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Abstract. Krasnoselskii’s fixed point theorem asks for a convex set M and a mapping

Pz = Bz + Az such that: (i) Bx + Ay ∈ M for each x, y ∈ M ; (ii) A is continuous and

compact; (iii) B is a contraction. Then P has a fixed point. A careful reading of the proof
reveals that (i) need only ask that Bx + Ay ∈ M when x = Bx + Ay. The proof also yields

a technique for showing that such x is in M .

1. Introduction and result. Two main results of fixed point theory are Schauder’s

theorem and the contraction mapping principle. Krasnoselskii combined them into the

following result (cf. [1] or [6; p. 31]).

Theorem 1. Let M be a closed convex non-empty subset of a Banach space (S, ‖ · ‖).

Suppose that A and B map M into S such that

(i) Ax + By ∈ M(∀x, y ∈ M),

(ii) A is continuous and AM is contained in a compact set,

(iii) B is a contraction with constant α < 1.

Then there is a y ∈ M with Ay + By = y.

This is a captivating result and it has a number of interesting applications. It was

motivated by an observation that inversion of a perturbed differential operator may yield

the sum of a compact and contraction operator.
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But the result has a major weakness. Given operators A and B, it may be possible to

find sets M and M∗ with A : M → M and B : M∗ → M∗, but if the sets are bounded

(which is frequently needed if AM is to be in a compact set), then it is often impossible

to arrange matters so that M = M∗ and Bx + Ay ∈ M .

The point of this note is that a careful reading of the proof reveals two items:

a. The quantifiers in (i) are too stringent. What is actually needed is that for fixed

y ∈ M , if x is the unique fixed point of the contraction mapping x → Bx + Ay, then

x ∈ M . This observation in very useful in applications; moreover, subsequent investigators

seeking to extend the result have not noticed it, as may be seen for example in a recent

such work by O’Regan [3;p. 2].

b. The proof of Theorem 1 hinges on the fact that (I −B) has a continuous inverse. In

showing that, one writes

‖(I − B)x − (I − B)y‖ = ‖(x − y) − (Bx − By)‖

≥ ‖x − y‖ − ‖Bx − By‖ ≥ (1 − α)‖x − y‖.

Clearly,

‖(I −B)x − (I − B)y‖ ≤ (1 + α)‖x − y‖.

Together we have

(1) (1 − α)‖x − y‖ ≤ ‖(I − B)x − (I − B)y‖ ≤ (1 + α)‖x − y‖

and, in particular,

(2) (1 − α)‖x‖ ≤ ‖(I − B)x‖ ≤ (1 + α)‖x‖.

These relations rest on the contraction property alone. We note that a tightening of (2)

allows us to confirm the requirement that x = Bx + Ay yields x ∈ M . This is illustrated

in an example.

Theorem 2. Let M be a closed, convex, and nonempty subset of a Banach space (S, ‖·‖).

Suppose that A : M → S and B : S → S such that:
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(i) B is a contraction with constant α < 1,

(ii) A is continuous, AM resides in a compact subset of S,

(iii) [x = Bx + Ay, y ∈ M ] ⇒ x ∈ M .

Then there is a y ∈ M with Ay + By = y.

Remark 1. It will be clear that B need only be defined on a set H ⊂ S such that M ⊂ H

and if [y ∈ M and x ∈ H] then Bx + Ay ∈ H.

Proposition. Let (i) and (ii) of Theorem 2 hold. Suppose there is an r > 0 so that

M = {y ∈ S| ‖y‖ ≤ r} and AM is in M .

If (2) is strengthened to

(2∗) ‖x‖ ≤ ‖(I −B)x‖

then item (iii) of Theorem 2 holds.

Example. Let 0 < α < 1 and consider the scalar integral equation

x(t) = −α sin2 t[x3(t)/(1 + 2x2(t))] + p(t)(3)

+

∫ t

−∞

D(t − s)g(x(s))ds

where p, D, and g are continuous, p(t + 2π) = p(t).

Suppose that there is an r > 0 such that

(4) |x| ≤ r ⇒ |g(x)| ≤ r − ‖p‖

and that

(5)

∫ t

−∞

|D(t − s)| ds ≤ 1 and

∫ t

−∞

|D′(t − s)|ds < ∞.

3



Then (3) has a 2π-periodic solution.

Here,

(Bx)(t) = −α sin2 t[x3(t)/(1 + 2x2(t))]

and

(Ay)(t) = p(t) +

∫ t

−∞

D(t − s)g(y(s))ds,

while (S, ‖ · ‖) is the Banach space of continuous 2π-periodic functions with the supremum

norm, and M = {y ∈ S| ‖y‖ ≤ r}.

Clearly, (2)∗ holds. We see no way to establish a set M so that (i) of Theorem 1 holds.

For each set M which we construct, we find some x, y ∈ M with Ay, Bx ∈ M , but

Ay + Bx /∈ M .

Krasnoselskii’s result has been of continuing interest. In 1971, Reinermann [4] obtained

two theorems related to Theorem 1. He asked that A+B : M → M , while A, B : M → S.

Just this year, O’Regan [3] states that he has extended Reinermann’s result by assuming

that:

(i) A + B : M → S,

(ii) A + B is condensing, and

(iii) if {(xj , λj)}
∞

j=1
is a sequence in ∂Mx[0, 1] converging to (x, λ) with x = λ(A + B)x

and 0 < λ < 1, then λj(A + B) xj ∈ M for large j.

The idea of using condensing maps in conjunction with Theorem 1 goes back to 1967

with Sadovskii [5], who still maintains an interest in the subject. The reader can find the

definition and properties in [3].

We do not see how any of these come close to (iii) of Theorem 2.

2. Proofs. To prove Theorem 2, we follow Krasnoselskii’s proof as given by Smart [6;

p. 32]. Smart first proves:

Lemma. If B is a contraction mapping of a subset X of a normed space S into S, then
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I − B is a homeomorphism on X to (I − B)X. If (I − B)X is precompact, so is X.

Next, for each fixed y ∈ M , the map of S → S defined by

z → Bz + Ay

is a contraction with unique fixed point z so that z = Bz + Ay; by (iii), z ∈ M . Hence,

(I − B)z = Ay or z = (I − B)−1Ay ∈ M for each y ∈ M . Now AM resides in a compact

subset of S, while (I − B)−1 is continuous, and so (I − B)−1AM resides in a compact

subset of the closed set M . (For a proof of this in general metric spaces, see Kreyszig

[2; p. 412, 656].) By Schauder’s second theorem [6; p. 25], (I − B)−1A has a fixed point

y ∈ M : y = (I − B)−1Ay. This proves Theorem 2.

To prove the proposition, if x = Bx + Ay, then (I − B)x = Ay; thus, by the first part

of (2)∗,

‖x‖ ≤ ‖(I − B)x‖ = ‖Ay‖ ≤ r

since y ∈ M ⇒ Ay ∈ M ⇒ ‖Ay‖ ≤ r. Hence, x ∈ M .

We now show that the conditions of Theorem 2 hold for the example. Recall that A,

B, S, and M are defined in the example.

First, if y ∈ M , then ‖y‖ ≤ r and so

‖Ay‖ ≤ ‖p‖ +

∫ t

−∞

|D(t − s)|[r − ‖p‖] ds

≤ ‖p‖ + 1[r − ‖p‖] = r.

and a change of variable shows that (Ay)(t + 2π) = (Ay)(t). Hence, A : M → M .

It is an elementary exercise to show that A maps M into an equicontinuous set. Also,

continuity of A on M is easily verified.

B is a contraction with constant α. Clearly, ‖(I − B)x‖ ≥ ‖x‖.

This completes the proof. �
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3. Concluding remarks. The proposition does not represent the only way in which

(iii) of Theorem 2 can be verified.

If Px = Bx + Ay is a contraction with fixed point z and if ϕ is any point, then

‖z − ϕ‖ ≤ 1

1−α
‖ϕ − Pϕ‖ (cf. Smart [6; p. 3]). In a given problem, clever choice of ϕ can

establish that z ∈ M . Application of fixed point theory is an art. Most nice results are

based on some clever selection. But if the imagination fails, P kϕ → z so there is always

the alternative of trying to iterate P .

The equation x = Bx + Ay, y ∈ M , may have properties so that it can be shown that

there is an a priori bound on solutions in the set S; that bound may yield x ∈ M .

But there is a far more definite idea which the reader may find attractive.

Conjecture. The proposition is still true if (2)∗ is replaced by x 6= 0 ⇒

(2∗∗) ‖(I − B)x‖ < ‖x‖.

We have been unable to prove the conjecture. But a certain symmetry in the problem

suggests it is true. It may be a simple retraction argument, when viewed properly.
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