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1. Introduction. This paper is concerned with simple, concise, and unifying proofs

of global existence of solutions for

(1) x′ = f(t, x)

where f : [0,∞) ×Rn → Rn is continuous, for

(2) x(t) = a(t) +

∫ t

0

D(t, s, x(s))ds

where D : [0,∞) × R × Rn → Rn and a : [0,∞) → Rn are both continuous, and for

functional differential equations

(3) x′ = f(t, xt)

with both finite and infinite delay. Local existence results are given as corollaries.

Classical existence theory is first local, then piecemeal, and then awkward, as we

explain in the next section. In this paper we use Schaefer’s fixed point theorem to prove
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the existence of a global solution of each equation in one step. Each theorem is proved in

the same way. First we define the appropriate space and a mapping. Each theorem is then

proved using three lemmas. The first lemma shows that the mapping maps bounded sets

into compact sets. The second lemma shows that the mapping is continuous. The third

lemma establishes a priori bounds on the solution. The results then follow from Schaefer’s

theorem.

Existence theory for (1) usually rests on limiting arguments with ε-approximate so-

lutions or on careful application of Schauder’s fixed point theorem after constructing an

appropriate set and a mapping of that set into itself; this is usually an intricate and te-

dious task. Schaefer’s theorem is mainly Schauder’s theorem followed by a simple retract

argument. Its great advantage over Schauder’s theorem is that a self-mapping set need

not be found.

The reader will find standard developments of existence theory for (1) in [1], [2], [8],

[10], [12], and [13]. Existence theory for (2) is found in [3] and [7], while theory for (3) is

found in [1], [4], [5], [9], [12], and [17].

While this paper is clearly expository in nature, Theorems 3 and 4 are new. Hale [9;

p. 142] has a form of Theorem 3 in the linear case. Theorem 4 allows for unbounded initial

functions, as well as larger than linear growth of f .

2. Background and motivation. Classical existence theory for (1) begins with

a local result. It is shown that for each (t0, x0) ∈ [0,∞) × Rn, there is at least one

solution x(t) = x(t, t0 , x0) with x(t0, t0, x0) = x0 and satisfying (1) on an interval [t0, t1],

where t1 is computed from a bound on f in a closed neighborhood of (t0, x0). This

yields a new point (t1, x(t1)) and we begin once more computing bounds on f in a closed

neighborhood of (t1, x(t1)) and obtain a continuation of the solution on [t1, t2]. These are

the aforementioned local and piecemeal parts.

If we continue this process on intervals {[tn, tn+1]}, can we say that tn → ∞ as n→ ∞?

It turns out that we can unless there is an α such that |x(t)| tends to infinity as t tends to
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α from the left. This is the awkward part. Either implicitly or explicitly (cf. Hale [9; p.

42]) we invoke Zorn’s lemma to claim that there is a solution on [t0,∞) or one on [t0, α)

which can not be continued to α. Some authors call a solution on [t0,∞) noncontinuable.

We do not; for our purposes, if a solution is defined on [t0, α) with α < ∞, and if it can

not be extended to α, it is said to be noncontinuable. An example of the latter case is

x′ = x2, (t0, x0) = (0, 1)

which has the solution x(t) = 1
1−t

on [0, 1) and is noncontinuable. In fact, two more

examples complete the range of possibilities. Solutions of x′ = −x3 are all continuable to

+∞ because they are bounded, even though the right-hand-side grows faster than in the

first example. Finally, solutions of x′ = t3x`n(1 + |x|) are unbounded, but continuable to

+∞ because the right-hand-side does not grow too fast.

We come then to the question of how to rule out noncontinuable solutions of the kind

mentioned above. In principle, there is a fine way of doing so. Kato and Strauss [6] prove

that it always works.

DEF. A continuous function V : [0,∞) ×Rn → [0,∞) which is locally Lipschitz in x is

said to be mildly unbounded if for each T > 0, lim
|x|→∞

V (t, x) = ∞ uniformly for 0 ≤ t ≤ T .

If there is a mildly unbounded V which is differentiable, then we invoke the local

existence theory and consider a solution x(t) of (1) on [t0, α) so that V (t, x(t)) is an

unknown but well-defined function. The chain rule than gives

dV

dt
(t, x(t)) =

n
∑

i=1

∂V

∂xi

dxi

dt
+
∂V

∂t

= gradV · f +
∂V

∂t
.

We can also compute V ′ when V is only locally Lipschitz in x (cf. Yoshizawa [17; p. 3]) and

we will display such an example in a moment; in that case, one uses the upper right-hand

derivative.

If V is so shrewdly chosen that it is mildly unbounded and V ′ ≤ 0, then there can be

no α <∞ with lim
t→α−

|x(t)| = ∞ because V (t, x(t)) ≤ V (t0, x0).
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There is a converse theorem; if f is continuous and locally Lipschitz in x for each fixed

t, then Kato and Strauss [6] show that there is a mildly unbounded V with V ′ ≤ 0 if and

only if all solutions can be continued for all future time. Their result is not constructive,

but investigators have constructed suitable V for many important systems without any

growth condition on f ; we offer examples following each of our theorems. In the example

x′ = −x3 mentioned above, V = x2 yields V ′ = −2x4 ≤ 0, showing global existence.

These remarks for (1) apply in large measure to (2) and (3). In those cases we require

a functional V (t, x(·)). More importantly, as mentioned above, for (1) the only way a

solution can fail to be continuable to +∞ is for there to exist an α with lim
t→α−

|x(t)| = +∞;

but for (3) we must take the limit supremum.

Wintner derived conditions on the growth of f to ensure that solutions of (1) could

be continued to +∞ and Conti used these to construct a suitable V . These results are

most accessible in Hartman [10; pp. 29–30] for the Wintner condition and Sansone-Conti

[13; p. 6] for V . A proof here will show how it works and will be a guide for an alternative

proof of each of our Lemma 3 for each of our theorems.

Theorem (Conti-Wintner). If there are continuous functions Γ : [0,∞) → [0,∞)

and W : [0,∞) → [1,∞) with

|f(t, x)| ≤ Γ(t)W (|x|) and

∫ ∞

0

ds

W (s)
= ∞, then

V (t, x) =

{
∫ |x|

0

ds

W (s)
+ 1

}

exp−

∫ t

0

Γ(s)ds

is mildly unbounded and V ′(t, x(t)) ≤ 0 along any solution of (1).

Proof. Let x(t) be a noncontinuable solution of (1) on [t0, α). By examining the differ-

ence quotient we see that |x(t)|′ ≤ |x′(t)|. Thus,

V ′(t, x(t)) ≤
|x(t)|′

W (|x(t)|)
exp−

∫ t

0

Γ(s)ds − Γ(t)V (t, x(t)) ≤ 0

when we use |x(t)|′ ≤ |x′(t)| ≤ Γ(t)W (|x(t)|). This means that V (t, x(t)) ≤ V (t0, x0);

since V is mildly unbounded, lim
t→α−

|x(t)| 6= ∞. This completes the proof.
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In the next two sections we will prove a result which will give a global solution in

one step. But we still want a local solution as a special case. This can be accomplished

by extending f over a compact set to a continuous bounded function on Rn+1. There are

classical extension theorems which we use in Theorems 3 and 4, but the following idea of

a colleague, G. Makay, makes it elementary for Theorems 1 and 2.

Remark on extension. Suppose that f is continuous on ∆ = {(t, x)|t0 ≤ t ≤ T, |x −

x0| ≤ J} for T > t0 and J > 0. We want to extend f to all of R × Rn in a bounded

and continuous manner. Since ∆ is convex, if we choose (t1, y1) as any interior point of ∆

and if Q is any ray from (t1, y1) then Q intersects the boundary of ∆ at exactly one point

(tQ, xQ). Define F : R×Rn → Rn by

(i) F (t, x) = f(t, x) if (t, x) ∈ ∆, and

(ii) F (t, x) = f(tQ, xQ) if (t, x) is on Q and in the complement of ∆.

Clearly, F is bounded, continuous, and agrees with f on ∆.

Our results are based on the following theorem of Schafer [14] which is discussed and

proved also in Smart [16; p. 29].

Theorem (Schaefer). Let (C, ‖ · ‖) be a normed space, H a continuous mapping of C

into C which is compact on each bounded subset of C. Then either

(i) the equation x = λHx has a solution for λ = 1, or

(ii) the set of all such solutions x, for 0 < λ < 1, is unbounded.

2. Existence theory for (1). Let 0 ≤ λ ≤ 1 and consider

(4) x′ = λf(t, x), x(t0) = λx0

or the equivalent integral equation

(5) x(t) = λ

[

x0 +

∫ t

t0

f(s, x(s))ds

]

=: λH(x)(t).

Theorem 1. If either of the following conditions hold, then for each (t0, x0) ∈ [0,∞)×

Rn, there is a solution of (1) on [t0,∞).
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(I) There are continuous functions Γ : [0,∞) → [0,∞) and W : [0,∞) → [1,∞) with

|f(t, x)| ≤ Γ(t)W (|x|) and

∫ ∞

0

ds

W (s)
= ∞.

(II) There is a continuous function V : [0,∞)×Rn → [0,∞) which is locally Lipschitz

in x, mildly unbounded, and V ′(t, x(t)) ≤ 0 along any continuous solution of (4) defined

on [t0,∞).

Proof. Let T > t0 be given. We will show that there is a solution x(t, t0 , x0) of (1) on

[t0, T ].

Let (C, ‖ · ‖) be the Banach space of continuous functions ϕ : [t0, T ] → Rn with the

supremum norm. From (5) we consider ϕ ∈ C and write

H(ϕ)(t) = x0 +

∫ t

t0

f(s, ϕ(s))ds.

The conditions of Schaefer’s theorem will be verified by three simple lemmas.

Lemma 1. H : C → C and H maps bounded sets into compact sets.

Proof. For ϕ ∈ C we have f(t, ϕ(t)) continuous and so H(ϕ)(t) is continuous. Thus,

H : C → C .

For a given J > 0, if ϕ ∈ C and ‖ϕ‖ ≤ J , then there is a J∗ > 0 with |f(t, ϕ(t))| ≤ J∗

for t0 ≤ t ≤ T . Thus, there is a K > 0 with |H(ϕ)(t)| ≤ K. Also, |(H(ϕ)(t))′ | =

|f(t, ϕ(t))| ≤ J∗. By Ascoli’s theorem, this set of ϕ is mapped into a compact set.

Lemma 2. H is continuous.

Proof. Let J > 0 be given and let ϕi ∈ C with ‖ϕi‖ ≤ J , i = 1, 2. Now f is uniformly

continuous for |x| ≤ J and t0 ≤ t ≤ T , so for each ε > 0 there is a δ > 0 such that

[t0 ≤ t ≤ T and |ϕ1(t) − ϕ2(t)| ≤ δ] imply that |f(t, ϕ1(t)) − f(t, ϕ2(t))| < ε. Thus,

‖ϕ1 − ϕ2‖ ≤ δ and t0 ≤ t ≤ T imply that

|H(ϕ1)(t) −H(ϕ2)(t)| =

∣

∣

∣

∣

∫ t

t0

[

f(s, ϕ1(s)) − f(s, ϕ2(s))
]

ds

∣

∣

∣

∣

< ε[T − t0]
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and so ‖H(ϕ1) −H(ϕ2)‖ < ε[T − t0].

Lemma 3. There is a K > 0 such that if ϕ(t) = λH(ϕ)(t) for t0 ≤ t ≤ T , then

‖ϕ‖ ≤ K.

Proof. If (I) holds, then a suitable V for (4) is constructed in the Conti-Wintner theorem

since λ ≤ 1 which satisfies (II) and so (I) is a special case of (II). Thus, for the mildly

unbounded V we always have V (t0, ϕ(t0)) = V (t0, λx0), a fixed constant for every ϕ; since

V is continuous and x0 is fixed, there is a P > 0 with V (t0, λx0) ≤ P if 0 ≤ λ ≤ 1. But

by the definition of V being mildly unbounded, V (t, ϕ) → ∞ as |ϕ| → ∞ uniformly for

t0 ≤ t ≤ T . Hence, there is a K > 0 with ‖ϕ‖ ≤ K whenever ϕ satisfies (5).

All of the conditions of Schaefer’s theorem are satisfied, his condition (ii) is ruled out

by Lemma 3, and so (5) has a solution for λ = 1. That solution satisfies (1).

COR. Let f(t, x) be continuous for |x−x0| ≤ J and t0 ≤ t ≤ T , and let |f(t, x)| ≤M on

that set. Then (1) has a solution x(t, t0, x0) defined for t0 ≤ t ≤ α where α = min[T, t0 +

J/M)].

Proof. Let Ω = {(t, x)| |x− x0| ≤ J , t0 ≤ t ≤ T}. Since f is continuous on Ω, by the

remark on extension in the previous section, we can extend f to a bounded and continuous

function F on R×Rn; hence, Condition (I) of Theorem 1 holds for F and there is a solution

x(t, t0, x0) = x(t) of x′ = F (t, x) for t0 ≤ t < ∞. Certainly, x(t) also satisfies (1) so long

as (t, x) ∈ Ω. If (t, x(t)) reaches the boundary of Ω at t1 < T and t1 < t0 + (J/M), then

|x(t1) − x0| ≤

∫ t

t0

|f(s, x(s))|ds ≤M(t1 − t0) < J,

a contradiction to (t, x(t)) reaching the boundary at t1. This completes the proof.

Remark. Lakshmikantham and Leela [12 (vol. I); p. 46] have a global existence theorem

partially in the spirit of Theorem 1(I). But the theorem and proof fall short of ours in

four ways. First, they must work up differential inequality and maximal solution theory

to find an upper bound on a solution set. Next, they require theory for a locally convex

topological vector space and the Tychonov fixed point theorem. Thirdly, they must find a
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self-mapping set. Finally, they require that the Wintner function W (|x|) be monotone, a

condition we do not need until we consider (2).

Example 1. Consider the scalar equation

x′′ + h(t, x, x′)x′ + g(x) = e(t)

where h(t, x, y) ≥ 0, xg(x) > 0 if x 6= 0, h, g, and e are continuous. Write the equation as

x′ = λy

y′ = λ[−h(t, x, y)y − g(x) + e(t)]

and define a mildly unbounded function by

V (t, x, y) =

[

y2 + 2

∫ x

0

g(s)ds + ln(|x| + 1) + 1

]

exp−

∫ t

0

E(s)ds

where E(t) = 2|e(t)| + 1 so that

V ′(t, x, y) ≤

[

−2λh(t, x, y)y2 + 2λye(t) + |y| − E(t)(y2 + 1)

]

exp−

∫ t

0

E(s)ds ≤ 0.

Thus, by Theorem 1 all solutions exist on [t0,∞).

3. An integral equation. Consider once more

(2) x(t) = a(t) +

∫ t

0

D(t, s, x(s))ds

with its continuity conditions.

Theorem 2. If either of the following conditions hold, then (2) has a solution on [0,∞):

(I) There are continuous increasing functions Γ : [0,∞) → [0,∞) and W : [0,∞) →

[1,∞) with

(6)

∫ ∞

0

ds

W (s)
= ∞ and |D(t, s, x)| ≤ Γ(t)W (|x|) for 0 ≤ s ≤ t.
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(II) There is a differentiable scalar functional V (t, x(·)) which is mildly unbounded

along any solution of

(7) x(t) = λ

[

a(t) +

∫ t

0

D(t, s, x(s))ds

]

=: λH(x)(t), 0 ≤ λ ≤ 1,

and which satisfies V ′(t, x(·)) ≤ 0 along such a solution.

Proof. Let T > 0 and (C, ‖ · ‖) be the Banach space of continuous ϕ : [0, T ] → Rn with

the supremum norm. We will show that there is a solution x(t) of (2) on [0, T ].

Lemma 1. If H is defined by (7) then H : C → C and H maps bounded sets into

compact sets.

Proof. If ϕ ∈ C , then D(t, s, ϕ(s)) is continuous and so H(ϕ) is a continuous function

of t. Let J > 0 be given and let B = {ϕ ∈ C | ‖ϕ‖ ≤ J}. Now a(t) is uniformly

continuous on [0, T ] and D(t, s, x) is uniformly continuous on ∆ = {(t, s, x)|0 ≤ s ≤ t ≤ T ,

|x| ≤ J}. Thus, for each ε > 0 there is a δ > 0 such that for (ti, si, xi) ∈ ∆, i = 1, 2,

then |(t1, s1, x1) − (t2, s2, x2)| < δ implies that |D(t1, s1, x1) −D(t2 , s2, x2)| < ε; a similar

statement holds for a(t). If ϕ ∈ B then 0 ≤ ti ≤ T and |t1 − t2| < δ imply that

|H(ϕ)(t1) −H(ϕ)(t2)| ≤ |a(t1) − a(t2)|

+

∣

∣

∣

∣

∫ t1

0

[

D
(

t1, s, ϕ(s)
)

−D
(

t2, s, ϕ(s)
)

]

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t1

0

D
(

t2, s, ϕ(s)
)

ds−

∫ t2

0

D
(

t2, s, ϕ(s)
)

ds

∣

∣

∣

∣

≤ ε + t1ε+ |t1 − t2|M ≤ ε(1 + T ) + δM

where M = max
∆

|D(t, s, x)|. Hence, the set A = {H(ϕ)|ϕ ∈ B} is equicontinuous. More-

over, ϕ ∈ B implies that ‖H(ϕ)‖ ≤ ‖a‖ + TM . Thus, A is contained in a compact set by

Ascoli’s theorem.

Lemma 2. H is continuous in ϕ.

Proof. Let J > 0 be given, ‖ϕi‖ ≤ J for i = 1, 2, and for a given ε > 0 find the δ of
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uniform continuity on the region ∆ of the proof of Lemma 1 for D. If ‖ϕ1 −ϕ2‖ < δ, then

|H(ϕ1)(t) −H(ϕ2)(t)| ≤

∫ t

0

∣

∣D
(

t, s, ϕ1(s)
)

−D
(

t, s, ϕ2(s)
)
∣

∣ds

≤ Tε

so ‖H(ϕ1) −H(ϕ2)‖ ≤ Tε.

Lemma 3. There is a K > 0 such that any solution of (7), for 0 < λ < 1, satisfies

‖ϕ‖ ≤ K.

Proof. Let (I) hold. If ϕ satisfies (7) on [0, T ], then

|ϕ(t)| ≤ λ

[

A(T ) +

∫ t

0

Γ(T )W (|ϕ(s)|)ds

]

for 0 ≤ t ≤ T

where A(T ) = max
0≤t≤T

|a(t)|. If we define y(t) by

y(t) = λ

[

A(T ) + 1 + Γ(T )

∫ t

0

W (|y(s)|)ds

]

then y(t) ≥ |ϕ(t)| on [0, T ]; clearly, y(0) > |ϕ(0)| so if there is a first t1 with y(t1) = |ϕ(t1)|,

then a contradiction is clear. But the Conti-Wintner result gives a bound K on ‖y‖ and so

the lemma is true for (I). The argument when (II) holds is identical to the proof of Lemma

3 of Theorem 1.

The conditions of Schaefer’s theorem hold and, by Lemma 3, H has a fixed point for

λ = 1.

Remark. To appreciate the power of Schaefer’s theorem, compare Theorem 2 with a

standard treatment. For example, Corduneanu [3; pp. 95–109] arrives at Theorem 2(I)

through several pages of analysis.

COR. Let a(t) be continuous for 0 ≤ t ≤ T and D(t, s, x) be continuous on U =

{(t, s, x) | 0 ≤ s ≤ t ≤ T , |x− a(t)| ≤ J}. Then there is a solution of (2) on [0, α] where

α = min[T, J/M ] and M = max
U

|D(t, s, x)|.

We extend D to a bounded and continuous function on R×R×Rn and apply Theorem

2, just as we did in the corollary to Theorem 1.
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We now give an example which occupies a significant place in the literature (cf. Gripen-

berg et al [7; pp. 613–638]); and it also illustrates the change in language from Theorem

1(II) where we ask that V (t, x) be mildly unbounded, and in Theorem 2(II) where we ask

that V (t, x(·)) be mildly unbounded along a solution of (7).

Example 2. Consider the scalar equation

(8) x(t) = b(t) −

∫ t

−∞

D(t, s)g(s, x(s))ds

where b, D, and g are continuous, while xg(t, x) ≥ 0. To specify a solution of (8) we require

a bounded and continuous initial function ϕ : (−∞, 0] → R such that

(9) a(t) := b(t) −

∫ 0

−∞

D(t, s)g(s, ϕ(s))ds is continuous

so that

(10) x(t) = a(t) −

∫ t

0

D(t, s)g(s, x(s))ds

is essentially of the form of (2) when ϕ is chosen so that ϕ(0) = a(0). We also ask that

there exist a continuous function M with

(11) −2g(t, x)[x− λa(t)] ≤M(t), g(t, x) bounded for t ≤ 0 if x is bounded .

But the defining property of this example is

(12) D(t, s) ≥ 0, Ds(t, s) ≥ 0, Dst(t, s) ≤ 0, Dt(t, 0) ≤ 0.

This is an infinite delay problem and the following convergence condition is required:

(13)

∫ t

−∞

D(t, s)ds exists.

It is not necessary that ϕ(0) = a(0) but in that case x has a discontinuity:

(14) x(0) does not equal ϕ(0).
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For 0 ≤ λ ≤ 1, consider the equation

(15) x(t) = λ

[

a(t) −

∫ t

0

D(t, s)g(s, x(s))ds

]

and define

V (t, x(·)) =

{
∫ t

0

Ds(t, s)

(
∫ t

s

λg
(

v, x(v)
)

dv

)2

ds +D(t, 0)

(
∫ t

0

λg(v, x(v))dv

)2

+ 1

}

exp−

∫ t

0

M(s)ds.

(16)

Proposition. If (9) – (14) hold, then there is a solution x(t, ϕ) of (8) on [0,∞).

Proof. Let T > 0 be given. Because of the form of (10) and Theorem 2, we need only

prove that there is a K > 0 such that any solution of (15) on [0, T ] for 0 < λ < 1 satisfies

|x(t)| ≤ K on [0, T ]. Here are the steps:

(i) Differentiate V .

(ii) Integrate by parts the term in V ′ obtained from differentiating the inner integral

in the first integral in V.

(iii) Substitute λa(t) − x(t) from (15) into that last term obtained in (ii).

Since Dst ≤ 0 we will now have

V ′(t, x(·)) ≤ {−2λg(t, x(t))[x(t) − λa(t)] −M(t)} exp−

∫ t

0

M(s)ds

and this is not positive by (11) since xg(t, x) ≥ 0. Hence,

(17) V (t, x(·)) ≤ V (0, x(·)).

Here is the surprising part. It does not appear that V is mildly unbounded; however, along

a solution we have

(λa(t) − x(t))2 =

(
∫ t

0

λD(t, s)g(s, x(s))ds

)2

11



(from (15))

=

(

D(t, 0)

∫ t

0

λg(v, x(v))dv +

∫ t

0

Ds(t, s)

∫ t

s

λg(v, x(v))dv ds

)2

(upon integration by parts)

≤ 2

∫ t

0

Ds(t, s)ds

∫ t

0

Ds(t, s)

(
∫ t

s

λg(v, x(v))dv

)2

ds + 2D2(t, 0)

(
∫ t

0

λg(v, x(v))dv

)2

(by Schwarz’s inequality) with exp
∫ T

0
M(s)ds = U

≤ 2[D(t, 0) +D(t, t) −D(t, 0)]V (t, x(·))U = 2D(t, t)V (t, x(·))U.

Hence, V (t, x(·)) → ∞ as |x(t)| → ∞ uniformly for 0 ≤ t ≤ T . In particular, putting this

together with (17) yields

(λa(t) − x(t))2 ≤ 2D(t, t)V (0, x(·))U

for 0 ≤ t ≤ T . Hence, there is a K with |x(t)| ≤ K on [0, T ]. This will satisfy Lemma 3 of

Theorem 2 and the proposition is proved.

4. A finite delay equation. Let (G, | · |h) denote the Banach space of continuous

functions ψ : [−h, 0] → Rn with the supremem norm and consider the system

(18) x′(t) = f(t, xt)

where f : [0,∞) × G → Rn is continuous. Here, if x : [−h,A) → Rn for A > 0, then

xt(s) = x(t+ s) for −h ≤ s ≤ 0.

To specify a solution of (18) we require a t0 ≥ 0 and a ψ̃ ∈ G. We then seek a solution

x(t) = x(t, t0 , ψ̃) with xt0 = ψ̃ and x(t) satisfying (18) on an interval t0 < t < α for some

α > 0.

Yoshizawa [17; p. 184] shows that it is sufficient to ask that f be continuous in order

to prove existence of such a solution. But if we do not at least ask that f take bounded

12



sets into bounded sets, then a solution can have surprisingly bad behavior, as shown by

Hale [9; p. 44]. On the other hand, if f is continuous and locally Lipschitz in xt, then a

contraction mapping argument will quickly lead to a unique local solution.

Hale [9; p. 142] has a version of the next result in case W (r) = r. His system is linear

so he gets uniqueness as well.

Theorem 3. Suppose that either:

(I) there are continuous functions Γ : [0,∞) → [0,∞) and W : [0,∞) → [1,∞) with

W increasing and

|f(t, ψ)| ≤ Γ(t)W (|ψ|h) and

∫ ∞

0

ds

W (s)
= ∞; or

(II) f takes bounded sets into bounded sets and there is a continuous scalar functional

V (t, xt) which is locally Lipschitz in xt, mildly unbounded in xt, and V ′ ≤ 0 along any

solution of (19) (which is displayed in the following proof).

Then for each (t0, ψ̃) ∈ [0,∞) ×G, there is a solution x(t, t0 , ψ̃) of (18) on [t0,∞).

Proof. Let (t0, ψ̃) be given and let T > t0 be arbitrary. We will show that there is a

solution of (18) on [t0, T ] with xt0 = ψ̃.

Let (C, ‖ · ‖) be the Banach space of continuous functions ϕ : [t0 − h, T ] → Rn with

the supremum norm. Consider the equations

xt0 = λψ̃,

x(t) = λ

[

ψ̃(0) +

∫ t

t0

f(s, xs)ds

]

(19)

and define H : [t0 − h, T ] → Rn by ϕ ∈ C implies that

H(ϕ)t0 = ψ̃,

H(ϕ)(t) = ψ̃(0) +

∫ t

t0

f(s, ϕs)ds for t0 ≤ t ≤ T.

Lemma 1. H : C → C and H maps bounded sets into compact sets.

13



Proof. Let ϕ ∈ C . We first show that f(t, ϕt) is a continuous function of t so that

H(ϕ)(t) will be continuous. Let ε > 0 and t1 ∈ [t0, T ] be given; we must find δ > 0

such that t2 ∈ [t0, T ] and |t1 − t2| < δ imply that |f(t1, ϕt1) − f(t2, ϕt2)| < ε. Now ϕ

is uniformly continuous on [t0 − h, T ] and so for each ε1 > 0 there is a δ > 0 such that

ti ∈ [t0 − h, T ] and |t1 − t2| < δ implies that |ϕ(t1) − ϕ(t2)| < ε1; hence, [ti ∈ [t0, T ],

−h ≤ s ≤ 0, |t1 − t2| < δ] imply that | ϕ(t1 + s)−ϕ(t2 + s)| < ε1 so |ϕt1 −ϕt2 |h < ε1. But

f is continuous at (t1, ϕt1) so there is an ε1 > 0 such that |t1− t2| < ε1 and |ϕt1 −ϕt2| < ε1

imply that |f(t1, ϕt1) − f(t2 , ϕt2)| < ε. Thus, |t1 − t2| < δ < ε1 implies |ϕt1 − ϕt2|h < ε1

so |f(t1, ϕt1) − f(t2 , ϕt2)| < ε.

Let J > 0 be given, B = {ϕ ∈ C | ‖ϕ‖ ≤ J}. Then under either (I) or (II) f takes

bounded sets into bounded sets so there is a J∗ > 0 such that |f(t, ϕt)| ≤ J∗ for ϕ ∈ B

and t0 ≤ t ≤ T . Since H(ϕ)t0 = ψ̃, a fixed uniformly continuous function on [−h, 0] and

since t0 < t ≤ T implies that |(H(ϕ)(t))′ | = |f(t, ϕt)| ≤ J∗, it follows that H maps B into

an equicontinuous set. Also, ‖H(ϕ)|| ≤ |ψ̃|h + J∗[T − t0]. The lemma now follows from

Ascoli’s theorem.

Lemma 2. H is continuous.

Proof. Let ϕ ∈ C be given. We claim that for each ε > 0 there is a δ > 0 such that

t ∈ [t0, T ], ψ ∈ C , ‖ϕ − ψ‖ < δ imply that |f(t, ϕt) − f(t, ψt)| < ε. If this is false, then

there is an ε > 0, {tn} ⊂ [t0, T ], {ψ(n)} ⊂ C such that ‖ϕ − ψ(n)‖ → 0 as n → ∞, but

|f(tn, ϕtn
)− f(tn, ψ

(n)
tn

)| ≥ ε. Now there is a subsequence, say {tn} again, with {tn} → t∗;

also, ϕtn
→ ϕt∗ as n→ ∞. Thus, for large n we have

|f(tn , ϕtn
) − f(tn , ψ

(n)
tn

| ≤ |f(tn, ϕtn
) − f(t∗, ϕt∗)| + |f(t∗, ϕt∗) − f(tn, ψ

(n)
tn

)| < ε.

This is because f is continuous and the following is small:

|ϕt∗ − ψ
(n)
tn

|h ≤ |ϕt∗ − ϕtn
|h + |ϕtn

− ψ
(n)
tn

|h.

This is a contradiction, so there is a δ > 0 such that ‖ψ − ϕ‖ < δ implies that

14



‖H(ϕ) −H(ψ)‖ ≤

∫ T

t0

|f(s, ϕs) − f(s, ψs)|ds ≤ ε[T − t0],

proving Lemma 2.

Lemma 3. There is a K > 0 such that if ϕt0 = λψ̃ and ϕ(t) = λH(ϕ)(t) for t0 ≤ t ≤ T

and for some λ ∈ (0, 1), then ‖ϕ‖ ≤ K.

Proof. If (I) holds then we have

∣

∣ϕ(t)
∣

∣ ≤
∣

∣ψ̃
∣

∣

h
+

∫ t

t0

∣

∣f(s, ϕs)
∣

∣ds ≤
∣

∣ψ̃
∣

∣

h
+

∫ t

t0

Γ(s)W (|ϕs |h)ds

and, since the right-hand-side is increasing and ϕt0 = ψ̃λ, it follows that

∣

∣ϕt

∣

∣

h
≤

∣

∣ψ̃
∣

∣

h
+

∫ t

t0

Γ(s)W (|ϕs |h)ds.

Since W is increasing, |ϕt|h is bounded by any solution y(t) of

y(t) = |ψ̃|h + 1 +

∫ t

t0

Γ(s)W (y(s))ds

or of

y′ = Γ(t)W (y), y(t0) = |ψ̃|h + 1.

By the Conti-Wintner argument, those solutions are bounded by someK on [t0, T ]. Hence,

|ϕt|h ≤ K or ‖ϕ‖ ≤ K. This proves Lemma 3 when (I) holds. If (II) holds then a parallel

argument completes the proof.

By Schaefer’s theorem there is a solution of x = λHx for λ = 1. �

Cor. Let (t0, ψ̃) ∈ [0,∞) × G, |ψ̃|h = K, and suppose there is a J > 0, T > t0, and

M > 0 such that f(t, ψ) is continuous on

Ω = {(t, ψ) | t0 ≤ t ≤ T, |ψ|h ≤ K + J}

with |f(t, ψ)| ≤ M on Ω. Then there is a solution x(t) = x(t, t0 , ψ̃) of (18) defined for

t0 ≤ t ≤ α where α = min[T, t0 + J/M ].
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To prove this corollary, we extend f to a bounded continuous function F : R×C → Rn

with F (t, ψ) = f(t, ψ) on Ω, following Friedman [6; p. 111]. Then invoke Theorem 3 to

get a global solution. The choice of α is verified exactly as in the proof of the corollary of

Theorem 1.

Example 3. Consider the scalar equation

x′ = a(t)W (x(t)) +

∫ t

t−h

b(s)W (x(s))ds

where a, b, and W are continuous,W is increasing, |W (x)| ≤W (|x|),
∫ ∞

0
ds

W(s) = ∞. Then

x′ = a(t)W (x(t)) +

∫ 0

−h

b(t + s)W (x(t + s))ds

= a(t)W (x(t)) +

∫ 0

−h

b(t + s)W (xt(s))ds

=: f(t, xt).

Let Γ(t) = |a(t)| + h max
t−h≤s≤t

|b(s)|. Then |f(t, xt)| ≤ Γ(t)W (|xt|h) and the conditions of

Theorem 3 are satisfied.

5. Infinite delay. Let g : (−∞, 0] → [1,∞) be a continuous non-increasing function

and let (G, | · |g) be the Banach space of all continuous functions

ψ : (−∞, 0] → Rn for which |ψ|g = sup
−∞<s≤0

|ψ(s)/g(s)|

exists as a finite number. If A > 0 and if ϕ : (−∞, A] → Rn is continuous, then for

0 ≤ t ≤ A we define ϕt(s) = ϕ(t+ s) for −∞ < s ≤ 0.

Consider the system of functional differential equations

(20) x′(t) = f(t, xt)

and suppose that there is a space (G, |·|g) for (20) so that f : [0,∞)×G→ Rn is continuous

in the sense that if t1 ≥ 0 and ψ1 ∈ G, then for each ε > 0 there is a δ > 0 such that

[t ≥ 0, ψ ∈ G, |t− t1| < δ, |ψ1 − ψ|g < δ] imply that |f(t1 , ψ1) − f(t, ψ)| < ε.
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Clearly, the space (G, | · |g) is chosen in view of the properties of f . The prototype is

x′(t) = p(t, x(t)) +

∫ t

−∞

q(t, s, x(s))ds

where p is continuous and |q(t, s, x)| ≤ Ke−(t−s)|x|n. In this case we can choose g(t) =

1 + |tj | for any j > 0, for example.

The space (G, |·|g) admits g(t) ≡ 1 and then becomes the space of bounded continuous

functions with the supremum norm, but it will not satisfy an important property encoun-

tered in many problems: when x : (−∞, A) → Rn is bounded and continuous, then the

mapping t → xt need not be continuous, as the example x(t) = sin(t2) shows. Virtually

always we need to ask that g(s) → ∞ as s → −∞ and that makes (G, | · |g) a fading

memory space and (20) a fading memory equation. Properties of this space are discussed

extensively in Burton [1]. An example of Seifert [15]

x′(t) = −2x(t) + x(0)

with solutions

x(t, x(0)) = (1 + e−2t)x(0)/2

shows how disasterous the absence of a fading memory can be in asymptotic stability

theory.

Notice the progression from Theorem 1 to Theorem 4 of the continuity of f . In Lemma

1 in the proofs of both Theorem 1 and 2 we point out that f(t, x(t)) and D(t, s, x(s)) are

continuous functions of t and (t, s) (by the composite function theorem) when x(t) is

continuous. In Lemma 1 of Theorem 3 we prove that f(t, xt) is a continuous function of

t when x(t) is continuous. But that will not work in the infinite delay case and we are

compelled to add that as a hypothesis.

For a given t0 ≥ 0, ψ̃ in G, and λ in (0, 1), we also consider

(21) x′ = λf(t, xt), xt0 = λψ̃.
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Theorem 4. Suppose that if ϕ : R → Rn with ϕt ∈ G for t ≥ 0, then f(t, ϕt) is a

continuous function of t. Let (t0, ψ̃) ∈ [0,∞) ×G be given and suppose that either:

(I) there are continuous functions Γ : [0,∞) → [0,∞) and W : [0,∞) → [1,∞) with

W increasing, |f(t, ψ)| ≤ Γ(t)W (|ψ|g), and
∫ ∞

0
ds

W(s) = ∞; or

(II) f takes bounded sets into bounded sets and there is a continuous functional V :

[0,∞) × G → [0,∞) which is locally Lipschitz in ψ with V ′(t, xt) ≤ 0 along any solution

of (21) and for each T > 0 then V (t, ψ) → ∞ as |ψ|g → ∞ uniformly for 0 ≤ t ≤ T .

Then there is a solution x(t) = x(t, t0 , ψ̃) of (20) on [t0,∞) with xt0 = ψ̃.

Proof. Let T > 0 be given and let (C, ‖ · ‖) be the Banach space of continuous functions

ϕ : (−∞, T ] → Rn for which ‖ϕ‖ := sup
t0≤s≤T

|ϕs|g exists as a finite number. Define H : C →

C by ϕ ∈ C implies that

H(ϕ)t0 = ψ̃

H(ϕ)(t) = ψ̃(0) +

∫ t

t0

f(s, ϕs)ds for t ≥ t0.

Lemma 1. H : C → C and H maps bounded sets into compact sets.

Proof. Since ϕ ∈ C implies that f(t, ϕt) is a continuous function of t and sinceH(ϕ)(t) =

ψ̃(t− t0) for t < t0 with ψ̃ ∈ G, it follows that H : C → C . For a given J > 0, if t0 ≤ t ≤ T

and if {ϕ(n)} ⊂ C is any sequence satisfying ‖ϕ(n)‖ ≤ J , then there is an M > 0 with

|f(t, ϕ
(n)
t )‖ ≤ M by either (I) or (II). Hence, by Ascoli’s theorem there is a subsequence,

say {ϕ(n)} again, such that {H(ϕ(n))} converges uniformly to a function ϕ for t0 ≤ t ≤ T

and with H(ϕ(n))(t0) = ψ̃(0), so that ϕ(t0) = ψ̃(0). Hence, {H(ϕ(n))} converges to ϕ on

[t0, T ] and H(ϕ(n))(t) = ψ̃(t − t0) for t < t0. Thus, the bounded set {ϕ ∈ C | ‖ϕ‖ ≤ J} is

mapped into a compact set.

Lemma 2. H is continuous.

Proof. If we replace |.|h by |.|g, since we assume that f(t, ϕt) is a continuous function of

t, the proof becomes identical to that of Lemma 2 for Theorem 3.
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Lemma 3. There is a constant K such that if ϕ = λH(ϕ) for 0 < λ < 1, then ‖ϕ‖ ≤ K.

Proof. If t0 ≤ t ≤ T , then for (I) we have

|ϕ(t)| ≤ |ψ̃|g +

∫ t

t0

Γ(s)W (|ϕs|g)ds

and the right-hand side is increasing, while ϕt0 = λψ̃; hence,

|ϕt|g ≤ |ψ̃|g +

∫ t

t0

Γ(s)W (|ϕs|g)ds.

Thus, |ϕt|g is bounded by any solution of

y(t) = |ψ̃|g + 1 +

∫ t

t0

Γ(s)W (y(s))ds.

By the Conti-Wintner argument, K exists. When (II) holds there is a parallel argument.

Theorem 4 now follows from Schaefer’s result.

Cor. Let (t0, ψ̃) ∈ [0,∞) × G, |ψ̃|g = K, and suppose there are T > t0 and J > 0 such

that for (C, ‖ · ‖) defined in the proof of Theorem 4,

(i) if t0 ≤ t ≤ T and ϕ ∈ C with |ϕt|g ≤ J +K, then f(t, ϕt) is a continuous function

of t, and

(ii) if t0 ≤ t ≤ T , ϕ ∈ C, |ϕt|g ≤ K + J then |f(t, ϕt)| ≤M .

Then (19) has a solution x(t, t0, ψ̃) for t0 ≤ t ≤ α where α = min[T, t0 + J/M ].

The corollary is proved by using the extension theorem [6; p. 111] again.

The most important idea that an example can convey is that of the fading memory

and how it can make f(t, ϕt) continuous when ϕt ∈ G and ϕ(t) is continuous. Thus, our

example is a simple one.

Example 4. Consider the scalar equation

x′(t) =

∫ t

−∞

D(t, s)x(s)ds =

∫ 0

−∞

D(t, u + t)xt(u)du =: f(t, xt)

where D is continuous and |D(t, s)| ≤ e−(t−s). Select g(t) = 1 + |t|. If ϕ : R → Rn is

continuous and if for each t ≥ 0, ϕt ∈ G, then this means that |ϕt|g = sup
−∞<s≤0

|ϕ(t +
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s)/[1 + |s|]| exists as a finite number, say k, so that |ϕ(t+ s)| ≤ k(1 + |s|) for s ≤ 0. Now

ϕt is certainly not continuous in the sense that |ϕt − ϕs|g is small for |t − s| small and

so we are not depending on a composite function theorem to make f(t, ϕt) a continuous

function of t. Instead, we rely on the fading memory. For

∫ 0

−∞

D(t, u+ t)ϕt(u)du =

∫ −P

−∞

D(t, u + t)ϕt(u)du+

∫ 0

−P

D(t, u + t)ϕt(u)du

and
∣

∣

∣

∣

∫ −P

−∞

D(t, u+ t)ϕt(u)du

∣

∣

∣

∣

≤

∫ −P

−∞

euk(1 + |u|)du→ 0 as

P → ∞, while
∫ 0

−P
D(t, u+ t)ϕt(u)du is a continuous function of t. The tail of ϕt fades in

importance. Clearly, the growth condition of (I) is satisfied.
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