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ABSTRACT: The equation x′(t) = −
∫ t

α(t)
D(t, s)g(x(s))ds is studied with a view to

giving conditions to ensure that all solutions are bounded when
∫ x

0 g(s)ds is not necessarily

unbounded with x. The cases α(t) = −∞, α(t) = 0, and α(t) = t − T are studied.
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1. Introduction. The parallel problems

(1) x′(t) = −
∫ t

0

D(t, s)g(x(s))ds

and

(2) x(t) = a(t) −
∫ t

0

D(t, s)g(x(s))ds

in which a(t), D(t, s), g(x) are continuous scalar functions,

(3) D(t, s) ≥ 0, Ds(t, s) ≥ 0, Dst(t, s) ≤ 0,Dt(t, 0) ≤ 0

and

(4) xg(x) > 0 if x 6= 0
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have been discussed extensively in the literature ([4], [5], [6; pp. 539–556, 614–631], [7],

[10], [11], [12] [14]) with a view to showing that solutions are bounded and tend to zero

as t → ∞. Under the stated conditions there is a Liapunov function for each of them,

patterned after the one of Levin [11] for (1).

The curious fact about the parallel results is that we seem to always require

(5)

∫ x

0

g(s)ds → ∞ as |x| → ∞

in order to prove that solutions of (1) are bounded, but (5) never appears in boundedness

results for (2). It is very easy to see why (5) is asked for (1) when we use the Liapunov

function

V (t, x(·)) =

∫ x

0

g(s)ds + 1
2D(t, 0)

(
∫ t

0

g(x(v))dv

)2

+ 1
2

∫ t

0

Ds(t, s)

(
∫ t

s

g(x(v))dv

)2

ds

with V ′

(1) ≤ 0; but even when transform methods are used on (1), (5) is still required.

Moreover, it is easy to see why (5) is not required for (2) when using its Liapunov function

because one finds that under mild conditions that Liapunov function is bounded below by

the quantity (x(t) − a(t))2 along any solution, regardless of how small g may be.

Thus, the problem we address here is whether or not (5) can be removed for (1). We

show that it frequently can be done. To motive the conditions we first treat the simple

finite delay equation

(6) x′(t) = −
∫ t

t−h

d(t − s)g(x(s))ds, h > 0,

with

(7) d(h) = 0, d′(t) < 0, d′′(t) > 0, xg(x) > 0 if x 6= 0,

and all functions in (7) continuous, h a positive constant. This equation has generated

some interest, as may be seen in Levin and Nohel [13], Hale [9; pp. 120–3], and Burton
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Hatvani [3], usually under the weaker assumption

(7∗) d(h) = 0, d(t) ≥ 0, d′(t) ≤ 0, d′′(t) ≥ 0, xg(x) > 0 if x 6= 0

and, again,

(5)

∫ x

0

g(s)ds → ∞ as |x| → ∞.

In those references, (5) is used to show that all solutions are bounded. The weaker condi-

tions in (7)∗ imply that solutions converge to a set satisfying

(x′)2 + 2

∫ x

0

g(s)ds = constant.

In the next section we show that (5) is not needed at all for (6); (7) alone implies that

all solutions are bounded and converge to zero. Condition (7) can be relaxed somewhat

and d can be of nonconvolution type; details of such changes are easily gleaned from our

subsequent work with (1). But that work is fairly technical and it seems well worth the

simplification in (7) to show the process involved.

The last section contains results for infinite delay.

2. Constant delay. All of our results rest on the following theorem found in [1].

Let H : [0,∞) × Rn → Rn be continuous and

(i) x′ = H(t, x).

Suppose that V, P, U : [0,∞) × Rn → [0,∞) and Q : [0,∞) × [0,∞) × Rn → [0,∞) are

continuous with

(ii) V (t, x) = P (t, x) + U(t, z)

where x = (x1, . . . , xn−1, z) and the derivative of V along a solution of (i) satisfies

(iii) V ′(t, x) ≤ −Q(P (t, x), t, x)
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with Q(P, t, x) > 0 if P > 0 and with Q monotone increasing in P .

Theorem A. Let (ii) and (iii) hold and suppose there is an L > 0 such that if tn → ∞

and zn → ∞ then

(iv) U(tnzn) → L,U(t, z) < L for all (t, z) with z > 0.

If V1(t, x) = V (t, x) − L and if x(t) is a solution of (i) on [t0,∞) with lim sup
t→∞

z(t) = ∞,

then

(v) V ′

1(t, x) ≤ −Q(V1(t, x)/2, t, x) for z(t) > 0.

The result is stated for ordinary differential equations without a delay, but it is valid

for delay equations, as is discussed in [1]. Also, in [1] the condition that Q be monotone

increasing in P was inadvertantly left out, but was clearly used in the proof.

Theorem 1. If (7) holds then every solution of (6) is bounded and converges to zero.

Proof. To specify a solution of (6) we require a t0 ≥ 0 and a continuous initial function

ϕ : [t0 − h, t0] → R. There is then a solution x(t, t0, ϕ) with x(t, t0 , ϕ) = ϕ(t) for t0 − h ≤

t ≤ t0, and satisfying (6) on an interval [t0, α); if the solution remains bounded, then

α = ∞. Such theory is found in [9], for example.

Let x(t) be a solution of (6) and define

V (t, x(·)) = 2

∫ x

0

g(s)ds −
∫ t

t−h

d′(t − s)

(
∫ t

s

g(x(v))dv

)2

ds

so that for V = V (t, x(·)) we have

V ′ = −2g(x)

∫ t

t−h

d(t − s)g(x(s))ds −
∫ t

t−h

d′′(t − s)

(
∫ t

s

g(x(v))dv

)2

ds

+ d′(h)

(
∫ t

t−h

g(x(v))dv

)2

− 2g(x)

∫ t

t−h

d′(t − s)

∫ t

s

g(x(v))dv ds.

An integration by parts of the last term yields

− 2g(x)

[

−d(t − s)

∫ t

s

g(x(v))dv

∣

∣

∣

∣

s=t

s=t−h

−
∫ t

t−h

d(t − s)g(x(s))ds

]

= 2g(x)

∫ t

t−h

d(t − s)g(x(s))ds
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so that

V ′ ≤ −
∫ t

t−h

d′′(t − s)

(
∫ t

s

g(x(v))dv

)2

ds ≤ 0.

Since d′(t) and d′′(t) are continuous and not zero on [0, h], there is a positive constant k1

with

(8a) V ′ ≤ k1

∫ t

t−h

d′(t − s)

(
∫ t

s

g(x(v))dv

)2

ds

or

(8b) V ′ ≤ −k1

[

V − 2

∫ x

0

g(s)ds

]

.

Next, an integration by parts on (6) yields

(x′)2 =

(

d(t − s)

∫ t

s

g(x(v))dv

∣

∣

∣

∣

s=t

s=t−h

+

∫ t

t−h

d′(t − s)

∫ t

s

g(x(v))dv ds

)2

≤
∫ t

t−h

[d′(t − s)2/d′′(t − s)]ds

∫ t

t−h

d′′(t − s)

(
∫ t

s

g(x(v))dv

)2

ds,

by the Schwarz inequality, so that

(9) (x′)2 ≤ k2

∫ t

t−h

−d′(t − s)

(
∫ t

s

g(x(v))dv

)2

ds

for some k2 > 0, using once more that d′ and d′′ are not zero and continuous on [0, h].

Thus, (8a) and (9) will yield

(8c) V ′ ≤ −γ(x′)2

for γ = k1/k2.

Lemma 1. If x(t) is a bounded solution of (6) then x(t) → 0 as t → ∞.

Proof. If x(t) 9 0, then there is an X ∈ R with |X| = 3C , C > 0, and a sequence

{tn} ↑ ∞ such that x(tn) → X. Now V ′ ≤ 0 so for V = V (t) = V (t, x(·)) we have

0 ≤ V (tn+1) ≤ V (tn). We may suppose, by renumbering, that |x(tn) − X| < C for all n.

Also, for a given n, either:
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(a) |x(t) − X| ≤ 2C for tn ≤ t ≤ tn + h or

(b) there is an sn ∈ [tn, tn + h) with |x(sn) − x(tn)| ≥ C .

Moreover, there is a y > 0 with |g(x)| ≥ y if |x − X| ≤ 2C . If (a) holds then for

tn ≤ t ≤ tn + h we have from (8a) that

V ′ ≤ −k1|d′(h)|y2

∫ h

0

s2ds =: −µ < 0.

Hence, V decreases at least by µh on [tn, tn + h]. If (b) holds, then from (8c) we have by

integration that

V (sn) − V (tn) ≤ −
∫ sn

tn

γ(x′(s))2ds

≤ −(γ/h)

(
∫ sn

tn

|x′(s)|ds

)2

(by the Schwarz inequality)

≤ −(γ/h)|x(sn) − x(tn)|2

≤ −γC2/h.

In either case, V (tn) → −∞, a contradiction proving the lemma.

Since V ≥ 2
∫ x

0
g(s)ds and V ′ ≤ 0, if (5) holds then all solutions are bounded and the

proof is complete. Thus, we suppose that (5) fails and, to be definite, let 2
∫

∞

0
g(s)ds =

L < ∞. We will show that x(t) is bounded above. A parallel argument would show that

x(t) is bounded below if 2
∫

−∞

0
g(s)ds = L < ∞.

Thus, we turn to Theorem A and suppose there is a sequence {tn} ↑ ∞ such that

x(tn) → ∞. In Theorem A we have x = z and n = 1, while

U(t, z) = 2

∫ x

0

g(s)ds, P = P (t) = −
∫ t

t−h

d′(t − s)

(
∫ t

s

g(x(v))dv

)2

ds,

Q(P, t, x) = k1P (t) from (8a), so Q is monotone increasing in P . If V1 = V − L, then (iv)

holds and for x(t) > 0 from (v) and (8a), (8b) we have

(8d) V ′

1 ≤ −(k1/2)V1.
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We will not use (8d) here because this problem is so simple, but the corresponding step in

(1) is crucial and we want the reader to see how Theorem A is used twice.

Now we apply Theorem A again, using (9), (8a), (8c), and the definition of P . We

obtain a new Q by noting that

(8e) V ′ ≤ −
√

k1γ
√

P (t)|x′| =: −Q(P (t), t)

with Q again being monotone in P . Thus, by Theorem A when x(t) > 0 we have

(8f) V ′

1 ≤ −
√

k1γ/2
√

V1|x′|.

If x(s) > 0 on an interval [a, t] then

−V
1/2
1 (t0) ≤ V

1/2
1 (t) − V

1/2
1 (a) ≤ −

√

k1γ/23|x(t) − x(a)|

where x(t) is defined on [t0,∞). This means that x(t) is bounded above and the proof is

complete.

3. Unbounded delay and necessary conditions. To see some of the essential

differences between (1) and (6) we will derive a necessary condition on a simplified form

of (1) to ensure that solutions tend to zero. Let

(3a) D(t, s) = E(s)/C(t)

so that in view of (3) we ask

(3b) E′(t) ≥ 0 and C ′(t) ≥ 0.

Proposition 1. Let (3a) and (3b) hold for (1). Then (1) has a nonzero solution which

tends to zero as t → ∞ only if C2(t)E(t) → ∞ as t → ∞.

Proof. From (1) and (3a) we have

C(t)x′ = −
∫ t

0

E(s)g(x(s))ds
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so that

C ′(t)x′ + C(t)x′′ + E(t)g(x) = 0

or

x′′ + [C ′(t)/C(t)]x′ + [E(t)/C(t)]g(x) = 0.

Write this as the system

x′ = y

y′ = −[C ′(t)/C(t)]y − [E(t)/C(t)]g(x).(10)

Define a function

V (t, x, y) =
y2

2E(t)
+

1

C(t)

∫ x

0

g(s)ds

so that if (x(t), y(t)) is a solution of (10) and if V (t) = V (t, x(t), y(t)), then

V ′(t) = −C ′(t)

C2(t)

∫ x

0

g(s)ds − E′(t)

2E2(t)
y2 +

g(x)y

C(t)

− C ′(t)y2(t)

C(t)E(t)
− E(t)yg(x)

C(t)E(t)

≥
[−2C ′(t)

C(t)
− E′(t)

E(t)

]

V (t)

so that if C2(t)E(t) is bounded, then

V (t) ≥ V (0) exp−[ln(C(t)/C(0))2 + ln(E(t)/E(0))] ≥ k

for some k > 0 since V (0) > 0. If x(t) → 0, then for large t we have y2(t) ≥ kE(t) ≥ k0 for

some k0 > 0. But x′ = y implies then that x(t) is unbounded. This completes the proof.

Remark. Much is known about (10). If, for example, (5) holds, C(t) is constant, and

E(t) → ∞ in a fairly regular fashion, then it is well-known that x(t) → 0. On the other

hand, if E(t) is constant, then V ′(t) ≤ −[C ′/C ]V ; thus, if (5) holds then x(t) is bounded

and arguments of the type given in Burton-Grimmer [2] show that x(t) → 0 provided that

C(t) → ∞ in a fairly regular fashion. Most of the results on (1) concern convolution type
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D and so E(t) and C(t) increase at about the same rate; this example shows that E and

C can increase at very different rates. Our up-coming Lemma 2 will show that solutions

of (1) tend to zero when D(t, s) decreases to zero as t → ∞ for fixed s. And it would be

very interesting to get a parallel result focusing on s.

We now give sufficient conditions for boundedness of solutions of (1) when (5) fails.

Suppose there are ki > 0, T > 0, a continuous function f : [0,∞) → [0,∞) such that t ≥ T

and 0 ≤ s ≤ t imply that

(11) D2(t, 0) ≤ k1f(t)D(t, 0),

(12)

∫ t

0

−[D2
s(t, s)/Dst(t, s)]ds ≤ k2, k = 2max[k1, k2],

(13) |Dt(t, 0)| ≥ 2f(t)D(t, 0)k3 , k3 ≤ 1
2 ,

(14) −Dts(t, s) ≥ f(t)Ds(t, s).

Example 1. If D(t, s) = (t−s+1)−n , n > 1, then (11) – (14) hold with f(t) = n/(t+1),

k1 = 1/n, k2 = n/(n + 1)(n − 1), k3 = 1/2.

Remark. We will see that f and k3 are the crucial quantities.

Theorem 2. If (11) – (14) hold, if x(t) is a solution of (1), if G(x) :=
∫ x

0
g(s)ds → L

as x → ∞, if

V (t, x(·)) =

∫ x

0

g(s)ds + 1
2D(t, 0)

(
∫ t

0

g(x(s))ds

)2

+ 1
2

∫ t

0

Ds(t, s)

(
∫ t

s

g(x(v))dv

)2

ds,

then there is a γ > 0 with

V ′ ≤ −γ(x′)2, and if V1 = V − L, then for x(t) > 0
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we have

(15) V ′ ≤ −2k3f(t)(V − G(x)),

(16) V ′

1 ≤ −k3f(t)V1 ,

and

(17) V ′

1 ≤ −
[

k3/
√

k

]

√

f(t)V1 |x′|.

Proof. An integration by parts of (1) yields

(x′)2 =

(

D(t, s)

∫ t

s

g(x(v))dv

∣

∣

∣

∣

s=t

s=0

−
∫ t

0

Ds(t, s)

∫ t

s

g(x(v))dv ds

)2

≤ 2D2(t, 0)

(
∫ t

0

g(x(v))dv

)2

+ 2

(
∫ t

0

Ds(t, s)

[

√

−Dst(t, s)/
√

−Dst(t, s)

]
∫ t

s

g(x(v))dv ds

)2

so that by Schwarz’s inequality and (12)

(x′)2 ≤ 2D2(t, 0)

(
∫ t

0

g(x(v))dv

)2

+ 2k2

∫ t

0

−Dst(t, s)

(
∫ t

s

g(x(v))dv

)2

ds

while by (11)

(18) (x′)2 ≤ k

[

f(t)D(t, 0)

(
∫ t

0

g(x(v))dv

)2

−
∫ t

0

Dst(t, s)

(
∫ t

s

g(x(v))dv

)2

ds

]

.

Next, along a solution of (1) we have

V ′ = −g(x)

∫ t

0

D(t, s)g(x(s))ds + 1
2
Dt(t, 0)

(
∫ t

0

g(x(s))ds

)2

+ g(x)D(t, 0)

∫ t

0

g(x(s))ds + 1
2

∫ t

0

Dst(t, s)

(
∫ t

s

g(x(v))dv

)2

ds

+ g(x)

∫ t

0

Ds(t, s)

∫ t

s

g(x(v))dv ds.

Integration by parts of the last term yields

g(x)

[

D(t, s)

∫ t

s

g(x(v))dv

∣

∣

∣

∣

s=t

s=0

+

∫ t

0

D(t, s)g(x(s))ds

]
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so that

V ′ = 1
2Dt(t, 0)

(
∫ t

0

g(x(s))ds

)2

+ 1
2

∫ t

0

Dst(t, s)

(
∫ t

s

g(x(v))dv

)2

ds

and by (13) we have

(19) V ′ ≤ k3

[

−f(t)D(t, 0)

(
∫ t

0

g(x(s))ds

)2

+

∫ t

0

Dst(t, s)

(
∫ t

s

g(x(v))dv

)2

ds

]

.

This, together with (18) proves that V ′ ≤ −γ(x′)2. Moreover,

V ′ ≤ −[k3/
√

k]

[

f(t)D(t, 0)

(
∫ t

0

g(x(s))ds

)2

−
∫ t

0

Dst(t, s)

(
∫ t

s

g(x(v))dv

)2

ds

]1/2

|x′|

and from (14) we then have

V ′ ≤ −
[

k3/
√

k

]{

f(t)

[

D(t, 0)

(
∫ t

0

g(x(s))ds

)2

+

∫ t

0

Ds(t, s)

(
∫ t

s

g(x(v))dv

)2

ds

]}1/2

|x′|

or

(20) V ′ ≤ −
[

k3/
√

k
]

[

2

(

V −
∫ x

0

g(s)ds

)]1/2

|x′|
√

f(t).

In the same way, from (19) and (14) we have

V ′ ≤ k3

[

−f(t)D(t, 0)

(
∫ t

0

g(x(s))ds

)2

− f(t)

∫ t

0

Ds(t, s)

(
∫ t

s

g(x(v))dv

)2

ds

]

or

(15) V ′ ≤ −2k3f(t)

[

V −
∫ x

0

g(s)ds

]

.

By Theorem A, and exactly as in the proof of Theorem 1, if x(s) > 0 on an interval [a, t],

it follows from (20) that (17) holds, while (15) yields (16). This proves the result.

Our main purpose here is to present boundedness results when (5) fails, but with

Theorem 2 it is easy to obtain a result on asymptotic stability whenever D(t, s) is a fading

memory kernel. The next result is parallel to Lemma 1 in the proof of Theorem 1.
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Lemma 2. Let (11) – (14) hold. Suppose there is a δ > 0 such that for each ε > 0

there are positive T1 and T2 such that if tn → ∞ and if tn + T1 ≤ t ≤ tn + T1 + T2 then
∫ tn

0
D(t, s)ds < ε, but

∫ t

tn+T1
D(t, s)ds > δ for tn + T1 + T2 ≤ t ≤ tn + T1 + T2 + 1. Then

every bounded solution of (1) tends to zero as t → ∞.

Proof. Let x(t) be a bounded solution of (1) with |g(x(t))| < M for all t and some

M > 0. If x(t) 9 0 then there is an X with |X| = 3C , for some C > 0, and a sequence

{tn} ↑ ∞ such that x(tn) → X; we may suppose that |x(tn) − X| < C . Now there is a

y > 0 such that |g(x)| ≥ y if |x −X| ≥ 2C . For this y, δ, and M , choose ε > 0 and T1, T2

so that εM < δy/2. For each n either:

(a) |x(t) − X| < 2C for tn ≤ t ≤ tn + T1 + T2 + 1 or

(b) there is an sn ∈ [tn, tn + T1 + T2 + 1] with |x(sn) − X| = 2C .

From Theorem 2 we have V ′ ≤ −γ(x′)2. If (b) holds then

V (sn) − V (tn) ≤ −[γ/(T1 + T2 + 1)]|x(sn) − x(tn)|2

≤ −[γ/(T1 + T2 + 1)]4C2.

If (a) holds then for tn + T1 + T2 ≤ t ≤ tn + T1 + T2 + 1 we have

V ′ ≤− γ

[

−
∫ t

0

D(t, s)g(x(s))ds

]2

= − γ

[

−
∫ tn

0

D(t, s)g(x(s))ds −
∫ tn+T1

tn

D(t, s)g(x(s))ds

−
∫ t

tn+T1

D(t, s)g(x(s))ds

]2

.

The first integral on the right is bounded by εM ; the second and third integrals have the

same sign because D ≥ 0, while |x − X| ≤ 2C ; the third integral (in absolute value) is

greater than δy. Hence,

V ′ ≤ −γ(δy/2)2 on [tn + T1 + T2, tn + T1 + T2 + 1].

Since V ′ ≤ 0, we then see that V (t) → −∞ as t → ∞, a contradiction. This completes

the proof.
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Theorem 3. Let (11) – (14) hold and let V1 = V − L where G(x) :=
∫ x

0
g(s)ds → L as

x → ∞. Suppose there is a continuous function h : [0,∞) → [0,∞) with

(21) [f(t)V1(t)]
1/2 ≥ h(V1(t)),

∫ b

a

[ds/h(s)] continuous for 0 ≤ a < b.

Then x(t) is bounded above. If G(x) → L as x → −∞, then x(t) is bounded below. In

particular, if

[f(t)V1(t)]
1/2 ≥ JV α

1 (t) for α ∈ (0, 1) and J > 0,

then (21) holds.

Proof. From (17) and (21) we have

V ′

1 ≤ −
[

k3/
√

k
]

h(V1(t))|x′|

and so if x(s) > 0 on an interval [a, t], then

∫ t

a

[V ′

1(s)/h(V1(s))]ds =

∫ V1(t)

V1(s)

[ds/h(s)] ≤ −
[

k3/
√

k
]

|x(t) − x(a)|.

Since the integral is continuous and V1(a) is fixed, while 0 ≤ V1(t) ≤ V1(a), the left side is

bounded. Thus, x(t) is bounded.

Remark. Condition (21) can be verified by (16). We now give a typical comparison pair

illustrating this and the fact that if f(t) satisfies (21), so does a larger one.

Example 2. If (11) – (14) hold, if k3f(t) = α/(t + 1) for α > 1, then (21) is satisfied.

Proof. We have V ′

1 ≤ −k3f(t)V1 = −αV1/(t + 1) and so if x(s) > 0 on [a, t] then

V1(t) ≤ V1(a) exp−αln[(t + 1)/(a + 1)] = V1(a)[(a + 1)/(t + 1)]α

or

f(t)α ≥ β2αV1(t) for some β > 0. Thus, f(t) ≥ β2V
1/α
1 (t)

and

[f(t)V1(t)]
1/2 ≥ β[V

1+(1/α)
1 ]1/2 = βV

α+1

2α

1 = βV γ
1

13



where γ < 1. This completes the proof.

Theorem 4. If (11) – (14) hold and if k3f(t) ≥ α/(t + 1) for α > 1, then (21) is

satisfied and x(t) is bounded.

Proof. Under the stated conditions, V1(t) ≤ m(t + 1)−α for some m > 0 and so

[

f(t)V1(t)

]1/2

≥
[

α(t + 1)−1V1(t)

]1/2

≥
[

α(t + 1)
−α

α V1(t)

]1/2

=

{

α

[

(t + 1)−α

]1/α

V1(t)

}1/2

≥ β

[

V
1/α
1 V1

]1/2

= βV γ
1

where 0 < γ < 1. This completes the proof.

4. Infinite delay. When D(t, s) decays sufficiently fast then (1) can be studied as a

limiting equation

(22) x′ = −
∫ t

−∞

D(t, s)g(x(s))ds

and it has also been studied in its present form (cf. Hale [8]) under the assumptions

(3) D(t, s) ≥ 0, Ds(t, s) ≥ 0, Dst(t, s) ≤ 0,

(4) xg(x) > 0 if x 6= 0,

and with (5) holding to ensure boundedness. There are also strong conditions needed in

the form of

(23)

∫ t

−∞

[

D(t, s) + Ds(t, s)(t − s)2 + Dst(t, s)(t − s)2
]

ds is continuous for t ≥ 0 and,

(24) lim
s→−∞

(t − s)D(t, s) = 0.

To specify a solution of (22) we require a t0 ≥ 0 and a bounded continuous function

ϕ : (−∞, t0] → R. There is then a solution x(t, t0, ϕ) = ϕ(t) if t ≤ t0; if the solution

14



remains bounded, then α = ∞. Thus, for t0 = 0, (22) can always be considered as a

perturbed form of (1):

(1∗) x′ = −
∫ t

0

D(t, s)g(x(s))ds −
∫ 0

−∞

D(t, s)g(ϕ(s))ds

with initial condition x(0) = ϕ(0).

If we try to extend (11) – (14) to (22), consideration of Example 1 quickly indicates

difficulties. But if we are willing to ask more than (23) and (24), then it turns out that

there is a simple alternative to (5) yielding boundedness. Suppose there are numbers

K > 0, p > 1, 1 < q < 3/2, such that

(25)
1

p
+

1

q
= 1,

∫ t

−∞

[

Dp
s (t, s)(t − s)2/(−Dst(t, s))

p/q

]

ds ≤ K.

In Example 1, (25) would require n > 4, while (24) asks n ≥ 2. Thus, (25) is a

nontrivial increase in requirements.

Theorem 5. Let D(t, t) ≤ k for some k > 0 and let (3), (4), (23), (24), and (25) hold.

Suppose also that there is an M > 0 such that if
∫

∞

0
g(s)ds < ∞ then |g(x)| < M on

[0,∞) and a similar condition on (−∞, 0]. Then all solutions of (22) are bounded.

Proof. We define

(26) V (t, x(·)) =

∫ x

0

g(s)ds +
1

2

∫ t

−∞

Ds(t, s)

(
∫ t

s

g(x(v))dv

)2

ds

so that if x(t) is any solution of (22) on [t0, α) with x(t) = ϕ(t) on (−∞, 0] and ϕ is

bounded, then for V = V (t) = V (t, x(·)) we have

V ′ = − g(x)

∫ t

−∞

D(t, s)g(x(s))ds + 1
2

∫ t

−∞

Dst(t, s)

(
∫ t

s

g(x(v))dv

)2

ds

+ g(x)

∫ t

−∞

Ds(t, s)

∫ t

s

g(x(v))dv ds.

Integration by parts of the last term yields

g(x)

[

D(t, s)

∫ t

s

g(x(v))dv

∣

∣

∣

∣

s=t

s=−∞

+

∫ t

−∞

D(t, s)g(x(s))ds

]

= g(x)

∫ t

−∞

D(t, s)g(x(s))ds

15



using (24) and the fact that x(t) = ϕ(t), a bounded initial function on (−∞, t0]. Thus,

(27) V ′ = 1
2

∫ t

−∞

Dst(t, s)

(
∫ t

s

g(x(v))dv

)2

ds ≤ 0.

If (5) holds, then (26) and (27) imply that x(t) is bounded. Thus, we suppose (5) fails

and, to be definite, let
∫

∞

0
g(s)ds = L < ∞. We can now say that if x(t) satisfies (22) then

there is an M ≥ 1 with |g(x(t))| ≤ M by the form of (26), V ′ ≤ 0, and the assumption

that g is bounded if its integral is.

Next, for p and q in (25) and for C = −Dst(t, s) for typographical reasons we write

∫ t

−∞

Ds(t, s)

(
∫ t

s

g(x(v))dv

)2

ds =:

∫ t

−∞

AB2ds

=

∫ t

−∞

AC−1/qB2/pC1/qB2/qds

≤
[
∫ t

−∞

ApC−p/qB2ds

]1/p[∫ t

−∞

CB2ds

]1/q

≤
(

KM2

)1/p[∫ t

−∞

−Dst(t, s)

(
∫ t

s

g(x(v))dv

)2

ds

]1/q

.

Thus, with (27) we now have

(28) V ′ ≤ − 1
2 (KM2)−q/p

[
∫ t

−∞

Ds(t, s)

(
∫ t

s

g(x(v))dv

)2

ds

]q

.

Now integration by parts of (22) yields

(x′)2 =

(

D(t, s)

∫ t

s

g(x(v))dv

∣

∣

∣

∣

s=t

s=−∞

−
∫ t

−∞

Ds(t, s)

∫ t

s

g(x(v))dv ds

)2

≤
∫ t

−∞

Ds(t, s)ds

∫ t

−∞

Ds(t, s)

(
∫ t

s

g(x(v))dv

)2

ds

since the first term in the integration by parts is zero by (24) and then use of Schwarz’s

inequality. Thus,

(29) (x′)2 ≤ k

∫ t

−∞

Ds(t, s)

(
∫ t

s

g(x(v))dv

)2

ds.

From (28), (29), and V we then have

V ′ ≤ −
(

1/2
√

k
)

(KM2)−q/p |x′|
[

2(V −
∫ x

0

g(s)ds)

]q−(1/2)

.
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If
∫

∞

0
g(s)ds = L < ∞, if x(s) > 0 on [a, t], if V1 = V − L, then by Theorem A we have

(30) V ′

1 ≤ −β|x′|V q−(1/2)
1 , β > 0.

Since q < 3/2, an integration will yield x(t) bounded above. Similar analysis will yield

x(t) bounded below and complete the proof.

Remark. A result for (22) parallel to Lemma 2 can be formulated and proved. In the

same way, if we write (22) as (1)* and if D(t, s) is a fading memory kernel such that for

each bounded initial function ϕ, then

p(t) := −
∫ 0

−∞

D(t, s)g(ϕ(s))ds ∈ L1[0,∞),

we can treat (22) as (1) using

V2(t, x(·)) = [V (t, x(·)) + M ] exp−
∫ t

0

p(s)ds

where |g(x(t))| ≤ M and V is the Liapunov function used for (1).
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