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1. Introduction. In this paper we discuss asymptotic stability and boundedness of

solutions of a system of functional differential equations

x′ = F (t, xt)

by means of Liapunov functionals. The conditions are motivated by a specific Liapunov

functional for the scalar equation

x′ = −a(t)f(x) + b(t)g(x(t − h)) + p(t).

That Liapunov functional has the basic form of one which was studied by Krasovskii [17;

pp. 143–160] and which has been studied intensively up to the present time. It is that

functional which we focus on here.

But there is another form for the derivative of a Liapunov functional,

V ′ ≤ −δ|F (t, xt)| + M,

which has been studied since the 1960’s, with several recent contributions. We show that

our Liapunov functional also satisfies that type of condition.

Thus, we obtain new results for the scalar equation, extend the Krasovskii theorem, and

provide a strong example of current interest.

2. Asymptotic stability. We begin with the scalar equation

(1) x′(t) = −a(t)f(x(t)) + b(t)g(x(t − h))

in which it is assumed that all functions are continuous, that h > 0, and that there are

positive constants α and β with

xf(x) > 0, |f(x)| ≥ |g(x)| for 0 < |x| ≤ β,(2)

−a(t) + |b(t + h)| ≤ −αa(t), a(t) ≥ 0,(3)
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and

(4)

∫

∞

0

a(t)dt = ∞.

We now show that these conditions suffice to prove that the zero solution of (1) is

asymptotically stable. The reader may consult Yoshizawa [24; pp. 183–213] (or any book on

functional differential equations and Liapunov’s direct method) for definitions of stability

and for properties of Liapunov functionals. Some properties are formalized later.

As a motivation for the conditions of our first result we define a standard Liapunov

functional for (1) and arrive at a nonstandard conclusion. The reader may be interested

in noting that nothing is said about boundedness of a(t) or b(t); we believe this is entirely

new for the general form of (1).

For a solution x(t) of (1) we define

(5) V (t, xt) = |x(t)| +

∫ t

t−h

|b(s + h)| |g(x(s))| ds

so that if we write V (t) = V (t, xt) we have

V ′(t) ≤ −a(t)|f(x)| + |b(t)g(x(t − h))|

+ |b(t + h)g(x)| − |b(t)g(x(t − h))|

≤ [−a(t) + |b(t + h)|] |f(x)|

or by (3)

(6) V ′(t) ≤ −αa(t)|f(x)| ≤ −αa(t)|g(x)|.

Now from (2) and (3) we have

|b(t + h)g(x)| ≤ |b(t + h)f(x)| ≤ (1 − α)a(t)|f(x)|

so that from (5) we obtain

(7) |x(t)| ≤ V (t, xt) ≤ |x(t)| + (1 − α)

∫ t

t−h

a(s)|f(x(s))| ds.
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It is well-known (cf. Krasovskii [17; p. 144]) that (6) and (7) imply that the zero solution

of (1) is stable.

But the simplicity of these relations immediately implies that all solutions tend to zero.

Indeed, from (6) we have

0 ≤ V (t) ≤ V (t0) − α

∫ t

t0

a(s)|f(x(s))| ds

so that the integral converges; hence, in (7) we see that
∫ t

t−h
a(s)|f(x(s))| ds → 0 as

t → ∞. But by (4) we apply (2) and conclude that there is a sequence {tn} → ∞ such

that x(tn) → 0. Thus, V (tn) → 0; but V ′(t) ≤ 0 so for t ≥ tn we have

|x(t)| ≤ V (t) ≤ V (tn) → 0,

as required.

This will motivate our first theorem and it is these sorts of relations on which this paper

focuses. However, in recent years there has been renewed interest in relations on Liapunov

functionals which are very different from those in (6) and (7). It is very simple at this

point to illustrate such a relation using (1) – (4).

The idea begins with a system

(0) x′ = h(x)

and a Liapunov function V (x). If x(t) is a solution of (0), then

V ′

(0)(x(t)) = gradV · h =

| gradV | |h| cos θ,

If V is carefully chosen, we may find δ > 0 with

V ′

(0)(x(t)) ≤ −δ|x′|.

Thus, V is bounded by the arc length of a solution. Generalizations of this idea were

discussed by Becker-Burton-Zhang [1], Burton [2–5], Burton-Casal-Somolinos [8], Haddock
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[13], Erhart [12] some time ago. Recently, Burton-Hering [10], Burton-Makay[11], Makay

[18], Kobayashi [16], and Tsuruta [19] have resumed the investigation. Thus, it seems

worth while to state a strong example of that sort since it can be done with economy in

view of (5) and (6).

Let (2), (3), and (4) hold and perturb (1) to

(1∗) x′ = −a(t)f(x) + b(t)g(x(t − h)) + p(t)

where p is continuous, |p(t)| ≤ M for some M > 0. Let k > 1 and define

(5∗) V (t, xt) = |x(t)| + k

∫ t

t−h

|b(s + h)| |g(x(s))| ds

so that if x(t) is a solution of (1*) and if we write V (t) = V (t, xt) then we have

V ′(t) ≤ [−a(t) + k|b(t + h)|] |f(x)| − (k − 1)|b(t)| |g(x(t − h))| + |p(t)|.

By (3), there is a k > 1, d > 0, and r > 0 with

(6∗) V ′(t) ≤ −d[|x′(t)| + a(t)|f(x(t))|] + rM.

The aforementioned references give many results on boundedness and stability from rela-

tions like (6*) without asking boundedness of |x′(t)|.

Our work here develops (5) and (6); we say no more about (6*). A general theorem will

now be formulated.

Let (C, ‖ · ‖) be the Banach space of continuous functions ϕ : [−h, 0] → Rn with the

supremum norm, h > 0, and for A > 0 if x : [−h,A) → Rn is continuous then define

xt ∈ C by xt(s) = x(t + s) for −h ≤ s ≤ 0. If δ > 0, then Cδ is the δ-ball in C .

Let F : [0,∞) × Cβ → Rn be continuous, take bounded sets into bounded sets, let

F (t, 0) = 0, and let β > 0. Then

(8) x′ = F (t, xt)
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is a system of functional differential equations with finite delay. If ϕ ∈ Cβ and t0 ≥ 0,

then there is a solution x(t) = x(t, t0, ϕ) of (8) on a maximal interval [t0, γ) with γ = ∞

or lim sup
t→γ−

|x(t)| = β, and xt0 = ϕ.

In this paper we employ continuous functions Wi : [0,∞) → [0,∞) which are strictly

increasing, satisfy Wi(0) = 0, and are called wedges.

Let ‖| · ‖| denote the L2-norm on C . Krasovskii [17; p. 155] showed that if there is a

continuous function V : [0,∞) × Cβ → [0,∞) and wedges Wi with

(9) W1(|ϕ(0)|) ≤ V (t, ϕ) ≤ W2(|ϕ(0)|) + W3(‖| ϕ|‖)

and

(10) V ′

(8)(t, xt) ≤ −W4(|x(t)|)

then x = 0 is asymptotically stable. In [6] we showed that the conclusion is actually

uniform asymptotic stability. Wang [20] showed that ‖| · ‖| could be replaced by any Lp-

norm, while other improvements were made by Burton-Hatvani [9], Burton-Hering [10],

Burton-Makay[11], Hatvani [17], Ko [15], Wang [21–23], Zhang [25–26], and others. But it

seems that all of these asked that V (t, ϕ) ≤ W (‖ϕ‖), at least on a sequence of intervals.

Def. 1. The zero solution of (8) is said to be stable if for each ε > 0 and t0 ≥ 0 there

exists δ > 0 such that [ϕ ∈ Cδ, t ≥ t0] imply that |x(t, t0 , ϕ)| < ε. It is asymptotically

stable if it is stable and if for each t0 ≥ 0 there exists η > 0 such that ϕ ∈ Cη implies that

x(t, t0, ϕ) → 0 as t → ∞.

Our foregoing work with (1) suggests and motivates the following result.

Theorem 1. Let V , H : [0,∞) × Cβ → [0,∞) be continuous, H(t, 0) = 0, and Wi be

wedges with

(i) W1(|ϕ(0)|) ≤ V (t, ϕ) ≤ W2(|ϕ(0)|) + W3

(

∫ t

t−h
H(s, ϕ)ds

)

,

(ii) V ′

(8)(t, xt) ≤ −W4(H(t, xt)),

(iii) W4 is convex downward,
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(iv) if ε > 0 and x : [t0,∞) → Rn, ε ≤ |x(t)| ≤ β, then
∫

∞

t0
W4(H(s, xs))ds = ∞.

Under these conditions the zero solution of (8) is asymptotically stable.

Proof. Conditions (i) and (ii) are well-known to imply stability. Let x(t) be a solution

of (8) on [t0,∞) with |x(t)| < β. From (ii) we have for V (t) = V (t, xt) that 0 ≤ V (t) ≤

V (t0) −
∫ t

t0
W4(H(s, xs))ds; but by (iv) there is a sequence {tn} ↑ ∞ with x(tn) → 0. By

renaming, let tn+1 − tn ≥ h. Notice that
∫ tn

tn−h
H(s, xs)ds → 0 as n → ∞; for if there is

an ε > 0 and a subsequence {tnk
} with

∫ tn
k

tn
k
−h

H(s, xs)ds ≥ ε,

then t ≥ tnK
implies (by Jensen’s inequality) that

0 ≤ V (t) ≤ V (t0) −
K

∑

k=1

hW4

(

1

h

∫ tnk

tnk
−h

H(s, xs)ds

)

≤ V (t0) −
K

∑

k=1

hW4(ε/h)

so V (t) → −∞ as K → ∞, a contradiction. In particular, we can find {tn} ↑ ∞ with

x(tn) → 0 and
∫ tn

tn−h
H(s, xs)ds → 0 so V (tn) → 0. Then V ′ ≤ 0 and so t ≥ tn implies

that

W1(|x(t)|) ≤ V (t, xt) ≤ V (tn, xtn
) → 0

as t → ∞. This completes the proof. �

Def. 2. The zero solution of (8) is said to be equi-asymptotically stable if it is stable and

if for each t0 ≥ 0 and µ > 0 there exist δ > 0 and T > 0 such that [ϕ ∈ Cδ, t ≥ t0 + T ]

imply that |x(t, t0, ϕ)| < µ.

Theorem 2. Let (i), (ii), (iii) of Theorem 1 hold and suppose there is a wedge W5 and

a continuous function S(t) with

(v)
∫ t

t−h
H(s, ϕ)ds ≤ W5(‖ϕ‖)S(t) whenever ϕ ∈ Cβ.

If, in addition, for each ε > 0 there is a δ > 0 such that x : [t0,∞) → Rn continuous

and
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(vi) ε ≤ |x(t)| ≤ β imply that
∫ t

t−h
W4(H(s, xs))ds ≥ δ,

then x = 0 is equi-asymptotically stable.

Proof. It is still true that x = 0 is stable. Let t0 ≥ 0 and µ > 0 be given. For this t0

and β > 0, find δ1 of stability. We will find T > 0 such that ϕ ∈ Cδ1
and t ≥ t0 + T imply

that |x(t, t0, ϕ)| < µ.

Let ϕ ∈ Cδ1
be arbitrary and x(t) = x(t, t0, ϕ). Consider the intervals

In = [t0 + (n − 1)h, t0 + nh], n = 1, 2, 3, . . . .

Notice that if there is a t̄ ≥ t0 with

(∗) W2(|x(t̄)|) + W3

(
∫ t̄

t̄−h

H(s, xs)ds

)

< W1(µ)

then |x(t)| < µ for t ≥ t̄.

Case 1. For a given n, suppose that W2(|x(t)|) ≥ W1(µ)/2 for each t ∈ In. By integration

of (ii) and use of (vi) we find δ > 0 with

V (t0 + nh) ≤ V (t0 + (n − 1)h) − δ.

Case 2. There is a t∗n ∈ In with W2(|x(t∗n)|) < W1(µ)/2, but

W3

(
∫ t∗

n

t∗
n
−h

H(s, xs)ds

)

≥ W1(µ)/2.

Then by Jensen’s inequality, integrating (ii) yields

V (t∗n) ≤ V (t∗n − h) − hW4(W
−1
3 (W1(µ)/2)/h)

=: V (t∗n − h) − λ.

Hence, for a given n either (*) holds or V decreases by an amount

r = min[δ, λ]

on every interval In−1 ∪ In. As V (t0) ≤ W2(β) + S(t0)W5(β), there is an N so that (∗)

holds on some In with n < N . Thus, T = Nh, and the proof is complete. �
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3. Boundedness. Notice that if we perturb (1) to

(11) x′ = −a(t)f(x) + b(t)g(x(t − h)) + p(t)

where p : [0,∞) → R and there is an M > 0 with

(12) |p(t)| ≤ M,

then taking the derivative of V defined in (5) along a solution of (11) yields

(13) V ′

(11)(t, xt) ≤ −αa(t)|f(x)| + M,

while we still have

(7) |x(t)| ≤ V (t, xt) ≤ |x(t)| + (1 − α)

∫ t

t−h

a(s)|f(x(s))| ds.

We will show that if, in addition to (2) and (3) with β = ∞, (12), we have µ > 0 and

U > 0 with

(14)
1

h

∫ t

t−h

αa(s)|f(x)| ds ≥ 2M + µ for |x| ≥ U,

then solutions of (11) are equi-ultimately bounded for bound B. This is formulated for (8)

when F (t, 0) = 0 is removed.

Theorem 3. In (8) (without F (t, 0) = 0) let β = ∞ and suppose there are continuous

functions V,H : [0,∞)×C → [0,∞), positive constants M , U , and µ, and wedges Wi such

that

(i) W1(|ϕ(0)|) ≤ V (t, ϕ) ≤ W2(|ϕ(0)|) + W3

(

∫ t

t−h
H(s, ϕ)ds

)

(ii) V ′

(8)(t, xt) ≤ −W4(H(t, xt)) + M ,

(iii) hW4

(

1
h

∫ t

t−h
H(s, xs)ds

)

≥ 2Mh + µ whenever x is continuous and |x(s)| ≥ U for

t − h ≤ s ≤ t,

(iv) W1(r) → ∞ as r → ∞, W4 is convex downward.

Then there is a B > 0 so that each solution satisfies |x(t)| < B for all large t.
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Def. 3. Solutions of (8) are said to be equi-ultimately bounded if there is a B > 0 and

for any B3 > 0 and t0 ≥ 0 there is a T > 0 such that [ϕ ∈ CB3
, t ≥ t0 + T ] imply that

|x(t, t0, ϕ)| < B; if T is independent of t0, solutions are uniformly ultimately bounded

(UUB).

Def. 4. Solutions of (8) are said to be uniformly bounded (UB) if for each B1 > 0 there

is a B2 > 0 such that [t0 ≥ 0, ϕ ∈ CB1
, t ≥ t0] imply that |x(t, t0, ϕ)| < B2.

Theorem 4. If, in addition to the conditions of Theorem 3, there is a continuous

function S(t) and wedge W5 with

∫ t

t−h

H(s, xs)ds ≤ S(t)W5(‖xt‖)

then solutions of (8) are equi-ultimately bounded.

Remark. Theorems 3 and 4 are very unusual since they allow H to be unbounded when

x is bounded. It will be much easier to follow the proof after the following results, the first

of which generalizes a result in Burton [7] (see Theorem 3).

Theorem 5. Suppose there is a continuous function V : [0,∞) × C → [0,∞), positive

constants U and M with

(i) W1(|ϕ(0)|) ≤ V (t, ϕ) ≤ W2(|ϕ(0)|) + W3

(

∫ 0

−h
W4(|ϕ(s)|)ds

)

,

(ii) V ′

(8)(t, xt) ≤ −W5(|x(t)|) + M and

(iii) W5(U) > 2M + 1
h
, W1(r) → ∞ as r → ∞. Then solutions are UB and UUB.

Proof. We first show that Theorem 5 is true provided that we strengthen (ii). Then we

show that (ii) can always be strengthened in the required way. Notice that if (iii) holds,

then W4 can always be replaced by a larger W4, if necessary, so that there is a U > 0 with

W5(W4(U)) > 2M + 1
h
.

Lemma 1. Suppose there is a continuous function V : [0,∞) × C → [0,∞), positive

constants M , U , and Z with

(i) W1(|ϕ(0)|) ≤ V (t, ϕ) ≤ W2(|ϕ(0)|) + W3

(

∫ 0

−h
W4(|ϕ(s)|)ds

)

,
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(ii) V ′

(8)(t, xt) ≤ −W5(W4(|x(t)|)) + M,W5(W4(U)) > 2M + 1
h
,

W5(Z/h) > 2M + 1
h

and W4(U)h > Z,

(iii) W1(r) → ∞ as r → ∞, W5 convex downward.

Then solutions of (8) are UB and UUB.

Proof. Let B1 > 0 be given. First, we must find B2 > 0 such that [t0 ≥ 0, ‖ϕ‖ ≤ B1, t ≥

t0] imply that |x(t, t0, ϕ)| < B2. Then we must find B > 0 and for each B3 > 0 find K > 0

such that [t0 ≥ 0, ‖ϕ‖ ≤ B3, t ≥ t0 + K] imply that |x(t, t0, ϕ)| > B.

Note from (ii) that

(I) W5(Z/h) > 2M +
1

h
and W4(U)h > Z.

For an arbitrary t0 ≥ 0 and an arbitrary ϕ ∈ CB1
, let x(t) = x(t, t0, ϕ), V (t) = V (t, xt),

and In = [t0 + (n − 1)h, t0 + nh], n = 1, 2, . . . .

Notice that

(II) V (t + h) ≤ V (t) + Mh.

Next, notice that if there is an s1 ∈ I2 with
∫ s1

s1−h
W4(|x(s)|)ds ≥ Z, then by Jensen’s

inequality and (ii) we have by (I) that

V (s1) − V (s1 − h) ≤ −hW5(
1

h
Z) + Mh

≤ −2Mh − 1 + Mh ≤ −Mh − 1.

This, and the idea in (II) yields

(III) V (t0 + 2h) ≤ V (t0) − 1 whenever s1 exists.

If s1 fails to exist, then for all s ∈ I2 we have
∫ s

s−h
W4(|x(u)|)du < Z so there is an s2 ∈ I2

with |x(s2)| < U ; otherwise, |x(s)| ≥ U on I2 yields
∫ t0+2h

t0+h
W4(|x(s)|)ds ≥ hW4(U) > Z,

a contradiction. Thus, V (s2) ≤ W2(U) + W3(Z) and

(IV ) V (t0 + 2h) ≤ W2(U) + W3(Z) + Mh.
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Continuing these arguments on I4, I6, . . . we conclude that either

(III2n) V (t0 + 2nh) ≤ V (t0) − n

or

V (t0 + 2nh) ≤ W2(U) + W3(Z) + Mh(IV2n)

=: W1(B) − 2Mh

which defines B.

If (III2n) holds, then from (i) we have

W1(|x(t0 + 2nh)|) ≤ V (t0 + 2nh) ≤ V (t0) − n

≤ W2(B1) + W3(hW4(B1)) − n.

Hence, there is an N = N(B1) 6= N(t0), so that (III2N ) fails and (IV2N ) holds.

Lemma 2. If (IV2n) holds, then so does (IV2n+2).

Proof. Either there is an s1 ∈ I2n+2 with

∫ s1

s1−h

W4(|x(s)|)ds ≥ Z so that V (s1) ≤ V (s1 − h) − 2Mh − 1

and

V (t0 + (2n + 2)h) ≤ V (t0 + 2nh) − 1

≤ W1(B) − 2Mh − 1

as required, or the same argument as previously given yields

V (t0 + (2n + 2)h) ≤ W2(U) + W3(Z) + Mh.

This proves Lemma 2. �
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It now follows that W1(|x(t)|) ≤ V (t) ≤ W1(B) for all t ≥ t0 + 2Nh. We also see that

for t ≥ t0,

W1(|x(t)|) ≤ max[W1(B),W2(B1) + W3(hB1) + 2Mh]

=: W1(B2).

Replace B1 with B3 to complete the proof of UUB. This will prove Lemma 1.

We now finish the proof of Theorem 5 by showing that there is a wedge W so that

W (V (t)) will satisfy the conditions of Lemma 1.

If W is any wedge, then W (V (t)) satisfies

W0(|ϕ(0)|) := W (W1(|ϕ(0)|)) ≤ W (V (t))

≤ W (W2(|ϕ(0)|) + W3

(
∫ 0

−h

W4(|ϕ(s)|)ds)

)

≤ 2W (W2(|ϕ(0)|)) + 2W (W3

(
∫ 0

−h

W4(|ϕ(s)|)ds

)

=: W7(|ϕ(0)|) + W8

(
∫ 0

−h

W4(|ϕ(s)|)ds

)

.

Next, if R(t, xt) := W (V (t, xt)) then

R′

(8)(t, xt) = W ′(V (t, xt))V
′

(8)(t, xt)

(and if |x(t)| ≥ U then

V ′(t) ≤ −W5(|x(t)|) + M ≤ −βW5(|x(t)|),

for some β > 0) so the inequality continues and we seek W and W9 with

≤ −W ′(V (t, xt))βW5(W
−1
4 W4(|x(t)|))

≤ −W ′(W1(|x|))βW5(W
−1
4 (W4(|x(t)|)))

≤ −W9(W4(|x(t)|)) (still for |x(t)| ≥ U) .
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We make W ′ so large that W9 can be chosen as convex downward. Since R′ is bounded

above for |x(t)| < U , we can find M̄ > 0 with

R′(t, xt) ≤ −W9(W4(|x(t)|)) + M̄

and this now completes the proof of Theorem 5. �

Proof of Theorem 3. Let ϕ ∈ C , t0 ≥ 0, x(t) = x(t, t0 , ϕ) and V (t) = V (t, xt). We

will find a B, independent of t0 and ϕ, with |x(t)| < B for large t.

The proof will proceed just as in Lemma 1.

Consider the intervals In once more. Find Z > 0 with

(I) hW4(Z/h) ≥ 2Mh + µ.

As before,

(II) V (t + h) ≤ V (t) + Mh.

Next, notice that if there is an s1 ∈ I2 with
∫ s1

s1−h
H(s, xs)ds ≥ Z, then by Jensen’s

inequality and (ii) we have

V (s1) − V (s,−h) ≤ −hW4(Z/h) ≤ −2Mh − µ + Mh.

This and (II) yield

(III) V (t0 + 2h) ≤ V (t0) − µ, whenever s1 exists.

If s1 fails to exist, then for all s ∈ I2 we have
∫ s

s−h
H(u, xu)du < Z so by (iii) there is

an s2 ∈ I2 with |x(s2)| < U . Thus, V (s1) ≤ W2(U) + W3(Z) and

(IV ) V (t0 + 2h) ≤ W2(U) + W3(Z) + Mh.

Continuing these arguments on I4, I6, . . . , we conclude that either

(III2n) V (t0 + 2nh) ≤ V (t0) − nµ
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or

V (t0 + 2nh) ≤ W2(U) + W3(Z) + Mh(IV2n)

=: W1(B) − 2Mh

which defines B. As V (t0) is a number, there is an N such that (III2N) fails and (IV2N )

holds and V (t0 + 2Nh) ≤ W1(B) − 2Mh.

The argument of Lemma 2 holds. If (IV2n) is satisfied, either there is an s1 ∈ I2n+2

with
∫ s1

s1−h

H(s, xs)ds ≥ Z so V (s1) ≤ V (s1 − h) − 2Mh − µ

and
V (t0 + (2n + 2)h) ≤ V (t0 + 2nh) − µ

≤ W1(B) − 2Mh − µ so (IV2n+2) holds,

or the same argument as previously given works. This proves Theorem 3. �

The proof of Theorem 4 is almost identical to that of Theorem 3. We use

∫ t

t−h

H(s, xs)ds ≤ S(t)W5(‖xt‖)

to get the bound on N from (III2n).
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