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ABSTRACT: In this note we consider an integral equation of both advanced and

retarded type. We use a Liapunov functional and a fixed point theorem to prove

that there is a periodic solution.
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1. INTRODUCTION

Functional equations with a delay have been considered for decades and both theory

and applications are well established. Equations which are purely advanced are also

considered simply by a time reversal. By contrast, virtually nothing has been said

about equations which are both advanced and retarded in nature. The purpose of

this paper is to present an example of an integral equation which is both advanced

and retarded and to establish a strong qualitative result for it in the form of the

existence of a periodic solution using fixed point theory. This example should sug-

gest that ample theory exists for treating advanced equations as readily as retarded

ones.

It is natural to ask: what is the application of equations of advanced and

retarded type? It is possible to give a descriptive rationale parallel to those so

often given in population biology in which the population is predicated on future

occurrences; at this point such applications are tenuous, at best. It is possible to

formulate an investment scheme in terms of selling stocks short and buying futures

contracts. Again, this would be over stating the case. In fact, this is an example

from pure mathematics of an interesting property generalizing one aspect of a very

long line of important work which we soon briefly describe. In particular, this

paper addresses a gap in the theory of functional equations: we have long studied

equations without a delay, with a delay, and neutral equations. Only the most

incurious mathematician could fail to ask about the advanced and retarded case.

In a series of papers Levin and Nohel [6–9] consider equations of the form

x′(t) = −

∫ t

0

D(t, s)f(x(s)) ds (A)

and

x′(t) = −

∫ t

t−h

D(t, s)f(x(s)) ds (B)
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where

D(t, s) ≥ 0, Ds(t, s) ≥ 0, Dst(t, s) ≤ 0, xf(x) > 0 if x 6= 0, (C)

and for (2)

D(t, t − h) = 0. (D)

They obtain strong boundedness and stability results which have been generalized

in a number of ways using the theory of positive kernels and transform theory.

Summaries are found in Corduneanu [3] and in Gripenberg-Londen-Staffans [4]. In

the convolution case for (B), Hale [5; pp. 72–3] obtained interesting results on limit

sets and periodic solutions using dynamical system theory which depends on h being

constant and positive.

Since h > 0, both (A) and (B) are delay differential equations. In the linear

case (A) has only one linearly independent solution, but (B) is infinite dimensional.

Moreover, if h is taken as a function of t and if h(t) can become negative, then

the theory for (B) becomes far more complicated and there seem to be no nice

qualitative results.

Equation (B) has been offered as a model for a circulating fuel nuclear reactor

and both have been used as population models ([9], [12]), but they are basically

equations with memory and occupy an important place in pure mathematics, as

seen in [3] and [4]. Conditions (C) and (D) give the problems their character and

counterparts for integral equations have been studied in ([1], [2], [8]), for example.

In this paper we consider a scalar equation

x(t) = λ

[

a(t) −

n
∑

i=1

∫ t

t−fi(t)

Di(t, s)g(s, x(s))ds

]

, 0 < λ ≤ 1, (1)

with a(t), f ′

i (t), Di(t, s), and g(t, x) all continuous. The goal is to prove that there

is a periodic solution for λ = 1. Here fi(t) is allowed to change sign. The analysis

is based on the construction of a Liapunov function to obtain a priori bounds on

periodic solutions, followed by application of a fixed point theorem of Schaefer.

2. A PERIODIC SOLUTION

We suppose there is a T > 0 with

a(t+T ) = a(t), fi(t+T ) = fi(t), Di(t+T, s+T ) = Di(t, s), g(t+T, x) = g(t, x).

(2)

In the introduction we denoted partial derivatives by Dst(t, s). Here, because of

the subscript on D we write Di(t, s)ts instead. As fi(t) will be allowed to become

negative, (C) and (D) must be changed. We suppose that











Di(t, s)st ≤ 0 if fi(t) ≥ 0 and t − fi(t) ≤ s ≤ t

Di(t, s)st ≥ 0 if fi(t) ≤ 0 and t ≤ s ≤ t − fi(t),

(3)



Di(t, t − fi(t)) = 0, Di(t, t − fi(t))s(1 − f ′

i(t)) ≥ 0, (4)

∃M > 0 with 2g(t, x)[λa(t) − x] ≤ M − |g(t, x)|. (5)

Remark 1. The character of (B) is determined by (C) and (D). The integral is

a weighted memory which vanishes at the lower limit by (D); ours does the same.

In (B) the memory is weighted most heavily by the present value of x(t) with less

weight on the past. In the same way, when fi(t) < 0, our integral weights the

present value of x(t) more heavily than the future value. No real difficulties occur

if some fi(t) = ±∞. Here, (3) is the third condition in (C), taking into account

the sign of fi(t); in particular, Di must be a function of its lower limit, as may be

seen in the following example. Also, the first part of (4) is the second part of (C)

when we again take the sign of fi(t) into account; this can be seen in comparing the

derivative of our subsequent Liapunov function (6) with the derivative of Levin’s

Liapunov function for (B). Finally, (5) is a relaxation of the last part of (C). It

seems curious that we did not ask that Di be positive, as in (C); in fact, if fi

becomes unbounded, that condition may be induced by the others. In conclusion,

we offer (3)-(5) as the natural extension of (C) and (D) for (B). Our work, then, is

a suggestion that the results established over the last forty years for (B) may have

a natural counterpart for equations of advanced and retarded type.

Example. Consider

∫ t

t−f(t)

D(t, s)g(s, x(s)) ds =

∫ t

t−sin t

−(t − sin t − s)ng(s, x(s))ds

for n > 2 and n odd. Clearly, (4) is satisfied. Also

Dst(t, s) = n(n − 1)(t − sin t − s)n−2(1 − cos t)

which satisfies (3).

Theorem. If (2) – (5) hold, then (1) has a T -periodic solution for λ = 1.

Proof. Let (P, ‖ · ‖) be the Banach space of continuous T -periodic functions ϕ :

R → R with the supremum norm. For ϕ ∈ P define

(Hϕ)(t) = a(t) −
n

∑

i=1

∫ t

t−fi(t)

Di(t, s)g(s, ϕ(s))ds.

Clearly, Hϕ is a continuous function of t. Notice also by a change of variable that

(Hϕ)(t+T ) = (Hϕ)(t) so that H : P → P . Moreover, H is continuous in ϕ. Finally,

it follows from the uniform continuity of Di and g on bounded sets, together with

Ascoli’s theorem, that H maps bounded sets into compact sets. Under precisely

these conditions, a result of Schaefer ([10], [11; p. 29]) states that if there is an a



priori bound on all periodic solution of (1) for 0 < λ < 1, then there is a periodic

solution for λ = 1.

We now prove that there is a B > 0 such that x ∈ P and x = λHx implies

‖x‖ ≤ B for 0 < λ < 1. For such an x ∈ P define

V (t) = λ2
n

∑

i=1

∫ t

t−fi(t)

Di(t, s)s

(
∫ t

s

g(v, x(v))dv

)2

ds (6)

so that

V ′ = λ2
n

∑

i=1

−Di(t, t − fi(t))s

(
∫ t

t−fi(t)

g(v, x(v))dv

)2

ds(1 − f ′

i (t))

+ λ2
n

∑

i=1

∫ t

t−fi(t)

Di(t, s)st

(
∫ t

s

g(v, x(v))dv

)2

ds

+ 2λ2g(t, x)
n

∑

i=1

∫ t

t−fi(t)

Di(t, s)s

∫ t

s

g(v, x(v))dv ds

and that last term can be written as

2λ2g(t, x)

n
∑

i=1

[

Di(t, s)

∫ t

s

g(v, x(v))dv

∣

∣

∣

∣

t

t−fi(t)

+

∫ t

t−fi(t)

Di(t, s)g(s, x(s))ds

]

= 2λg(t, x)

n
∑

i=1

∫ t

t−fi(t)

λDi(t, s)g(s, x(s)) ds

= 2λg(t, x)[λa(t) − x(t)]

from (1), (4). By (3), (4) the first two terms of V ′ are not positive and we have by

(5)

V ′(t) ≤ λ[M − |g(t, x)|]. (7)

Now x ∈ P implies V ∈ P so

0 = V (T ) − V (0) ≤ λ

[

MT −

∫ T

0

|g(t, x(t))| dt

]

;

but λ > 0 and so
∫ T

0

|g(t, x(t))| dt ≤ MT. (8)

Next, fi ∈ P implies that there is an h > 0 with |fi(t)| ≤ h. Also, there is a

Q > 0 such that −h ≤ s ≤ t ≤ T + h implies that |Di(t, s)| ≤ Q. From (1) and (8)

we then have

|x(t)| ≤ ‖a‖ +
n

∑

i=1

Q

∣

∣

∣

∣

∫ t

t−fi(t)

|g(s, x(s))| ds

∣

∣

∣

∣



for 0 ≤ t ≤ T . There is then an N > 0 with

∣

∣

∣

∣

∫ t

t−fi(t)

|g(s, x(x))| ds

∣

∣

∣

∣

≤ N

∫ T

0

|g(s, x(s))| ds

so that

|x(t)| ≤ ‖a‖ + QNnMT =: B.

This completes the proof. �

Remark 2. Schaefer’s Theorem and the Liapunov functional used in the proof of

the theorem can be used to show the existence of a solution whenever (3) – (5) hold

without (2).
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