A FIXED POINT THEOREM OF KRASNOSELSKII

T.A. BURTON

Department of Mathematics Southern Illinois University Carbondale, IL 62901

ABSTRACT. Krasnoselskii's fixed point theorem asks for a convex set M and a mapping Pz = Bz + Az such that: (i) $Bx + Ay \in M$ for each $x, y \in M$; (ii) A is continuous and compact; (iii) B is a contraction. Then P has a fixed point. A careful reading of the proof reveals that (i) need only ask that $Bx + Ay \in M$ when x = Bx + Ay. The proof also yields a technique for showing that such x is in M.

1. Introduction and result. Two main results of fixed point theory are Schauder's theorem and the contraction mapping principle. Krasnoselskii combined them into the following result (cf. [1] or [6; p. 31]).

Theorem 1. Let M be a closed convex non-empty subset of a Banach space $(S, \|\cdot\|)$. Suppose that A and B map M into S such that

(i) $Ax + By \in M(\forall x, y \in M),$

- (ii) A is continuous and AM is contained in a compact set,
- (iii) B is a contraction with constant $\alpha < 1$.

Then there is a $y \in M$ with Ay + By = y.

This is a captivating result and it has a number of interesting applications. It was motivated by an observation that inversion of a perturbed differential operator may yield the sum of a compact and contraction operator.

¹⁹⁹¹ Mathematics Subject Classification. 47H10, 45D05.

Key words and phrases. Fixed points, integral equation, periodic solutions.

But the result has a major weakness. Given operators A and B, it may be possible to find sets M and M^* with $A: M \to M$ and $B: M^* \to M^*$, but if the sets are bounded (which is frequently needed if AM is to be in a compact set), then it is often impossible to arrange matters so that $M = M^*$ and $Bx + Ay \in M$.

The point of this note is that a careful reading of the proof reveals two items:

a. The quantifiers in (i) are too stringent. What is actually needed is that for fixed $y \in M$, if x is the unique fixed point of the contraction mapping $x \to Bx + Ay$, then $x \in M$. This observation in very useful in applications; moreover, subsequent investigators seeking to extend the result have not noticed it, as may be seen for example in a recent such work by O'Regan [3;p. 2].

b. The proof of Theorem 1 hinges on the fact that (I - B) has a continuous inverse. In showing that, one writes

$$\|(I-B)x - (I-B)y\| = \|(x-y) - (Bx - By)\|$$

$$\geq \|x-y\| - \|Bx - By\| \geq (1-\alpha)\|x-y\|.$$

Clearly,

$$||(I-B)x - (I-B)y|| \le (1+\alpha)||x-y||.$$

Together we have

(1)
$$(1-\alpha)\|x-y\| \le \|(I-B)x - (I-B)y\| \le (1+\alpha)\|x-y\|$$

and, in particular,

(2)
$$(1-\alpha)||x|| \le ||(I-B)x|| \le (1+\alpha)||x||.$$

These relations rest on the contraction property alone. We note that a tightening of (2) allows us to confirm the requirement that x = Bx + Ay yields $x \in M$. This is illustrated in an example.

Theorem 2. Let M be a closed, convex, and nonempty subset of a Banach space $(S, \|\cdot\|)$. Suppose that $A: M \to S$ and $B: S \to S$ such that: (i) B is a contraction with constant $\alpha < 1$,

(ii) A is continuous, AM resides in a compact subset of S,

(iii) $[x = Bx + Ay, y \in M] \Rightarrow x \in M.$

Then there is a $y \in M$ with Ay + By = y.

Remark 1. It will be clear that B need only be defined on a set $H \subset S$ such that $M \subset H$ and if $[y \in M \text{ and } x \in H]$ then $Bx + Ay \in H$.

Proposition. Let (i) and (ii) of Theorem 2 hold. Suppose there is an r > 0 so that $M = \{y \in S | ||y|| \le r\}$ and AM is in M.

If (2) is strengthened to

(2*)
$$||x|| \le ||(I-B)x||$$

then item (iii) of Theorem 2 holds.

Example. Let $0 < \alpha < 1$ and consider the scalar integral equation

(3)
$$x(t) = -\alpha \sin^2 t [x^3(t)/(1+2x^2(t))] + p(t) + \int_{-\infty}^t D(t-s)g(x(s)) \, ds$$

where p, D, and g are continuous, $p(t + 2\pi) = p(t)$.

Suppose that there is an r > 0 such that

(4)
$$|x| \le r \Rightarrow |g(x)| \le r - ||p||$$

and that

(5)
$$\int_{-\infty}^{t} |D(t-s)| \, ds \leq 1 \, and \, \int_{-\infty}^{t} |D'(t-s)| \, ds < \infty.$$

Then (3) has a 2π -periodic solution.

Here,

$$(Bx)(t) = -\alpha \sin^2 t [x^3(t)/(1+2x^2(t))]$$

and

$$(Ay)(t) = p(t) + \int_{-\infty}^{t} D(t-s)g(y(s)) \, ds,$$

while $(S, \|\cdot\|)$ is the Banach space of continuous 2π -periodic functions with the supremum norm, and $M = \{y \in S | \|y\| \le r\}.$

Clearly, (2)* holds. We see no way to establish a set M so that (i) of Theorem 1 holds. For each set M which we construct, we find some $x, y \in M$ with $Ay, Bx \in M$, but $Ay + Bx \notin M$.

Krasnoselskii's result has been of continuing interest. In 1971, Reinermann [4] obtained two theorems related to Theorem 1. He asked that $A + B : M \to M$, while $A, B : M \to S$.

Just this year, O'Regan [3] states that he has extended Reinermann's result by assuming that:

- (i) $A + B : M \to S$,
- (ii) A + B is condensing, and
- (iii) if $\{(x_j, \lambda_j)\}_{j=1}^{\infty}$ is a sequence in $\partial Mx[0, 1]$ converging to (x, λ) with $x = \lambda(A + B)x$ and $0 < \lambda < 1$, then $\lambda_j(A + B) x_j \in M$ for large j.

The idea of using condensing maps in conjunction with Theorem 1 goes back to 1967 with Sadovskii [5], who still maintains an interest in the subject. The reader can find the definition and properties in [3].

We do not see how any of these come close to (iii) of Theorem 2.

2. Proofs. To prove Theorem 2, we follow Krasnoselskii's proof as given by Smart [6;p. 32]. Smart first proves:

Lemma. If B is a contraction mapping of a subset X of a normed space S into S, then

I-B is a homeomorphism on X to (I-B)X. If (I-B)X is precompact, so is X.

Next, for each fixed $y \in M$, the map of $S \to S$ defined by

$$z \to Bz + Ay$$

is a contraction with unique fixed point z so that z = Bz + Ay; by (iii), $z \in M$. Hence, (I - B)z = Ay or $z = (I - B)^{-1}Ay \in M$ for each $y \in M$. Now AM resides in a compact subset of S, while $(I - B)^{-1}$ is continuous, and so $(I - B)^{-1}AM$ resides in a compact subset of the closed set M. (For a proof of this in general metric spaces, see Kreyszig [2; p. 412, 656].) By Schauder's second theorem [6; p. 25], $(I - B)^{-1}A$ has a fixed point $y \in M : y = (I - B)^{-1}Ay$. This proves Theorem 2.

To prove the proposition, if x = Bx + Ay, then (I - B)x = Ay; thus, by the first part of $(2)^*$,

$$||x|| \le ||(I - B)x|| = ||Ay|| \le r$$

since $y \in M \Rightarrow Ay \in M \Rightarrow ||Ay|| \le r$. Hence, $x \in M$.

We now show that the conditions of Theorem 2 hold for the example. Recall that A, B, S, and M are defined in the example.

First, if $y \in M$, then $||y|| \leq r$ and so

$$||Ay|| \le ||p|| + \int_{-\infty}^{t} |D(t-s)|[r-||p||] ds$$
$$\le ||p|| + 1[r-||p||] = r.$$

and a change of variable shows that $(Ay)(t+2\pi) = (Ay)(t)$. Hence, $A: M \to M$.

It is an elementary exercise to show that A maps M into an equicontinuous set. Also, continuity of A on M is easily verified.

B is a contraction with constant α . Clearly, $||(I - B)x|| \ge ||x||$.

This completes the proof.

Concluding remarks. The proposition does not represent the only way in which
 (iii) of Theorem 2 can be verified.

If Px = Bx + Ay is a contraction with fixed point z and if φ is any point, then $||z - \varphi|| \leq \frac{1}{1-\alpha} ||\varphi - P\varphi||$ (cf. Smart [6; p. 3]). In a given problem, clever choice of φ can establish that $z \in M$. Application of fixed point theory is an art. Most nice results are based on some clever selection. But if the imagination fails, $P^k \varphi \to z$ so there is always the alternative of trying to iterate P.

The equation x = Bx + Ay, $y \in M$, may have properties so that it can be shown that there is an a priori bound on solutions in the set S; that bound may yield $x \in M$.

But there is a far more definite idea which the reader may find attractive.

Conjecture. The proposition is still true if $(2)^*$ is replaced by $x \neq 0 \Rightarrow$

$$(2^{**}) ||(I-B)x|| < ||x||.$$

We have been unable to prove the conjecture. But a certain symmetry in the problem suggests it is true. It may be a simple retraction argument, when viewed properly.

REFERENCES

- 1. Krasnoselskii, M.A., Amer. Math. Soc. Transl. (2) 10(1958), 345–409.
- Kreyszig, Erwin, Introductory Functional Analysis with Applications, Wiley, New York, 1978.
- O'Regan, D., Fixed point theory for the sum of two operators, Appl. Math. Lett. 9(1996), 1–8.
- 4. Reinermann, J., Fixpunktsätze vom Krasnoselski-typ, Math. Z. 119(1971), 339–344.
- 5. Sadovskii, B.N., A fixed-point principle, Func. Anal. and Applications 1(1967), 151–3.
- 6. Smart, D.R., Fixed Point Theorems, Cambridge Univ. Press, Cambridge, 1980.