A FIXED POINT THEOREM OF KRASNOSELSKII

T.A. Burton
Department of Mathematics
Southern Illinois University
Carbondale, IL 62901

Abstract

Krasnoselskii's fixed point theorem asks for a convex set M and a mapping $P z=B z+A z$ such that: (i) $B x+A y \in M$ for each $x, y \in M$; (ii) A is continuous and compact; (iii) B is a contraction. Then P has a fixed point. A careful reading of the proof reveals that (i) need only ask that $B x+A y \in M$ when $x=B x+A y$. The proof also yields a technique for showing that such x is in M.

1. Introduction and result. Two main results of fixed point theory are Schauder's theorem and the contraction mapping principle. Krasnoselskii combined them into the following result (cf. [1] or [6; p. 31]).

Theorem 1. Let M be a closed convex non-empty subset of a Banach space $(S,\|\cdot\|)$. Suppose that A and B map M into S such that
(i) $A x+B y \in M(\forall x, y \in M)$,
(ii) A is continuous and $A M$ is contained in a compact set,
(iii) B is a contraction with constant $\alpha<1$.

Then there is a $y \in M$ with $A y+B y=y$.

This is a captivating result and it has a number of interesting applications. It was motivated by an observation that inversion of a perturbed differential operator may yield the sum of a compact and contraction operator.

[^0]But the result has a major weakness. Given operators A and B, it may be possible to find sets M and M^{*} with $A: M \rightarrow M$ and $B: M^{*} \rightarrow M^{*}$, but if the sets are bounded (which is frequently needed if $A M$ is to be in a compact set), then it is often impossible to arrange matters so that $M=M^{*}$ and $B x+A y \in M$.

The point of this note is that a careful reading of the proof reveals two items:
a. The quantifiers in (i) are too stringent. What is actually needed is that for fixed $y \in M$, if x is the unique fixed point of the contraction mapping $x \rightarrow B x+A y$, then $x \in M$. This observation in very useful in applications; moreover, subsequent investigators seeking to extend the result have not noticed it, as may be seen for example in a recent such work by O'Regan [3;p. 2].
b. The proof of Theorem 1 hinges on the fact that $(I-B)$ has a continuous inverse. In showing that, one writes

$$
\begin{gathered}
\|(I-B) x-(I-B) y\|=\|(x-y)-(B x-B y)\| \\
\quad \geq\|x-y\|-\|B x-B y\| \geq(1-\alpha)\|x-y\|
\end{gathered}
$$

Clearly,

$$
\|(I-B) x-(I-B) y\| \leq(1+\alpha)\|x-y\|
$$

Together we have

$$
\begin{equation*}
(1-\alpha)\|x-y\| \leq\|(I-B) x-(I-B) y\| \leq(1+\alpha)\|x-y\| \tag{1}
\end{equation*}
$$

and, in particular,

$$
\begin{equation*}
(1-\alpha)\|x\| \leq\|(I-B) x\| \leq(1+\alpha)\|x\| \tag{2}
\end{equation*}
$$

These relations rest on the contraction property alone. We note that a tightening of (2) allows us to confirm the requirement that $x=B x+A y$ yields $x \in M$. This is illustrated in an example.

Theorem 2. Let M be a closed, convex, and nonempty subset of a Banach space $(S,\|\cdot\|)$. Suppose that $A: M \rightarrow S$ and $B: S \rightarrow S$ such that:
(i) B is a contraction with constant $\alpha<1$,
(ii) A is continuous, $A M$ resides in a compact subset of S,
(iii) $[x=B x+A y, y \in M] \Rightarrow x \in M$.

Then there is a $y \in M$ with $A y+B y=y$.

Remark 1. It will be clear that B need only be defined on a set $H \subset S$ such that $M \subset H$ and if $[y \in M$ and $x \in H]$ then $B x+A y \in H$.

Proposition. Let (i) and (ii) of Theorem 2 hold. Suppose there is an $r>0$ so that $M=\{y \in S \mid\|y\| \leq r\}$ and $A M$ is in M.

If (2) is strengthened to

$$
\begin{equation*}
\|x\| \leq\|(I-B) x\| \tag{*}
\end{equation*}
$$

then item (iii) of Theorem 2 holds.

Example. Let $0<\alpha<1$ and consider the scalar integral equation

$$
\begin{align*}
x(t)= & -\alpha \sin ^{2} t\left[x^{3}(t) /\left(1+2 x^{2}(t)\right)\right]+p(t) \tag{3}\\
& +\int_{-\infty}^{t} D(t-s) g(x(s)) d s
\end{align*}
$$

where p, D, and g are continuous, $p(t+2 \pi)=p(t)$.
Suppose that there is an $r>0$ such that

$$
\begin{equation*}
|x| \leq r \Rightarrow|g(x)| \leq r-\|p\| \tag{4}
\end{equation*}
$$

and that

$$
\begin{equation*}
\int_{-\infty}^{t}|D(t-s)| d s \leq 1 \text { and } \int_{-\infty}^{t}\left|D^{\prime}(t-s)\right| d s<\infty \tag{5}
\end{equation*}
$$

Then (3) has a 2π-periodic solution.
Here,

$$
(B x)(t)=-\alpha \sin ^{2} t\left[x^{3}(t) /\left(1+2 x^{2}(t)\right)\right]
$$

and

$$
(A y)(t)=p(t)+\int_{-\infty}^{t} D(t-s) g(y(s)) d s
$$

while $(S,\|\cdot\|)$ is the Banach space of continuous 2π-periodic functions with the supremum norm, and $M=\{y \in S \mid\|y\| \leq r\}$.

Clearly, (2)* holds. We see no way to establish a set M so that (i) of Theorem 1 holds. For each set M which we construct, we find some $x, y \in M$ with $A y, B x \in M$, but $A y+B x \notin M$.

Krasnoselskii's result has been of continuing interest. In 1971, Reinermann [4] obtained two theorems related to Theorem 1. He asked that $A+B: M \rightarrow M$, while $A, B: M \rightarrow S$.

Just this year, O'Regan [3] states that he has extended Reinermann's result by assuming that:
(i) $A+B: M \rightarrow S$,
(ii) $A+B$ is condensing, and
(iii) if $\left\{\left(x_{j}, \lambda_{j}\right)\right\}_{j=1}^{\infty}$ is a sequence in $\partial M x[0,1]$ converging to (x, λ) with $x=\lambda(A+B) x$ and $0<\lambda<1$, then $\lambda_{j}(A+B) x_{j} \in M$ for large j.

The idea of using condensing maps in conjunction with Theorem 1 goes back to 1967 with Sadovskii [5], who still maintains an interest in the subject. The reader can find the definition and properties in [3].

We do not see how any of these come close to (iii) of Theorem 2 .
2. Proofs. To prove Theorem 2, we follow Krasnoselskii's proof as given by Smart [6; p. 32]. Smart first proves:

Lemma. If B is a contraction mapping of a subset X of a normed space S into S, then
$I-B$ is a homeomorphism on X to $(I-B) X$. If $(I-B) X$ is precompact, so is X.

Next, for each fixed $y \in M$, the map of $S \rightarrow S$ defined by

$$
z \rightarrow B z+A y
$$

is a contraction with unique fixed point z so that $z=B z+A y$; by (iii), $z \in M$. Hence, $(I-B) z=A y$ or $z=(I-B)^{-1} A y \in M$ for each $y \in M$. Now $A M$ resides in a compact subset of S, while $(I-B)^{-1}$ is continuous, and so $(I-B)^{-1} A M$ resides in a compact subset of the closed set M. (For a proof of this in general metric spaces, see Kreyszig [2; p. 412, 656].) By Schauder's second theorem [6; p. 25], $(I-B)^{-1} A$ has a fixed point $y \in M: y=(I-B)^{-1} A y$. This proves Theorem 2.

To prove the proposition, if $x=B x+A y$, then $(I-B) x=A y$; thus, by the first part of $(2)^{*}$,

$$
\|x\| \leq\|(I-B) x\|=\|A y\| \leq r
$$

since $y \in M \Rightarrow A y \in M \Rightarrow\|A y\| \leq r$. Hence, $x \in M$.
We now show that the conditions of Theorem 2 hold for the example. Recall that A, B, S, and M are defined in the example.

First, if $y \in M$, then $\|y\| \leq r$ and so

$$
\begin{gathered}
\|A y\| \leq\|p\|+\int_{-\infty}^{t}|D(t-s)|[r-\|p\|] d s \\
\leq\|p\|+1[r-\|p\|]=r
\end{gathered}
$$

and a change of variable shows that $(A y)(t+2 \pi)=(A y)(t)$. Hence, $A: M \rightarrow M$.
It is an elementary exercise to show that A maps M into an equicontinuous set. Also, continuity of A on M is easily verified.
B is a contraction with constant α. Clearly, $\|(I-B) x\| \geq\|x\|$.
This completes the proof.
3. Concluding remarks. The proposition does not represent the only way in which (iii) of Theorem 2 can be verified.

If $P x=B x+A y$ is a contraction with fixed point z and if φ is any point, then $\|z-\varphi\| \leq \frac{1}{1-\alpha}\|\varphi-P \varphi\|$ (cf. Smart [6; p. 3]). In a given problem, clever choice of φ can establish that $z \in M$. Application of fixed point theory is an art. Most nice results are based on some clever selection. But if the imagination fails, $P^{k} \varphi \rightarrow z$ so there is always the alternative of trying to iterate P.

The equation $x=B x+A y, y \in M$, may have properties so that it can be shown that there is an a priori bound on solutions in the set S; that bound may yield $x \in M$.

But there is a far more definite idea which the reader may find attractive.

Conjecture. The proposition is still true if (2)* is replaced by $x \neq 0 \Rightarrow$

$$
\begin{equation*}
\|(I-B) x\|<\|x\| . \tag{**}
\end{equation*}
$$

We have been unable to prove the conjecture. But a certain symmetry in the problem suggests it is true. It may be a simple retraction argument, when viewed properly.

REFERENCES

1. Krasnoselskii, M.A., Amer. Math. Soc. Transl. (2) 10(1958), 345-409.
2. Kreyszig, Erwin, Introductory Functional Analysis with Applications, Wiley, New York, 1978.
3. O'Regan, D., Fixed point theory for the sum of two operators, Appl. Math. Lett. 9(1996), 1-8.
4. Reinermann, J., Fixpunktsätze vom Krasnoselski-typ, Math. Z. 119(1971), 339-344.
5. Sadovskii, B.N., A fixed-point principle, Func. Anal. and Applications 1(1967), 151-3.
6. Smart, D.R., Fixed Point Theorems, Cambridge Univ. Press, Cambridge, 1980.

[^0]: 1991 Mathematics Subject Classification. 47H10, 45D05.
 Key words and phrases. Fixed points, integral equation, periodic solutions.

