M > M0. Then each solution of (1) satisfies |x(t)| < M0 +1

for all large t.

Proof. For a given t0 ∈ R and continuous initial function ϕ : [t0 − r0, t0] → R, there

is a solution x(t) = x(t, t0, ϕ) with x(t) = ϕ(t) on [t0 − r0, t0]. We can use (9) to show

that x(t) can be continued for all future time. Indeed, the only way in which solutions

of (1) can fail to be defined past some L is for lim supt→L− |x(t)| = +∞. But in (12) if

‖xt‖ = sups≤t |x(s)|, then

|x(t)| ≤ C‖xt‖ + R‖xt‖ + β ≤ λ(‖xt‖) < ‖xt‖

for ‖xt‖ > M0. Thus, whenever |x(t)| = ‖xt‖ > M0 we have a contradiction.

Fix x(t) on [t0,∞) and from considerations in Section 2 write

x(t) = x(t − J) exp[−

∫ t

t−J

a(s)ds]

+

∫ t

t−J

[g(u, x(u − r(u))) + f(u)] exp[−

∫ t

u

a(s)ds] du.(12)
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Using (9) – (11) estimate x(t) by

(13) |x(t)| ≤ α|x(t − J)| + β +

∣

∣

∣

∣

∫ t

t−J

e−
R

t

u
a(s) dsg(u, x(u − r(u)))du

∣

∣

∣

∣

.

For t1 > J + r0 + t0, consider the intervals

Ii = [ti, ti+1] = [t1 + (i − 1)(J + r0), t1 + i(J + r0)]

for i = 1, 2, . . . . Now there is an M > M0 with |x(t)| < M for t < t1. Using (9), (11),

and (13) notice that:

i) As long as t ≥ t1 and |x(s)| < M for s ≤ t then

|x(t)| ≤ αM + RM + β < λ(M) < M.

ii) Hence, |x(t)| < λ(M) for all t ≥ t1.

Inductively, |x(t)| < λkM on Ik+1 since x(t) depends only on x(s) for t−J−r0 ≤ s < t.

This completes the proof. �

REMARK 3. If f(t) = 0, then β = 0; thus in (11) we have λ(M) = (α + R)M so

λkM = (α + R)kM and |x(t)| ≤ (α + R)kM on Ik. If we ask that f(t) = 0, that (9) holds

for each M > 0, and that −
∫ t

u
a(s)ds is bounded above for u < t, then we can prove that

the zero solution is uniformly asymptotically stable.

REMARK 4. If (9) holds for select M > 0, then we can say that any solution x(t) with

|x(t)| < M for t < t1 (see the proof of Theorem 2), satisfies |x(t)| < λ(M) for t ≥ t1. If

g(t, 0) = 0 and g has a linear bound, then for a sufficiently small initial function we can

show that

|x(t)| < M for t < t1; this yields |x(t)| < M for t ≥ t1.

REMARK 5. Conditions (8) – (10) need only hold for t ≥ t∗, some t∗ ∈ R; since

solutions can be defined for all future time, we begin our arguments to the right of t∗.

EXAMPLE 1. Suppose that 0 ≤ r(t) ≤ r0 and |g(t, x)| ≤ µ|x| for µ > 0 and r0 > 0.

Then every solution of

(14) x′(t) = (4t sin t2 − 2t)x(t) + g(t, x(t − r(t)))

6



tends to zero as t → ∞.

Proof. First, find J > 0 with µe4J < 1/2. Then, take t so large, say t ≥ t∗ + r0, that

e4−2tJ+J2

≤ C < 1/2. For such t we now have

exp

∫ t

u

(4s sin s2 − 2s)ds =

exp[−2 cos t2 − t2 + 2 cos u2 + u2] ≤

e4 for u ≤ t.

Next, for those same t we can satisfy (10) since

exp

∫ t

t−J

(4s sin s2 − 2s)ds =

exp[−2 cos t2 − t2 + 2 cos(t − J)2 + (t − J)2] ≤

exp[4− 2tJ + J2] ≤ C < 1/2,

so (10) holds. Taking |x(t)| ≤ M we see that (9) is satisfied since

∣

∣

∣

∣

∫ t

t−J

g(u, x(u − r(u))) exp[−

∫ t

u

a(s)ds] du

∣

∣

∣

∣

≤ µMe4J < M/2,

and the conditions of Theorem 2 with Remark 5 are satisfied.

4. The nonlinear equation. We now consider

(15) x′(t) = −a(t)h(x(t))x(t) + g(t, x(t − r(t))) + f(t)

in which a, f , g, h, and r are continuous and there are positive constants α, h1, r0, and J

with

(16) a(t) ≥ 0, h(x) ≥ h1, 0 ≤ r(t) ≤ r0, exp[−h1

∫ t

t−J

a(s)ds] ≤ α.

For any J > 0 we have

x(t) = x(t − J) exp[−

∫ t

t−J

a(s)h(x(s)) ds](17)

+

∫ t

t−J

[g(u, x(u − r(u))) + f(u)] exp[−

∫ t

u

a(s)h(x(s))ds] du.
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Let M0 ≥ 0 and λ : [M0,∞) → [0,∞) be a continuous function with λ(M) < M for

M > M0. Assume that there are positive constants L, M ≥ M0, R such that if |x(s)| ≤ M

for t − r0 − J ≤ s ≤ t − r(t) then

(18)

∫ t

t−J

|g(u, x(u − r(u)))| exp[−h1

∫ t

u

a(s)ds]du ≤ RM,

(19)

∫ t

t−J

|f(u)| exp[−h1

∫ t

u

a(s)ds]du ≤ β,

and

(20) (α + R)M + β < λ(M).

Since the stable part, −a(t)h(x)x, is nonlinear it is an unpleasant surprise to need

(21) |g(t, x)| ≤ µ(t)|x|

for some continuous function µ. But something like this is needed unless we are prepared

to ask that a(t) ≥ a0 > 0. For if a(t) = 0 on an arbitrarily short interval and if r(t) is

zero at some point in that same interval, then unrestricted growth of g will yield solutions

with finite escape time. The proof of the next result is identical to that of Theorem 2.

That proof would fail at the point where we showed that no solution has finite escape time

unless we have a strong growth condition on g or a sign condition.

Theorem 3. Let (16) – (21) hold for each M ≥ M0 and suppose that λkM → M0 as

k → ∞ for each M > M0. Then every solution of (15) satisfies |x(t)| < M0 + ε for all

large t and each ε > 0.

REMARK 6. The next example is completely different from Example 1 and indicates

the versatility of the theorem. Our first estimate yields R independent of J ; we take µ to

be constant for brevity, but a review of the proof shows that it works if |µ(t)| ≤ ka(t), 0 <

k < 1. We use a large function for a(t) for simplicity; but a review of the proof shows
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that any nonnegative a(t) with divergent integral will work. This is the type of classical

condition discussed in Hale and Lunel [7;p. 134-5]; but those results need a(t) bounded,

while we do not.

EXAMPLE 2. If |g(t, u)| ≤ µ|u| then all solutions of

x′(t) = −3t2(1 + sin t3)(x(t) + x3(t)) + g(t, x(t − r(t)))

tend to zero as t → ∞.

Proof. In view of Remark 5, in (18) we take t2 ≥ P where P > 2µe2. Recall that h1 = 1

and let |x(s)| ≤ M to obtain from (18) that

∫ t

t−J

|g(u, x(u − r(u)))| exp[−

∫ t

u

a(s)ds] ≤

µM

∫ t

t−J

exp[−3

∫ t

u

s2(1 + sin s3)ds] du

≤ µM

∫ t

t−J

exp−[(t3 − u3) +

∫ t

u

3s2 sin s3 ds] du

≤ µM

∫ t

t−J

exp[−(t3 − u3) + 2] du

≤ µMe2

∫ t

t−J

exp[−(t − u)(t2 + tu + u2)] du

≤ µMe2

∫ t

t−J

exp[−P (t− u)] du

≤
µMe2

P

[

1 − e−PJ

]

<
M

2
.

Here, J > 0 is arbitrary.

Next, we examine (16) and write

exp[−

∫ t

t−J

h1a(s)ds] ≤ e2 exp[−J(t2 + t(t − J) + (t − J)2)]

≤ e2 exp[−Jt2] < 1/2

if t2 ≥ 2µe2 and J is large enough. This completes the proof. �
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