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ABSTRACT. Krasnoselskii’s fixed point theorem asks for a convex set M and a mapping
Pz = Bz + Az such that: (i) Bz + Ay € M for each z,y € M; (ii) A is continuous and
compact; (iii) B is a contraction. Then P has a fixed point. A careful reading of the proof
reveals that (i) need only ask that Bx + Ay € M when z = Bz 4+ Ay. The proof also yields
a technique for showing that such z is in M.

1. Introduction and result. Two main results of fixed point theory are Schauder’s
theorem and the contraction mapping principle. Krasnoselskii combined them into the

following result (cf. [1] or [6; p. 31]).

Theorem 1.  Let M be a closed convex non-empty subset of a Banach space (S,| - ||).
Suppose that A and B map M into S such that

(i) Ax+ By € M(Vz,y € M),

(ii) A is continuous and AM 1is contained in a compact set,

(11i) B is a contraction with constant o < 1.

Then there is a y € M with Ay + By = y.

This is a captivating result and it has a number of interesting applications. It was
motivated by an observation that inversion of a perturbed differential operator may yield

the sum of a compact and contraction operator.
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But the result has a major weakness. Given operators A and B, it may be possible to
find sets M and M* with A: M — M and B : M* — M*, but if the sets are bounded
(which is frequently needed if AM is to be in a compact set), then it is often impossible
to arrange matters so that M = M* and Bx + Ay € M.

The point of this note is that a careful reading of the proof reveals two items:

a. The quantifiers in (i) are too stringent. What is actually needed is that for fixed
y € M, if z is the unique fixed point of the contraction mapping + — Bz + Ay, then
x € M. This observation in very useful in applications; moreover, subsequent investigators
seeking to extend the result have not noticed it, as may be seen for example in a recent
such work by O’Regan [3;p. 2].

b. The proof of Theorem 1 hinges on the fact that (I — B) has a continuous inverse. In
showing that, one writes

(I = B)z — (I = B)y| = [l(z —y) — (Bz — By)]|
2 ||z —yll = Bz — Byl| = (1 — o)l — y].
Clearly,
I(1 = B)z — (I = Blyl| < (1 + o) — ]|

Together we have

(1) (1 =a)flz =yl <[[(I = B)z = (I = B)y| < (1 + )]z -y
and, in particular,

(2) (1 —a)flz]| < I/ = B)z|| < (1 + a)]lz].-

These relations rest on the contraction property alone. We note that a tightening of (2)
allows us to confirm the requirement that © = Bx + Ay yields x € M. This is illustrated

in an example.

Theorem 2.  Let M be a closed, convez, and nonempty subset of a Banach space (S, ||-||)-

Suppose that A: M — S and B : S — S such that:



(i) B is a contraction with constant o < 1,
(ii) A is continuous, AM resides in a compact subset of S,
(i1i) [x = Bz + Ay,y € M] = x € M.

Then there is a y € M with Ay + By = y.

Remark 1. It will be clear that B need only be defined on a set H C S such that M C H

and if [y € M and x € H] then Bx + Ay € H.

Proposition.  Let (i) and (ii) of Theorem 2 hold. Suppose there is an r > 0 so that
M ={ye S| |yl <r} and AM is in M.

If (2) is strengthened to
(27) [zl < [I( — B)z|

then item (iii) of Theorem 2 holds.

Example. Let 0 < a <1 and consider the scalar integral equation

(3) z(t) = —asin? t[z3(t) /(1 + 222(t))] + p(t)

/ Dt — 5)g(x(s)) ds

where p, D, and g are continuous, p(t + 27) = p(t).

Suppose that there is an r > 0 such that

(4) lz| <7 =|g(x)] <7 —|pl
and that
t t
(5) / Dt — )| ds <1 and / D/ (t — 8)|ds < oo.
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Then (3) has a 27-periodic solution.

Here,
(Bx)(t) = —asin?t[z3(t) /(1 + 22%(t))]
and
t
O =0+ [ Dlt = s)gluls)ds,
while (S, || - ||) is the Banach space of continuous 27-periodic functions with the supremum

norm, and M ={y € S| ||y <r}.

Clearly, (2)* holds. We see no way to establish a set M so that (i) of Theorem 1 holds.
For each set M which we construct, we find some z, y € M with Ay, Bx € M, but
Ay + Bx ¢ M.

Krasnoselskii’s result has been of continuing interest. In 1971, Reinermann [4] obtained
two theorems related to Theorem 1. He asked that A+ B : M — M, while A, B: M — S.

Just this year, O’'Regan [3] states that he has extended Reinermann’s result by assuming
that:

(i) A+ B: M — S,

(ii) A+ B is condensing, and
(iii) if {(zj, A;)}32, is a sequence in M x[0, 1] converging to (z,\) with z = A(A + B)x
and 0 < A < 1, then \;(A+ B) z; € M for large j.

The idea of using condensing maps in conjunction with Theorem 1 goes back to 1967
with Sadovskii [5], who still maintains an interest in the subject. The reader can find the
definition and properties in [3].

We do not see how any of these come close to (iii) of Theorem 2.

2. Proofs. To prove Theorem 2, we follow Krasnoselskii’s proof as given by Smart [6;

p. 32]. Smart first proves:

Lemma. If B is a contraction mapping of a subset X of a normed space S into S, then
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I — B is a homeomorphism on X to (I — B)X. If (I — B)X is precompact, so is X.

Next, for each fixed y € M, the map of S — S defined by
z — Bz + Ay

is a contraction with unique fixed point z so that z = Bz + Ay; by (iii), z € M. Hence,
(I —B)z=Ayor 2= (I — B)"'Ay € M for each y € M. Now AM resides in a compact
subset of S, while (I — B)™! is continuous, and so (I — B)"*AM resides in a compact
subset of the closed set M. (For a proof of this in general metric spaces, see Kreyszig
[2; p. 412, 656].) By Schauder’s second theorem [6; p. 25], (I — B)"!A has a fixed point
y € M :y= (I — B)~'Ay. This proves Theorem 2.

To prove the proposition, if x = Bx + Ay, then (I — B)x = Ay; thus, by the first part
of (2)*,

[zl < W = B)z|| = [|Ay[| <

since y € M = Ay € M = ||Ay|| < r. Hence, z € M.
We now show that the conditions of Theorem 2 hold for the example. Recall that A,
B, S, and M are defined in the example.
First, if y € M, then |ly|| < r and so
t

1Ayl < lpll +/ |D(t = 8)|[r = lpll} ds

— 00

< [lpll + 1{r = [lpll] = 7.

and a change of variable shows that (Ay)(t + 27) = (Ay)(t). Hence, A: M — M.

It is an elementary exercise to show that A maps M into an equicontinuous set. Also,
continuity of A on M is easily verified.

B is a contraction with constant «. Clearly, ||(I — B)x| > ||z||.

This completes the proof. O



3. Concluding remarks. The proposition does not represent the only way in which
(iii) of Theorem 2 can be verified.

If Pr = Bz + Ay is a contraction with fixed point z and if ¢ is any point, then
Iz — || < 2=|l¢ — Pl (cf. Smart [6; p. 3]). In a given problem, clever choice of ¢ can
establish that z € M. Application of fixed point theory is an art. Most nice results are
based on some clever selection. But if the imagination fails, P¥p — z so there is always
the alternative of trying to iterate P.

The equation x = Bx + Ay, y € M, may have properties so that it can be shown that
there is an a priori bound on solutions in the set S; that bound may yield z € M.

But there is a far more definite idea which the reader may find attractive.
Conjecture. The proposition is still true if (2)* is replaced by = # 0 =
(27) (I = B)a|| < |=[|-

We have been unable to prove the conjecture. But a certain symmetry in the problem

suggests it is true. It may be a simple retraction argument, when viewed properly.
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