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1. INTRODUCTION

One of the oldest problems in differential equations may be described as follows: If a

is a positive constant, then every solution u(t) of

(C) u′′ + au′ + u = 0, (·)′ = (d/dt)(·),

satisfies

(S) |u(t)| + |u′(t)| → 0 as t→ ∞.

If a : [0,∞) → (0,∞) is continuous, will (S) still hold?

The answer is “sometimes” and the literature on the question is large. Briefly, (S)

will hold only if
∫

∞

0
a(t)dt = ∞; very roughly, if, in addition,

∫

∞

0
[dt/(a(t) + 1)] = ∞, then

(S) will hold.

We will discuss the literature more fully in the next section, but to focus on the

problem one result will be mentioned now. If a(t) ≥ a0 > 0, Smith [10] shows that a

necessary and sufficient condition for (S) to hold is that

(N)

∫

∞

0

e−A(t)

∫ t

0

eA(s)ds dt = ∞ where A(t) =

∫ t

0

a(s)ds.

This is a fine result, but for a given function the condition is not easy to verify and

the technique rests heavily on the linearity of the equation. Ballieu and Peiffer[1] show

that when 1/a(t) is well behaved and when a(t) ≥ a0 > 0, then (N) is equivalent to
∫

∞

0
[ds/a(s)] = +∞.

More recently investigators have become increasingly interested in properties and tech-

niques that are valid for wider classes of problems including ordinary, functional, and par-

tial differential equations of both linear and nonlinear type. The book by Nicolaenko, et

al [9], for example, is devoted to such questions.
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In this paper we develop a transformation which allows us to treat

u′′ + a(t)u′ + u = 0,(1a)

utt = uxx − a(t)ut, u(t, 0) = u(t, π) = 0,(1b)

and

(1c) u′′ + a(t)u′ + u(t− r) = 0

in such a unified way that there is no distinction at all between the results for (1a) and

(1b), while the results for (1c) agree with those for (1a) and (1b) as r → 0.

The transformation makes the proofs for (S) to hold essentially trivial; yet, the results

themselves compare favorably with some of the best classical ones for (1a). For simplicity,

brevity, and unity we treat the linear problems and then show how to proceed with the

nonlinear ones.

2. A BRIEF SURVEY

Most results on (1a) or its nonlinear analogs rely on the Liapunov function

V (u, u′) = u2 + (u′)2

whose derivative along a solution of (1a) satisfies

V ′ = −2a(t)(u′)2 ≤ 0.

The difficulty with this technique is that V ′ is merely semi-definite. If V → 0, then

(S) holds. If V → C > 0, then in the (u, u′)-plane, the solution approaches a circle.

Investigators then give conditions to ensure that the solution oscillates (and, hence, spirally

approaches that circle) and that V ′ is negative enough of the time that an integration of

V ′ sends V to −∞, a contradiction. Such arguments yield many results of the following

type.
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THEOREM (Smith [10]) Condition (S) holds for (1a) if there is a sequence I1, I2, . . .

of disjoint open intervals on (0,∞) such that

∞ =
∞
∑

n=1

mnTnδ
2
n

where mn and Mn are the minimum and maximum values of a(t) in In, Tn is the length

of In, and δn is the smaller of the two numbers Tn and (1 +Mn)−1.

The result is obviously tedious in application, but it is very effective and implies the

following result.

If a(t) is monotonically decreasing on (0,∞) and if
∫

∞

0 a(t)dt = ∞, then (S) holds.

One of our results will prove this result for both (1a) and (1b).

A recent preprint of Hatvani and Totik [3] continues the type of analysis used in

proving Smith’s result and substantially sharpen it.

In the paper by Ballieu and Peiffer [1] mentioned in Section 1 in which (N) is eluci-

dated, several results of much interest are obtained. The full statement concerning (N) is

as follows.

THEOREM (Ballieu and Peiffer). Let a(t) > ε > 0 with a(t) continuous. Then the

integrals
∫

∞

0

[dt/a(t)] and

∫ t

0

e−A(t)

∫ t

0

eA(u)du dt

converge or diverge simultaneously provided that one of the following conditions hold:

(a) 1/a(t) is of bounded variation (in particular if a(t) is monotone),

(b) a(t) is differentiable and −1 < −η < a′(t)/a2(t) < K.

Here A(t) =
∫ t

0 a(s)ds and K is an arbitrary constant. One of our subsequent results

will replace the lower bound in (b) with an arbitrary constant and show that (S) will then

hold for both (1a) and (1b).

Now this result is coupled with Smith’s statement for (N) as follows.
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THEOREM (Ballieu and Peiffer). Let a(t) > ε > 0 be a continuous function such

that 1/a(t) is of bounded variation. If, in addition,
∫

∞

0
[dt/a(t)] = ∞, then (S) holds.

Recently, Karsai [4] obtained a number of interesting results on (1a) including the

following one which we cannot prove with our techniques.

THEOREM (Karsai). Let 0 ≤ a(t) ≤ 2 and let 0 < τ < π. If
∫

∞

0
a(t)dt = ∞ then

every solution of

u′′ + [a(t) + a(t + τ )]u′ + u = 0

satisfies (S).

The recent preprint of Hatvani and Totik relates to both of the results mentioned

above by Smith. The one concerning (N) can be stated as follows. It will be mentioned

again when we discuss separation of variables for (1b).

THEOREM (Hatvani and Totik). Suppose that α < π/k and there is a constant δ

such that
∫ t+α

t a(s)ds ≥ δ > 0 for large t. Then (S) holds for u′′ + a(t)u′ + ku = 0 if and

only if (N) holds.

Klincsik [5] discusses (1b) and proves existence theory for it. He also shows that if

a(t) is bounded and integrally positive then
∫ π

0
[u2

t + u2
x]dx → 0 as t → ∞. He deals with

a nonlinear form.

In Section 4 we will mention some results known for (1c) and nonlinear generalizations.

Nonlinear forms of (1a) are treated in some depth in the papers of Levin and Nohel [7]

and Thurston and Wong [11].

3. A TRANSFORMATION

Given a(t) ≥ 0, we select a bounded differentiable function

λ : [0,∞) → [0,∞)

and then define

b : [0,∞) → [0,∞)
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by

(2) a(t) = λ(t) + b(t)

and require that

(3)

∫

∞

0

λ(t)dt = ∞.

We begin with (1a) and define u′ = z−λu so that u′′ = z′−λ′u−λu′ = −(λ+b)u′−u

and z′ = λ′u− b(z − λu) − u or z′ = (λ′ + bλ − 1)u− bz yielding the system

(4a)

{

u′ = z − λ(t)u

z′ = [λ′(t) + b(t)λ(t) − 1]u− b(t)z

which is equivalent to (1a). Define a Liapunov function

(5a) V (u, z) = u2 + z2

so that if (u, z) is a solution of (4a) then

V ′ = 2u[z − λu] + 2z[λ′ + bλ − 1]u− 2bz2

= −2λu2 − 2bz2 + 2zu(λ′ + bλ).

Now if we were interested only in (1a) then we would, at this point, invoke a condition

for this quadratic form to be negative definite; however, to handle the PDEs in the same

way we will need to use Wirtinger’s inequality and proceed otherwise. The following

method will yield unity.

We will seek a continuous function f : [0,∞) → (0,∞) and replace zu = (fz)(u/f) in

V ′ to obtain

V ′ ≤ −2λu2 − 2bz2 + |λ′ + bλ|(f2z2 + (u2/f2))

or

(6a) V ′ ≤ [−2λ+ (|λ′ + bλ|/f2)]u2 + [−2b+ f2|λ′ + bλ|]z2.
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Our problem will be solved if we can find continuous functions f : [0,∞) → [0,∞) and

µ : R→ R such that

(7)











A(t) := −2λ(t) + |λ′(t) + b(t)λ(t)|/f2(t) ≤ µ(t),

B(t) := −2b(t) + f2(t)|λ′(t) + b(t)λ(t)| ≤ µ(t),
∫

∞

0
µ(t)dt = −∞.

It was intentional that this was denoted by (7) and not by (7a).

THEOREM 1a. Let (7) hold. Then

(8a) |u(t)| + |u′(t)| → 0 as t→ ∞

for every solution u(t) of (1a).

PROOF. From (5a), (6a), and (7) we have V ′ ≤ µ(t)V and so V → 0 as t→ ∞. Recall

that λ is bounded and that V → 0 implies that u(t) → 0. Thus, when V = u2 +(u′ +λu)2

tends to zero we conclude that |u′| also tends to zero since λu → 0. This completes the

proof.

REMARK. From the proof we can estimate the rate of decay of solutions by

|u(t)|, |u′(t)| = O

(

exp

[

1

2

∫ t

0

µ(s)ds

])

as t→ ∞.

In the next section we will extensively discuss conditions under which (7) holds, but

now we turn our attention to (2b). Existence theory for (1a) and (1c) is so well known

that it may be ignored here. Adequate existence theory for (1b) can be found in Klincsik

[5].

Let (2) and (3) hold, let u(t, x) be a solution of (2b), and define

ut = z − λ(t)u

to obtain the system

(4b)

{

ut = z − λ(t)u

zt = uxx − b(t)z + (λ′(t) + λ(t)b(t))u.
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Notice that the boundary conditions u(t, 0) = u(t, π) = 0 induce ut(t, 0) = ut(t, π) = 0

and this will be used subsequently several times. Define a Liapunov function

(5b) V (t) =

∫ π

0

[u2
x + z2]dx

so that if u(t, x) is a solution of (1b) on [0,∞) then

V ′(t) =

∫ π

0

[2uxuxt + 2zzt]dx = 2uxut|
π
0

+

∫ π

0

{−2uxxut + 2z[uxx − bz + (λ′ + bλ)u]}dx

=

∫ π

0

[−2uxx(z − λu) + 2zuxx − 2bz2 + 2(λ′ + bλ)uz]dx

=

∫ π

0

[2λuuxx − 2bz2 + 2(λ′ + bλ)uz]dx

= 2uux|
π
0

+

∫ π

0

[−2λu2
x − 2bz2 + 2(λ′ + bλ)uz]dx

(introducing f as before)

≤

∫ π

0

[−2λu2
x − 2bz2 + (|λ′ + bλ|/f2)u2 + f2|λ′ + bλ|z2]dx

(but
∫ π

0
u2dx ≤

∫ π

0
u2

xdx under u(t, 0) = u(t, π) = 0)

≤

∫ π

0

{[−2λ+ (|λ′ + bλ|/f2)]u2
x + [−2b+ f2|λ′ + bλ|]z2}dx.

THEOREM 1b. Let (7) hold. Then

(8b) |u|2
∞

+

∫ π

0

(u2
x + u2

t )dx→ 0 as t→ ∞

for every solution u(t, x) of (1b) defined on [0,∞). (Here, |u|∞ is the supremum norm in

x for fixed t.)

PROOF. If (7) holds then V ′ ≤ µ(t)V so V → 0 as t→ ∞. Moreover, the boundary

condition implies |u|2
∞

≤ k
∫ π

0
u2

x dx for some k > 0. The remainder of the proof is almost

identical to that of Theorem 1a.
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The delay case is very straightforward when the delay r is a positive constant and that

is the assumption made here. But the interested reader can study the work of Krasovskii

[6; p. 173] and Yoshizawa [12] to see appropriate changes when r = r(t). In particular,

interesting connections between r(t) and a(t) emerge when we try to satisfy the counterpart

of (7).

Let (2) and (3) hold and define u′ = z − λ(t)u so that u′′ = z′ − λ′u − λu′ =

−(λ+ b)u′ − u(t− r) or

z′ = λ′u− b(z − λu) − u(t− r) = (λ′ + bλ)u− bz − u(t− r)

= (λ′ + bλ − 1)u− bz +

∫ t

t−r

(z(s) − λ(s)u(s))ds

yielding the system

(4c)

{

u′ = z − λ(t)u

z′ = (λ′(t) + b(t)λ(t) − 1)u− bz +
∫ t

t−r
(z(s) − λ(s)u(s))ds.

We seek a function µ1 : [0,∞) → [0,∞), µ′

1(t) ≤ 0, and define

(5c) V = u2 + z2 + [µ1(t) + 1]

∫ 0

−r

∫ t

t+s

(z(v) − λ(v)u(v))2dv ds

so that along a solution of (4c) we have

V ′ ≤ 2u(z − λu) + 2z(λ′ + bλ− 1)u− 2bz2

+ 2z

∫ t

t−r

(z(s) − λ(s)u(s))ds

+ [µ1 + 1]

∫ 0

−r

[(z(t) − λ(t)u(t))2 − (z(t + s) − λ(t+ s)u(t + s))2]ds

≤ −2λu2 − 2bz2 + 2(λ′ + bλ)uz + rz2

+

∫ t

t−r

(z(s) − λ(s)u(s))2ds+ r(µ1 + 1)(z − λ(u))2

− (µ1 + 1)

∫ t

t−r

(z(s) − λ(s)u(s))2ds

≤ −2λu2 − 2bz2 + 2(λ′ + bλ)uz + rz2

+ r(µ1 + 1)(z2 − 2λuz + λ2u2) − µ1

∫ t

t−r

(z(s) − λ(s)u(s))2ds
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or

(6c)

V ′ ≤ [−2λ+ r(µ1 + 1)λ2 + (|λ′ + bλ − r(µ1 + 1)λ|/f2)]u2

+ [−2b+ r + r(µ1 + 1) + f2|λ′ + bλ− r(µ1 + 1)λ|]z2

− µ1(t)

∫ t

t−r

(z(s) − λ(s)u(s))2ds.

Note also that

∫ 0

−r

∫ t

t+s

(z(v) − λ(v)u(v))2dv ds

≤

∫ 0

−r

∫ t

t−r

(z(v) − λ(v)u(v))2dv ds ≤ r

∫ t

t−r

(z(s) − λ(s)u(s))2ds.

Our task is to find functions µ1 : [0,∞) → [0,∞), µ2 : [0,∞) → R, and f : [0,∞) →

(0,∞) with

(7c)



















i) µ′

1 ≤ 0

ii) A(t) := [−2λ+ r(µ1 + 1)λ2 + (|λ′ + bλ − r(µ1 + 1)λ|/f2] ≤ −µ2(t),

B(t) := [−2b+ r + r(µ1 + 1) + f2|λ′ + bλ− r(µ1 + 1)λ|] ≤ −µ2(t),

iii)
∫

∞

0
min{[µ1(t)/r(µ1(t) + 1)]; µ2(t)}dt = ∞.

We will then have

V ′ ≤ −µ2(u
2 + z2) − [µ1(µ1 + 1)/(rµ1 + 1)]

∫ 0

−r

∫ t

t+s

(z(v) − λ(v)u(v))2dv.

Taking γ(t) = min{[µ1(t)/r(µ1(t + 1))]; µ2(t)}, we will obtain V ′ ≤ −γ(t)V .

THEOREM 1c. Let (7c) hold. Then

(8c) |u(t)| + |u′(t)| → 0 as t→ ∞

for every solution of (1c).

REMARK. Notice that (7cii) can be satisfied only if b(t) > r, a condition noted by

other investigators and discussed in our examples. Also, as r → 0, then (7c) approaches

(7). We also remark that the delay in (1c) is not necessarily restricted to being constant
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or even a bounded function. If C : R → R is small enough, then one may consider the

equation

(1d) u′′ + a(t)u′ +

∫ t

−∞

C(t− s)u(s)ds = 0

where G(t) =
∫

∞

t
C((u)du is also small. Then a solution of

(1d*) u′′ + a(t)u′ +G(0)u −

∫ t

−∞

G(t− s)u′(s)ds = 0

is also a solution of (1d). Using the Liapunov functional

V1 = G(0)u2 + (u′)2 +

∫ t

−∞

∫

∞

t−s

|G(u)|du(u′(s))2ds

it is readily shown that if a(t) ≥
∫

∞

0
|G(t)|dt for all t ≥ 0 then |u(t)| + |u′(t)| is bounded

for each solution of (1d*). If there is a δ > 0 with

a(t) − δ ≥

∫

∞

0

|G(t)|dt, then

∫

∞

0

|u′(t)|2dt <∞.

The transformation u′ = z − λu in (1d) yields the system

{

u′ = z − λu

z′ = (λ′ + bλ −G(0))u− bz +
∫ t

−∞
G(t − s)(z(s) − λ(s)u(s))ds

and the Liapunov function

V = G(0)u2 + z2 + [µ1(t) + 1]

∫ t

−∞

∫

∞

t−s

|G(u)|du(z(s) − λ(s)u(s))2ds

will lead us to an analog of (7c) and a Theorem 1d.

4. EXAMPLES

We begin with two propositions giving conditions under which (7) holds. They are,

so to speak, the two extreme cases; first, a(t) becomes very small, and then very large, at

least along a sequence.
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PROPOSITION 1. Let (2) and (3) hold with

∫

∞

0

[−a(t) + |
1

2
a′(t) +

1

4
a2(t)|]dt = −∞.

Then (7) is satisfied with λ(t) = b(t) = a(t)/2, f(t) = 1, and µ(t) = −a(t)+| 12a
′(t)+ 1

4a
2(t)|.

PROOF. In (7) we have

A(t) = −a(t) + |
1

2
a′(t) +

1

4
a2(t)| = B(t).

EXAMPLE 2. Let a(t) = [sin2 ln(t+1)]/(t+1) so that
∫

∞

0 a(t)dt =
∫

∞

0 sin2 u du = ∞

and a′(t) = {2[sin ln(t+1)][cos ln(t+1)]−sin2 ln(t+1)}/(t+1)2 so both a′ and a2 ∈ L1[0,∞).

In preparation for the next example, note that

a1(t) = | sin t| − sin t

is zero on 0 ≤ t ≤ π with a(t) = 2 sin t on π ≤ t ≤ 2π. But it is not differentiable at

t = nπ. The function

a2(t) = a1(t) sin2 t

has very much the same behavior, but it has a continuous derivative. The function

a3(t) = a2(ln(t+ 1))

has a continuous derivative, while the intervals on which it is alternately zero and nonzero

tend to infinity in length.

EXAMPLE 3. Let λ(t) = b(t) = a(t)/2 = {| sin[ln(t+ 1)]| − sin[ln(t+ 1)]}(sin2[ln(t+

1)])/(t + 1). At nonzero points λ(t) = −2(sin3[ln(t + 1)])/(t + 1) and (t + 1)2λ′(t) =

−6(sin2[ln(t+1)]) cos[ln(t+1)]+ 2 sin3[ln(t+1)] so that λ′(t) is L1[0,∞) and is zero when

a(t) = 0. Thus, λ has a continuous derivative. Moreover, λb = λ2 ∈ L1[0,∞), while

if t1, t2 are consecutive values with ln(t1 + 1) = (2n + 1)π and ln(t2 + 1) = (2n + 2)π

then
∫ t2
t1
λ(t)dt = −

∫ 2(n+1)π

(2n+1)π
2 sin3 sds. Thus, if we take µ(t) = −2λ(t) + |λ′(t)| + λ2(t)
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then
∫

∞

0
µ(t)dt = ∞. Thus, the solutions of (1a) are 2π-periodic on arbitrarily long time

intervals but do tend to zero. Equation (1b) behaves similarly.

COROLLARY 4. If a(t) ↘ 0 with
∫

∞

0 a(s)ds = ∞, then (7) holds with λ(t) = b(t) =

a(t)/2, f2 = 1, and µ(t) = −2λ(t) + |λ′(t)| + λ2(t).

PROOF. Clearly,
∫

∞

0
|λ′(t)|dt < ∞, while λ2(t) < λ(t)/2 for large t so that the

conditions of Proposition 1 hold.

In preparation for the next result we recall that if a(t) > 0 with a′(t) ≥ αa2(t) for

some α > 0, then a(t) is very badly behaved. In fact, if a′(t) ≥ 0 and if there is a positive

constant α with a′(t) ≥ αa2(t) on a set of intervals [tn, tn + kn], tn → ∞, then kn → 0 as

n→ ∞; otherwise, a(t) has finite escape time.

PROPOSITION 5. Suppose that

(i) a(t) ≥ a0 > 0 for t ≥ 0,

(ii)
∫

∞

0
(dt/a(t)) = ∞,

and

(iii) a′(t)/a2(t) is bounded for t ≥ 0.

Then (7) holds with λ(t) = c1/a(t) and f2(t) = c2a(t), where c1 and c2 are appropriate

positive constants.

PROOF. We have λ′ = −c1a
′a−2, b(t) = a− c1a

−1,

A(t) = −2c1a
−1 + | − c1a

′a−2 + c1 − c21a
−2|/c2a

≤ −c1a
−1{2 − (K + 1 + c1a

−2
0 )c−1

2 }

where K is the bound for |a′a−2|. On the other hand

B(t) = −2a− 2c1a
−1 + | − c1a

′a−2 + c1 − c1a
−2|c2a

≤ −a0{2 − (K + 1 + c1a
−2
0 )c1c2}.
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Fix c2 > 0 large enough so that (K + 1 + a−2
0 )/c2 < 1. Then choose c1 ∈ (0, 1) so

small that

c1(K + 1 + a−2
0 )/c2 < 1 and c1/a0 < a0.

With these constants we have the estimates A(t) ≤ −c1/a(t), B(t) ≤ −a0, so that
∫

∞

0
min{c1/a(t); a0}dt =

∫

∞

0
c1a

−1(t)dt = ∞ and (7) holds with µ(t) = c1a
−1(t).

REMARK. In [8] Murakami used the following conditions:

(ii′) There are sequences {sn} and a constant d > 0 such that sn+1 ≥ sn +d and either

a(t) ≡ 0 on the set
∞
⋃

n=1
[sn, sn + d] or

∞
∑

n=1

[

∫ sn+d

sn

a(t)dt

]

−1

= ∞. By Schwarz’s inequality

d2 =

(
∫ sn+d

sn

1 dt

)2

≤

∫ sn+d

sn

a(t)dt

∫ sn+d

sn

[dt/a(t)].

Murakami’s condition implies that
∫

∞

0 [dt/a(t)] = ∞, but not conversely, while
∫

∞

0 [dt/a(t)]

= ∞ and a(t) non-decreasing implies Murakami’s condition; however it is unknown if
∫

∞

0
[dt/a(t)] = ∞ and a′(t)/a2(t) bounded imply Murakami’s condition. At any rate, we

note that Murakami’s work does not apply to the PDE, as ours does.

The next result shows that some of the smoothness and sign conditions which we are

assuming can be relaxed. We do the work for (1a) only.

PROPOSITION 6. Consider the equations

(α) x′′ + (λ(t) + b1(t))x
′ + x = 0

and

(β) x′′ + (λ(t) + b1(t) + b2(t))x
′ + x = 0.

Let V = u2 + z2 and suppose that there is a µ1 : [0,∞) → R with
∫

∞

0
µ1 = −∞ and such

that V ′

(α)(t, u, z) ≤ µ1(t)V . If
∫

∞

0 |λ(t)b2(t)|dt < ∞, then there is a µ2 : [0,∞) → R with
∫

∞

0
µ2(t)dt = −∞ and such that V ′

(β)(t, u, z) ≤ µ2(t)V .
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PROOF. We have

V ′

(β) = −2λu2 − 2b1z
2 + 2uz(λ′ + b1λ) − 2b2z

2 + 2uz(b2λ)

= V ′

(α) − 2b2z
2 + 2uz(b2λ)

≤ (µ1(t) + |b2(t)λ(t)|)(u2 + z2) = µ2(t)(u
2 + z2).

This completes the proof.

As a corollary to Prop. 5 and Prop. 6, we have that if a = a1 + a2 where a1 satisfies

the conditions of Prop. 5 and
∫

∞

0
[a2(t)/a1(t)]dt < ∞, then all solutions of (1a) tend to

zero as t→ ∞.

EXAMPLE 7. Let a1(t) = (t+2) ln(t+2) and a2(t) be an arbitrary continuous function

with
∫

∞

0
[a2(t)/(t+2) ln(t+ 2)]dt <∞ and a2(t) ≥ −a1(t). Then a′1(t) = 1 + ln(t+2) and

the conditions of Prop. 6 are satisfied so that all solutions of (1a) and their derivatives

tend to zero as t→ ∞.

PROPOSITION 8. Let (2) and (3) hold with λ(t) ↘ 0. If b(t)λ(t) ∈ L1[0,∞) and

φ(t) := min[λ(t), b(t)] satisfies
∫

∞

0 φ(t)dt = ∞, then f2(t) = 1 and µ(t) = −φ(t)+ |λ′(t)|+

b(t)λ(t) will satisfy (7).

PROOF. In (7) we have

A(t) ≤ −2λ(t) + |λ′(t)| + b(t)λ(t)

and

B(t) ≤ −2b(t) + |λ′(t)| + b(t)λ(t).

Since λ′ and bλ are both L1[0,∞), the indicated µ will suffice.

PROPOSITION 9. Let (2) and (3) hold with λ′ ∈ L1[0,∞). If

lim sup
t→∞

[λ(t)(1 + b(t)) + |λ′(t)|] < 2

15



and

φ(t) := min[λ(t), b(t)] 6∈ L1[0,∞)

then f2(t) = 1 + b(t) and µ(t) = −φ(t) will satisfy (7).

PROOF. We have

A(t) ≤ −2λ(t) + |λ′(t)| + λ(t) = −λ(t) + |λ′(t)|

and

B(t) ≤ −2b(t) + (1 + b(t))|λ′(t)| + b(t)λ(t) + b(t)λ(t)b(t)

= −b(t)[2 − |λ′(t)| − λ(t)(1 + b(t))] + |λ′(t)|

from which the statement follows.

EXAMPLE 10. Suppose that c and C are positive constants with

C(t+ 1)−1 ≤ a(t) ≤ C(t+ 1)

holding for t large. Then (7) can be satisfied.

PROOF. Let c1 = min(c/2, 1/C) and define λ(t) = c1(t + 1)−1, ψ(t) = a(t)(t +

1)−1 − c1(t + 1)−2, and b(t) = (t + 1)ψ(t). Then a(t) = λ(t) + b(t) and (c/2)(t + 1)−2 ≤

(c− c1)(t + 1)−2 ≤ ψ(t) ≤ C − c1(t + 1)−2 ≤ C . Thus, all conditions of Proposition 7 are

satisfied; in fact

lim sup
t→∞

[c1(t + 1)−1(1 + ψ(t)(t + 1)) + c1(t + 1)−2] ≤ c1C ≤ 1

and

φ(t) = min{c1(t+ 1)−1, ψ(t)(t + 1)} ≥ min{c1(t+ 1)−1, c(t+ 1)−1/2}

= c1/(t+ 1).

That is, φ 6∈ L1[0,∞).
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REMARK. It is well-known that the quadratic form Ax2 + By2 + 2Cxy can be es-

timated by Ax2 + By2 + 2Cxy ≥ γ(x2 + y2) where γ is the smallest eigenvalue of the

symmetric matrix
(

A C
C B

)

.

If we use this fact to estimate the derivative V ′ in (1a) (this fails for the PDE) then we

get the inequality

V ′ ≤ −c{(b+ λ) − [(b− λ)2 + (λ′ + bλ)2]1/2}V.

This allows us to ask that

(7*)

∫

∞

0

{(b + λ) − [(b − λ)2 + (λ′ + bλ)2]1/2}dt = ∞

instead of (7) in the case of (1a). Sharper results hold in some cases.

EXAMPLE 11. Suppose that

(i) a(t) ≥ 2(t+ 1)−1 for t ≥ 0,

(ii)
∫

∞

0 [2(t+ 1)−1 − a(t)(t + 1)−2]dt = ∞.

Then (7*) is satisfied with λ(t) = (t+ 1)−1 and the zero solution of (1a) is asymptotically

stable.

PROOF. For the integrand in (7*) we have the estimate

a(t) − {[a(t) − 2(t+ 1)−1]2 + [a(t)(t + 1)−1 − 2(t+ 1)−2]2}1/2

= a(t) − (a(t) − 2(t+ 1)−1)[1 + (t+ 1)−2]1/2

= a(t){1 − [1 + (t+ 1)−2]1/2} + 2(t+ 1)−1[1 + (t+ 1)−2]1/2

= −a(t){(t + 1)2 + (t+ 1)[(t + 1)2 + 1]1/2}−1 + 2[1 + (t + 1)−2]1/2(t+ 1)−1

≥ −a(t)(t + 1)−2 + 2(t+ 1)−1

and the condition of the remark is satisfied and (7*) holds.
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PROPOSITION 12. Let (2) and (3) hold with

(i) λλ′ ∈ L1[0,∞),

(ii) lim sup
t→∞

b(t)λ(t) < 2,

(iii) −b(t) + |λ′(t)/λ(t)| ≤ −αλ(t)

for some α > 0 and large t. Then (7) can be satisfied with f2(t) = 1/λ(t) and µ(t) =

−γλ(t) + |λ′(t)λ(t)| for some γ > 0.

REMARK. The condition b(t)λ(t) ≤ k and λ 6∈ L1[0,∞) means that λ(t) ≤ k/b(t) 6∈

L1[0,∞). These indicate the growth and decay requirements on a(t) = b(t) + λ(t) which

are approximated throughout the literature. For if b(t) = λ(t), then a(t) can not become

too small:
∫

∞

0 a(t)dt = ∞; on the other hand, a(t) cannot be too large:
∫

∞

0 [dt/a(t)] = ∞.

Many more examples and propositions can be presented, but these illustrate that

simple choices for λ, f , and µ produce results which compare favorably with the classical

ones for (1a) alone. We now consider the delay equation (1c) and the inequalities of (7c),

and give analogs of Proposition 9, Example 10, and Proposition 5.

PROPOSITION 13. Suppose that (2) holds and that there is a nonincreasing function

µ1 : [0,∞) → (0,∞) such that

(i) lim sup
t→∞

[|λ′| + λ(1 + (b − r) + rµ1) + rµ1(b − r)−1 ] < 2,

(ii)
∫ t

0 min{λ(t); b(t) − r;µ1(t)}dt = ∞,

(iii) λ2, µ1λ, λ
′ ∈ L1[0,∞).

Then (7c) holds.

PROOF. Let f(t) = 1 + (b(t) − r). Then

A(t) ≤ −λ[1 − rµ1 − r(µ1 + 1)λ] + |λ′|

and

B(t) ≤ −(b − r){2 − |λ′| − λ(1 + (b − r) + rµ1)

− rµ1(b − r)−1} + |λ′| + rµ1λ
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and the assertion follows.

EXAMPLE 14. Suppose that there are positive constants c and C such that r+ c(t+

1)−1 ≤ a(t) ≤ C(t+ 1) for large t. Then (7c) is satisfied.

PROOF. Let c1 := min(c/2; 1/2C), c2 = c/4r, and define λ(t) := c1(t+ 1)−1, ψ(t) :=

(a(t) − r)(t + 1)−1 − c1(t + 1)−2, b(t) := r + (t + 1)ψ(t), and µ1(t) = c2(t + 1)−1. Then

a(t) = λ(t)+b(t) and by the conditions we have (c/2)(t+1)−2 ≤ (c−c1)(t+1)−2 ≤ ψ(t) ≤ C

and all conditions of Proposition 9 are satisfied. In fact,

lim sup
t→∞

{c1(t + 1)−2 + c1(t + 1)−1[1 + (t+ 1)ψ(t) + rc2(t+ 1)−1]

+ rc2[ψ(t)(t + 1)2]−1}

≤ c1C + rc2(2/c) ≤ (
1

2
) + (2rc2)/c =

1

2
+

1

2
= 1

and the function

min{c1(t + 1)−1;ψ(t)(t + 1); c2(t+ 1)−1}

≥ min{c1(t + 1)−1; (c/2)(t + 1)−1; c2(t+ 1)−1}

= min(c1, c2)(t + 1)−1

is not integrable over [0,∞).

REMARK. Krasovskii [6; p. 173] and Yoshizawa [12; p. 1150] investigated equation

(1c) and its nonlinear generalizations. Both of them assumed a(t) to be bounded below

by a constant greater than r, so Example 14 improves these results in the linear case.

REMARK. When a(t) ≡ p, a positive constant, then lengthy calculations with the

characteristic quasi-polynomial establishes a certain transcendental number p∗(r) ∈ (0, r)

with the property that p > p∗ implies that the zero solution of (1c) is asymptotically stable

and p < p∗ implies instability (see [2; pp. 131-138].). The analog of Example 10 would be:

If there are positive constants c, C such that p∗(r) + c(t+1)−1 ≤ a(t) ≤ C(t+1) for large

t, then every solution u(t) of (1c) will satisfy |u(t)| + |u′(t)| → 0 as t→ ∞.
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It is an open question whether this assertion is true.

PROPOSITION 15. Consider (1a) and suppose that the following conditions are

satisfied:

(i) a(t) ≥ r + ε for t ≥ 0 and ε some positive constant;

(ii)
∫

∞

0 (dt/a(t)) = ∞;

(iii) a′(t)a−2(t) is bounded for t ≥ 0.

Then there are positive constants c1, c2, and c3 such that (7c) holds with λ = c1a
−1,

f2 = c2a, and µ1 = c3.

PROOF. Let K be a bound for |a′a−2|. Then we have the following estimate:

A(t) = −2(c1/a) + r(c3 + 1)c21a
−2

+ | − c1a
′a−2 + (a − r − c1a

−1)c1a
−1 − rc1a

−1c3|/ac2

≤ −c1a
−1{2 − (1 + c3)c1 − [K + 2 + c1r

−2 + c3]/c2}.

We can suppose that 0 < c3 < c1 < 1/4. Now fix c2 > 0 so large that

[K + 2 + r−2 + 1]/c2 ≤ 1/2.

Then

A(t) ≤ −c1a
−1{2 − (

1

2
) − [K + 2 + r−2 + 1]/c2} ≤ −c1a

−1.

On the other hand,

B(t) ≤ −2(a − r − c1a
−1) + rc3

+ {|c1a
′/a2| + (1 + ra−1 + c1a

−2)c1 + rc1a
−1c3}ac2

≤ −2(a − r) + 2c1r
−1 + rc1

+ {c1(K + 2 + c1r
−2 + c3)}c2a(a − r)−1(a − r)

≤ −2(a − r)

+ c1{2r
−1c−1

2 + rc−1
2 +K + 2 + r−2 + 1}c2(1 + rε−1)(a − r).
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Let c1 > 0 be so small that

c1{2r
−1c−1

2 + rc−1
2 +K + 2 + r−2 + r}c2(1 + rε−1) < 1.

Then B(t) ≤ −(a − r) ≤ −ε. Take µ(t) := min{ε, c3, c1/a(t)}. It remains to prove that

∫

∞

0

[dt/a(t)] = ∞ implies that

∫

∞

0

µ(t)dt = ∞.

We can assume that c3 < ε; that is,

µ(t) = min(c3, c1/a).

Then for D = {t|c3 ≤ c1/a(t)} and E = {t|c3 > c1/a(t)} we have

∫

∞

0

µ(t)dt =

∫

D

c3dt+

∫

E

(c1/a(t))dt

≥ (c3r/c1)

∫

D

(c1/a(t))dt +

∫

E

(c1/a(t))dt

≥ min(1, c3r/c1)

∫

∞

0

(c1/a(t))dt = ∞.

This completes the proof.

REMARK. Using the method of location of limit sets, Yoshizawa [12] proved asymp-

totic stability assuming the following condition (ii′) instead of (ii):

(ii′) there is a sequence {sn} and a constant d > 0 such that sn+1 ≥ sn + d and either

a(t) ≡ 0 on the intervals [sn, sn + d] or
∞
∑

n=1

[

∫ sn+d

sn

a(t)dt

]

−1

= ∞.

It may be remarked that examples similar to those previously given can also be con-

structed for delay equations since (7) and (7c) are very similar.

5. NONLINEAR CONSIDERATIONS

Nonlinearities can be introduced into the restoring force in (1a) without any significant

changes being required in what has been presented so far. We simply look at x′′ +a(t)x′ +

g(x) = 0 with xg(x) > 0 if x 6= 0 and use the Liapunov function V = 2
∫ x

0
g(s)ds + z2.
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When
∫ x

0
g(s)ds → ∞ as |x| → ∞ and when g′ is continuous, the nonlinear case is very

similar to the linear one. Thus, we focus on (1b) and (1c).

Consider the equation

(9) utt = g(ux)x − a(t)ut, u(t, 0) = u(t, π) = 0.

There is good reason to require g′(u) ≥ g0 > 0, and to make our results parallel to the

linear case we take g0 = 1 and ask that there exist α > 0 such that

(10) ug(u) > 0 if u 6= 0, 1 ≤ g′(u) ≤ α, g′ continuous.

Our results here will be in the way of a priori bounds; any solution u(t, x) existing on

[0,∞) will satisfy these bounds. If (2) and (3) hold then the transformation (4) will yield

(11)

{

ut = z − λ(t)u

zt = g(ux)x − bz + (λ′ + bλ)u.

Let G(u) =
∫ u

0
g(s)ds and define

(12) V (t) =

∫ π

0

[2G(ux) + z2]dx

and obtain

V ′(t) ≤

∫ π

0

[−2λu2
x − 2bz2 + 2(λ′ + bλ)uz]dx.

We then have

α

∫ π

0

[u2
x + z2]dx ≥ V (t) ≥

∫ π

0

[u2
x + z2]dx;

if (7) is satisfied then V ′ ≤ −[µ(t)/α]V so that Theorem 1b will hold for (9) as well as for

(1b).

REMARK. If we drop the condition α ≥ g′(r), then we can still obtain local asymp-

totic stability by using convex function theory and Jensen’s inequality.

Next, consider

(13) u′′ + a(t)u′ + g(u(t− r)) = 0
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with (2) and (3) holding. Assume that there are constants 0 < α < β with

(14) α ≤ g′(s) ≤ β for all s ∈ R, g′ continuous.

We obtain the system

(15)

{

u′ = z − λ(t)u

z′ = (λ′ + bλ)u− bz − g(u) +
∫ t

t−r g
′(u(s))(z(s) − λ(s)u(s))ds.

Let G(u) =
∫ u

0 g(s)ds and define

(16) V = 2G(u) + z2 + (µ1(t) + 1)

∫ 0

−r

∫ t

t+s

β(z(v) − λ(v)u(v))2dv.

One proceeds in a straightforward way to an analog of (7c) and Theorem 1c.

6. SEPARATION OF VARIABLES

It is not possible to separate variables in our nonlinear equation (9) for a general

solution, but variables are readily separated in (1b) yielding the pair

(17) T ′′(t) + a(t)T ′(t) + n2T (t) = 0

and

(18) X ′′(x) + n2X(x) = 0.

It is natural to argue that we need only solve (1a) to also solve (1b); but that is not

necessarily true. There are several pitfalls along the way. First, we may give conditions

on a(t) so that solutions of (17) tend to zero; but the solution of (1b) will be an infinite

series of such terms, and this will require great care. But what is even worse, n2 will enter

(7); in fact, n2 will enter the computations of the other investigators. For example the

Hatvani-Totik equation in Section 2 will require
∫ t+α

t
a(t)dt ≥ δ > 0 for all large t and for

α < π/n; they conclude that (S) holds if and only if (N) holds. Thus, if we try for a series

solution, then n → ∞ and the condition will ultimately reduce to Smith’s requirement

that a(t) ≥ a0 > 0. When we handle (1b) directly, n does not enter the picture.
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