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1. Introduction. This paper is concerned with almost periodic and asymptotically

almost periodic solutions of the integral equations

x(t) = a(t) −

∫ t

0

D(t, s, x(s))ds,(1)

x(t) = a(t) −

∫ t

−∞

D(t, s, x(s))ds,(2)

and

x(t) = p(t) −

∫ t

−∞

P (t, s, x(s))ds(3)

where a(t) and D(t, s, x) converges to p(t) and P (t, s, x) in some sense. Equation (3) is a

limiting equation of (1), while Equation (2) is a perturbed form of (3).

An equation of the form

(E) x(t) = a(t) −

∫ t

α

D(t, s, x(s))ds, α ≥ −∞,

has two types of solutions. It may have a solution which satisfies (E) on (α,∞); the

existence of such a solution is frequently shown by a limiting equations argument or by a

fixed point theorem. A more direct solution is obtained from a specified continuous initial
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function φ : (α, t0] → Rn; we then write (E) as

x(t) =

{

a(t) −

∫ t0

α

D(t, s, φ(s))ds

}

+

∫ t

t0

D(t, s, x(s))ds

=: b(t) +

∫ t

t0

D(t, s, x(s))ds

so that φ becomes part of the inhomogeneous term b. Under mild continuity conditions

(cf., Corduneanu [5], Gripenberg-Londen-Staffans [8], or Burton [1; p. 79]), there is then

a solution, say x(t, t0, φ) on an interval [t0, t0 + β) and, if the solution remains bounded,

β = ∞. Translation of x(t, t0 , φ) to the left may yield a solution of (2) or (3).

In this paper we begin with statements of basic results on almost periodic functions,

including old results and some new ones. We then obtain several theorems, corollaries, and

examples. The following brief summary will help the reader to understand the direction

of the paper.

In Theorem 1 we show that if (3) and a related equation have unique R-bounded

solutions, then those solutions are almost periodic. Moreover, bounded solutions of those

equations with initial functions converge to those almost periodic solutions as t→ ∞. The

proof is by means of limiting equations theory.

In Theorem 2 we show that if (1) has an asymptotically almost periodic solution with

initial function, then its almost periodic part is an almost periodic solution of (3).

Theorem 3 lists five equivalent conditions about the existence of almost periodic so-

lutions.

Theorem 4 uses a growth and Lipschitz condition to obtain an almost periodic solution

of an equation related to (3).

Theorem 5 shows that a linear form of (3) has an almost periodic solution which is

globally attractive.

Theorem 6 uses a Liapunov functional to show uniqueness of R-bounded solutions.

2



For other results on almost periodic and asymptotically almost periodic solutions of

integral equations, including transform techniques not used here, see Corduneanu [4; p.

212], Gripenberg [7], Gripenberg-Londen-Staffans [8; p. 10], and Miller ([9], [10]).

2. Preliminaries. Consider the systems of Volterra equations

x(t) = a(t) −

∫ t

0

D(t, s, x(s))ds, t ∈ R+,(1)

x(t) = a(t) −

∫ t

−∞

D(t, s, x(s))ds, t ∈ R(2)

and

x(t) = p(t) −

∫ t

−∞

P (t, s, x(s))ds, t ∈ R(3)

where R+ := [0,∞), R := (−∞,∞), a, p : R → Rn and D,P : ∆ × Rn → Rn are

continuous, and where ∆ := {(t, s) : s 5 t}.

In the following, we denote a real sequence by a greek letter as α = {sk}, and α ⊂ β

means that α is a subsequence of β. For α = {sk} and β = {tk}, α + β denotes the

sequence {sk + tk}. Next, Tαp and TαP denote lim
k→∞

p(t+ sk) and lim
k→∞

P (t+ sk, s+ sk, x)

respectively, where α = {sk} and the limits exist for each t, s and x. Moreover, H(p)

denotes the hull of p, that is, a set of e such that there is an α with Tαp = e uniformly,

and similarly H(p, P ) denotes the hull of (p, P ).

We suppose that

q(t) := a(t) − p(t) → 0 as t→ ∞ and a(t) is almost periodic,(4)

Q(t, s, x) := D(t, s, x) − P (t, s, x), and P (t, s, x) is almost periodic in t,(5)

that is Π(t, s, x) := P (t, s+ t, x) is almost periodic in t uniformly for (s, x) ∈ (−∞, 0]×Rn,

and for any J > 0 there are continuous functions PJ : ∆ → R+ and QJ : ∆ → R+ such
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that

PJ (t, s) is almost periodic in t,

|P (t, s, x)| 5 PJ (t, s) if (t, s, x) ∈ ∆ ×XJ ,

where | · | denotes a norm of Rn and XJ := {x ∈ Rn : |x| 5 J},

|Q(t, s, x)| 5 QJ (t, s) if (t, s, x) ∈ ∆ ×XJ ,
∫ t

−∞

PJ (t+ T, s)ds → 0 uniformly for t ∈ R as T → ∞,(6)

∫ t

0

QJ (t, s)ds → 0 as t→ ∞,(7-1)

or

∫ t

−∞

QJ (t, s)ds → 0 as t→ ∞, and

∫ t

−∞

QJ (t+ T, s)ds → 0

uniformly for t ∈ R as T → ∞.

First we state some well-known results concerning almost periodic functions without

proofs. For the proofs, see, for example, [4] of Corduneanu, [6] of Fink, or [12] of Yoshizawa.

Theorem I. Let x : R → Rn be continuous, and assume that for any real sequence

α′, there is a subsequence α ⊂ α′ such that Tαx converges uniformly on R. Then x(t) is

almost periodic.

Theorem II. Let x : R → Rn be continuous and almost periodic. Then, for any real

sequence α′, there is a subsequence α ⊂ α′ and a continuous almost periodic function y(t)

such that Tαx = y uniformly on R.

Theorem III. Let P (t, s, x) : ∆ × Rn → Rn be continuous and almost periodic in t.

Then,
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(i) for any real sequence α′, there is a subsequence α ⊂ α′ and a continuous almost

periodic function E such that TαP = E uniformly on any ∆T × XJ , where ∆T :=

{(t, s) : 0 5 t− s 5 T},

(ii) if TαP exists uniformly on any ∆T × XJ implies that Tαx exists uniformly on R,

where x : R→ Rn is a continuous almost periodic function, then mod(x) is contained

in mod(P ).

Let (C, ‖ · ‖) be a Banach space of bounded and continuous functions ξ : R → Rn

with the supremum norm ‖ · ‖. For any t0 ∈ R+, let C1(t0) be a set of bounded functions

ξ : R+ → Rn such that ξ(t) is continuous on R+ except at t0 and ξ(t0) = ξ(t0+). Similarly,

for any t0 ∈ R, let C2(t0) be a set of bounded functions ξ : R → Rn such that ξ(t) is

continuous on R except at t0 and ξ(t0) = ξ(t0+). For any ξ ∈ C , define a map M on C by

(Mξ)(t) := p(t) −

∫ t

−∞

P (t, s, ξ(s))ds, t ∈ R.

Next for any ξ ∈ C1(t0), define a map M1 on C1(t0) by

(M1ξ)(t) := a(t) −

∫ t

0

D(t, s, ξ(s))ds, t = t0.

Similarly for any ξ ∈ C2(t0), define a map M2 on C2(t0) by

(M2ξ)(t) := a(t) −

∫ t

−∞

D(t, s, ξ(s))ds, t = t0.

Moreover, for any J > 0 let CJ := {ξ ∈ C : ‖ξ‖ 5 J}, C1,J(t0) := {ξ ∈ C1(t0) : ‖ξ‖+ 5 J},

and C2,J(t0) := {ξ ∈ C2(t0) : ‖ξ‖ 5 J}, where ‖ · ‖+ denotes the supremum norm on R+.

3. Basic lemmas. In this section we prepare three basic lemmas. First we have the

following basic lemma.

Lemma 1. Under the assumptions (4)–(6), the following hold.
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(i) For any J > 0 there is a continuous increasing function δ = δJ (ε) : (0,∞) → (0,∞)

with

(8) |(Mξ)(t1) − (Mξ)(t2)| < ε if ξ ∈ CJ and |t1 − t2| < δ.

(ii) If (7-k) with k = 1 (or 2) holds, then for any t0 in R+ (or R) and any J > 0 there is

a continuous increasing function δ(k) = δ
(k)
t0,J (ε) : (0,∞) → (0,∞) with

(9-k) |(Mkξ)(t1) − (Mkξ)(t2)| < ε if ξ ∈ Ck,J(t0) and t0 5 t1 < t2 < t1 + δ(k).

Since this lemma can be proved easily by a similar method to the one used in the

proof of Lemma 1 in [3], we omit the proof.

Now corresponding to Equation (3), for any (e,E) in H(p, P ) we consider the equation

(3H) x(t) = e(t) −

∫ t

−∞

E(t, s, x(s))ds, t ∈ R.

Then we have the following lemma.

Lemma 2. If (4)–(6) and (7-1) (or (7-2)) hold, and if (1) (or (2)) has an R+ (or

R)-bounded solution x(t) with an initial time in R+ or (R), then for any sequence {sk} of

nonnegative numbers with sk → ∞ as k → ∞, the sequence of functions {xk(t)} contains

a subsequence which converges to an R-bounded solution y(t) of (3H) with some (e,E) in

H(p, P ) uniformly on [r,∞) for any r ∈ R, where xk(t) is defined by

xk(t) :=

{

x(0), t < −sk,

x(t + sk), t = −sk,
t ∈ R

(or xk(t) := x(t + sk), t ∈ R), and y(t) satisfies (3H) on R. (In particular, if (3) has an

R-bounded solution x(t) which satisfies (3) on R, then the same conclusion holds for any

sequence {sk} without (7-2)).

Proof. Suppose that (1) has anR+-bounded solution x(t) with an initial time t0 ∈ R+.

Let x(t) denote again the R-extension of the function x(t) obtained by defining x(t) := x(0)
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for t < 0. Clearly the set {xk(t)} is uniformly bounded on R. Taking a subsequence if

necessary, we may assume that the sequence {sk} is non-decreasing. From Lemma 1(ii)

with k = 1, x(t) is uniformly continuous on [t0,∞), and since xk(t) is an sk-translation

of x(t) to the left, for any j ∈ N , the set {xk(t)}k=j is equicontinuous on [t0 − sj ,∞),

where N denotes the set of positive integers. Thus, taking a subsequence if necessary, we

may assume that the sequence {xk(t)} converges to a bounded continuous function y(t)

uniformly on any compact subset of R.

Now we show that y(t) satisfies (3H) with some (e,E) in H(p, P ). From Theorem II

and Theorem III(i), {sk} contains a subsequence, say α = {sk} again for simplicity, and

there are continuous almost periodic functions e and E such that Tαp = e uniformly on

R, and for any J > 0 and K > 0, TαP = E uniformly on ∆K ×XJ . From (1) we have

(10) xk(t) = p(t+sk)+q(t+sk )−

∫ t

−sk

P (t+sk, s+sk , xk(s))ds−

∫ t+sk

0

Q(t+sk , s, x(s))ds.

Let J > 0 be a number with ‖x‖ 5 J . From (6), for any ε > 0 there is a T > 0 with

(11)

∫ t

−∞

PJ (t+ T, s)ds < ε if t ∈ R.

From (4) and (7-1), for any t ∈ R we obtain

lim
k→∞

q(t + sk) = 0

and

lim sup
k→∞

∣

∣

∣

∣

∫ t+sk

0

Q(t + sk, s, x(s))ds

∣

∣

∣

∣

5 lim sup
k→∞

∫ t+sk

0

QJ (t + sk, s)ds = 0.

Moreover, from (11), for any t ∈ R we have

(12)

lim sup
k→∞

∣

∣

∣

∣

∫ t

−sk

P (t + sk, s+ sk, xk(s))ds −

∫ t

−∞

E(t, s, y(s))ds

∣

∣

∣

∣

5 lim sup
k→∞

∣

∣

∣

∣

∫ t

t−T

(

P (t+ sk, s+ sk, xk(s)) − E(t, s, y(s))
)

ds

∣

∣

∣

∣

+ lim sup
k→∞

∫ t−T

−∞

PJ (t+ sk, s+ sk)ds +

∫ t−T

−∞

|E(t, s, y(s))|ds

5

∫ t−T

−∞

|E(t, s, y(s))|ds + ε.
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On the other hand, since E = TαP uniformly on ∆K × XJ for any K > 0, from (6) we

can easily obtain

∫ t−T

−∞

|E(t, s, y(s))|ds 5 sup

{
∫ t−T

−∞

PJ (t, s)ds : t ∈ R

}

5 ε,

which together with (12) implies that
t
∫

−sk

P (t+ sk, s+ sk, xk(s))ds converges to

t
∫

−∞

E(t, s, y(s))ds uniformly on R. Thus, letting k → ∞ in (10), we obtain

y(t) = e(t) −

∫ t

−∞

E(t, s, y(s))ds, t ∈ R,

which shows that y(t) is an R-bounded solution of (3H) with (e,E) in H(p, P ), and y(t)

satisfies (3H) on R. Moreover it is easy to see that xk(t) converges to y(t) uniformly on

[r,∞) for any r ∈ R as k → ∞.

By similar arguments, other parts can be easily proved.

Now a function ξ : R+ (or R) → Rn is said to be asymptotically almost periodic if

ξ = ψ + µ such that ψ : R→ Rn is continuous almost periodic, µ ∈ C1(t0) (or C2(t0)) for

some t0 ∈ R+ (or R) and µ(t) → 0 as t→ ∞. Then we have the following lemma.

Lemma 3. Under the assumptions (4)–(6), the following hold.

(i) If (7-1) holds, then for any asymptotically almost periodic function ξ on R+ such that

ξ = ψ + µ, ψ : R → Rn is continuous almost periodic, ‖ξ‖+ 5 J for some J > 0,

µ ∈ C1(t0) for some t0 ∈ R+, and µ(t) → 0 as t→ ∞,

d1(t) :=

∫ t

0

D(t, s, ξ(s))ds, t ∈ R+

is continuous asymptotically almost periodic, and its almost periodic part is given

by π(t) :=
t
∫

−∞

P (t, s, ψ(s))ds, t ∈ R, and mod(π) ⊂ mod(ψ,P (XJ )), where P (XJ )

denotes the restrictions of P on ∆ ×XJ .
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(ii) If (7-2) holds, then for any asymptotically almost periodic function ξ on R such that

ξ = ψ + µ, ψ : R → Rn is continuous almost periodic, ‖ξ‖ 5 J for some J > 0,

µ ∈ C2(t0) for some t0 ∈ R, and µ(t) → 0 as t→ ∞,

d2(t) :=

∫ t

−∞

D(t, s, ξ(s))ds, t ∈ R

is continuous asymptotically almost periodic, and its almost periodic part is given by

the π(t) in (i). In particular, if Q(t, s, x) ≡ 0, then

d(t) :=

∫ t

−∞

P (t, s, ξ(s))ds, t ∈ R

is continuous asymptotically almost periodic, and its almost periodic part is given by

the π(t) in (i) without (7-2).

Proof. (i) From ‖ξ‖+ 5 J we have ‖ψ‖ 5 J . From (9-1) and the uniform continuity

of a(t) on R+, d1(t) is uniformly continuous on [t0,∞). On the other hand, if t0 > 0 then

from the continuity of D, it is easy to see that d1(t) is uniformly continuous on [0, t0].

Thus d1(t) is uniformly continuous on R+.

Next we prove that π(t) is continuous and almost periodic on R. From (8), π(t)

is uniformly continuous on R. In order to prove that π(t) is almost periodic on R, by

Theorem I, it is sufficient to show that for any real sequence α′, there is a subsequence

α ⊂ α′ such that Tαπ converges uniformly on R. Since P and ψ are almost periodic, taking

a subsequence α = {tk} ⊂ α′ if necessary, we may assume that TαP converges to some

E uniformly on ∆K ×XJ for any K > 0, and Tαψ converges to some η uniformly on R.

Now we show that
t+tk
∫

−∞

P (t+ tk, s, ψ(s))ds converges to
t
∫

−∞

P (t, s, η(s))ds uniformly on R.

From (6), for any ε > 0 there is a T1 > 0 with

(13)

∫ t−T1

−∞

PJ (t, s)ds < ε if t ∈ R.
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Since TαD converges to E uniformly on ∆T1
×XJ , there is a K1 > 0 such that k = K1

implies

(14) |P (t+ tk, s+ tk, x) − E(t, s, x)| <
ε

T1
on ∆T1

×XJ .

Moreover, since E(t, s, x) is uniformly continuous on ∆T1
×XJ , there is a δ > 0 with

(15) |E(t, s, x) −E(t, s, y)| <
ε

T1
if |x− y| < δ on ∆T1

×XJ .

For this δ, there is a K2 > 0 such that k = K2 implies

(16) |ψ(t+ tk) − η(t)| < δ on R.

Thus from (13)–(16), for k = max(K1,K2) and any t ∈ R we have

(17)

∣

∣

∣

∣

∫ t+tk

−∞

P (t+ tk, s, ψ(s))ds −

∫ t

−∞

E(t, s, η(s))ds

∣

∣

∣

∣

5

∫ t

t−T

|P (t+ tk, s+ tk, ψ(s + tk)) − E(t, s, η(s))|ds

+

∫ t+tk−T

−∞

PJ (t + tk, s)ds +

∫ t−T

−∞

|E(t, s, η(s))|ds

<

∫ t

t−T

|P (t+ tk, s+ tk, ψ(s + tk)) − E(t, s, ψ(s + tk))|ds

+

∫ t

t−T

|E(t, s, ψ(s + tk)) − E(t, s, η(s))|ds +

∫ t−T

−∞

|E(t, s, η(s))|ds + ε

<

∫ t−T

−∞

|E(t, s, η(s))|ds + 3ε.

From (13) we have

∫ t−T1

−∞

|E(t, s, η(s))|ds 5 sup

{
∫ t−T1

−∞

PJ (t, s)ds : t ∈ R

}

5 ε,

which together with (17) yields that
t+tk
∫

−∞

P (t + tk, s, ξ(s))ds converges to

t
∫

−∞

E(t, s, η(s))ds uniformly on R. Thus, π(t) is almost periodic on R. Moreover, by
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Theorem III(ii) and similar arguments as in the above, it is easy to see that mod(π) ⊂

mod(ψ,P (XJ )).

In order to prove that d1(t) is asymptotically almost periodic and its almost periodic

part is given by π(t), we need only prove that

(18) d1(t) − π(t) → 0 as t→ ∞.

For any t ∈ R+, d1(t) − π(t) is expressed as

(19)

∫ t

0

(P (t, s, ξ(s)) − P (t, s, ψ(s))) ds−

∫ 0

−∞

P (t, s, ψ(s))ds +

∫ t

0

Q(t, s, ξ(s))ds.

For any ε > 0 let T1 > 0 be a number as in (13). Since P (t, s, x) is uniformly continuous

on U := ∆T1
×XJ , for the ε there is a δ > 0 with

|P (t, s, x) − P (t, s, η)| <
ε

T1
if (t, s, x), (t, s, y) ∈ U and |x− y| < δ.

Moreover, since µ(t) → 0 as t→ ∞, for the δ there is a T2 > 0 with

|µ(t)| = |ξ(t) − ψ(t)| < δ if t = T2.

For t = T1 + T2 the first term of (19) is estimated as

∣

∣

∣

∣

∫ t

0

(P (t, s, ξ(s)) − P (t, s, ψ(s))) ds

∣

∣

∣

∣

5 2

∫ t−T1

0

PJ (t, s)ds +

∫ t

t−T1

|P (t, s, ξ(s)) − P (t, s, ψ(s))|ds < 3ε,

which implies

(20)

∫ t

0

(P (t, s, ξ(s)) − P (t, s, ψ(s))) ds→ 0 as t→ ∞.

Next from (13), for t = T1 we obtain

∣

∣

∣

∣

∫ 0

−∞

P (t, s, ψ(s))ds

∣

∣

∣

∣

5

∫ 0

−∞

PJ(t, s)ds < ε,
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which yields

(21)

∫ 0

−∞

P (t, s, ψ(s))ds → 0 as t→ ∞.

Finally the third term of (19) is estimated as

∣

∣

∣

∣

∫ t

0

Q(t, s, ξ(s))ds

∣

∣

∣

∣

5

∫ t

0

QJ (t, s)ds, t ∈ R+,

which together with (7-1) implies

(22)

∫ t

0

Q(t, s, ξ(s))ds → 0 as t→ ∞.

Thus, from (19) and (20)–(22) we can conclude that (18) holds.

(ii) From (9-2) and the uniform continuity of a(t) on [t0,∞), d2(t) is uniformly con-

tinuous on [t0,∞). On the other hand, from (6), (7-2) and the continuity of D, it is easy

to see that d2(t) is continuous on (−∞, t0]. Thus d2(t) is continuous on R.

In order to prove that d2(t) is asymptotically almost periodic and its almost periodic

part is given by π(t), we need only prove that

(23) d2(t) − π(t) → 0 as t→ ∞.

For any t ∈ R we have

d2(t) − π(t) =

∫ t

−∞

(P (t, s, ξ(s)) − P (t, s, ψ(s))) ds +

∫ t

−∞

Q(t, s, ξ(s))ds,

which together with similar arguments to those in the proof of (i) easily yields (23). The

latter part is a direct consequence of the former part.

4. Relations among (1)–(3). In this section we discuss relations among solutions of

(1)–(3). First we have the following theorem.
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Theorem 1. In addition to (4)–(6), suppose that (3) has a unique R-bounded solution

x0(t) with ‖x0‖ 5 J for some J > 0 which satisfies (3) on R, and that for any (e,E) in

H(p, P ), (3H) with (e,E) has a unique R-bounded solution which satisfies (3H ) on R.

Then, x0(t) and the R-bounded solution of (3H) with any (e,E) in H(p, P ) are almost

periodic, mod(x0) ⊂ mod(p, P (XJ )), and any R-bounded solution of (3) with an initial

time in R is asymptotically almost periodic and approaches x0(t) as t→ ∞. Moreover, if

(7-1) (or (7-2)) holds, then any R+ (or R)-bounded solution of (1) (or (2)) with an initial

time in R+ (or R) is asymptotically almost periodic and approaches x0(t) as t→ ∞.

Proof. First we prove that x0(t) is almost periodic. By Theorem I, it is sufficient to

prove that any real sequence ρ′ = {rk} contains a subsequence ρ such that Tρx0 converges

uniformly on R. For any k ∈ N , let xk(t) := x0(t+rk), t ∈ R. Then clearly the set {xk(t)}

is uniformly bounded on R. Moreover from Lemma 1(i), the set {xk(t)} is equicontinuous

on R. Thus, taking a subsequence if necessary, we may assume that the sequence {xk(t)}

converges to a bounded continuous function y(t) uniformly on any compact subset of R.

Since p(t) and P (t, s, x) are almost periodic, taking a subsequence if necessary, we may

assume that for some (e,E) in H(p, P ), Tρp = e uniformly on R and TρP = E uniformly

on ∆K ×XJ for any K > 0. From (3) we have

xk(t) = p(t + rk) −

∫ t

−∞

P (t+ rk, s+ rk, xk(s))ds, t ∈ R.

Thus, by similar arguments as in the proof of Lemma 2, it is easily seen that {xk(t)}

converges to e(t) −
t
∫

−∞

E(t, s, y(s))ds uniformly on R, and y(t) satisfies (3H) with the

(e,E) on R. Hence x(t) is almost periodic. The almost periodicity of each R-bounded

solution of (3H) can be proved similarly. Moreover, by Theorem III(ii), the uniqueness of

R-bounded solutions of (3H) for any (e,E) in H(p, P ) satisfying (3H) on R, and similar

arguments as in the above, it is easy to see that mod(x0) ⊂ mod(p, P (XJ )).

Next we prove that any R-bounded solution x(t) = x(t, t0, φ) with t0 ∈ R and a
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bounded continuous initial function φ is asymptotically almost periodic and approaches

x0(t) as t → ∞. Replacing the J by a greater one if necessary, we may assume that

‖x‖ 5 J . Let α = {tk} be a sequence such that tk = t0, tk → ∞ as k → ∞, Tαp = p

uniformly on R, and TαP = P uniformly on ∆K ×XJ for any K > 0. Suppose that x(t)

does not approach x0(t) as t→ ∞. Then there is an ε0 > 0 with

(24) lim sup
t→∞

|x(t) − x0(t)| > 2ε0.

For any k ∈ N let xk(t) := x0(t + tk) and ξk(t) := x(t + tk), t ∈ R. From Lemma 2

and the assumption that x0(t) is a unique R-bounded solution of (3) which satisfies (3)

on R, taking a subsequence if necessary, we may assume that each of {xk(t)} and {ξk(t)}

converges to x0(t) uniformly on R+. Thus for the ε0 there is a k ∈ N with

sup
{

max
(

|xk(t) − x0(t)|, |ξk(t) − x0(t)|
)

: t ∈ R+
}

5 ε0,

which contradicts (24). Another case can be proved similarly as in the above using the

arguments in the proof of Lemma 2.

Remark 1. (i) By assuming that (3) satisfies a separation condition instead of the

assumption that for any (e,E) in H(p, P ), (3H) has a unique R-bounded solution which

satisfies (3H ) on R, we can obtain a similar theorem to Theorem 1.

(ii) Without the uniqueness assumption of R-bounded solutions, we can conclude that

for any (e,E) in H(p, P ), any R-bounded solution of (3H) with (e,E) satisfying (3H) on

R is almost periodic, though the module containment is not necessarily obtained.

Corresponding to (1) (or (2)) for any J > 0 and t0 ∈ R+ (or R) consider the assump-

tion

(25-1) |a(t)| +

∫ t

0

PJ (t, s)ds +

∫ t

0

QJ (t, s)ds 5 J if t = t0

14



or

(25-2) |a(t)| +

∫ t

−∞

PJ(t, s)ds +

∫ t

−∞

QJ (t, s)ds 5 J if t = t0.

Then, from Theorem 1 we have the following corollary.

Corollary 1. Under the assumptions of Theorem 1, the following hold.

(i) If (25-1) (or (25-2)) holds for some J > 0 and t0 ∈ R+ (or R), then for any initial

function φ taking values in XJ , any solution x(t, t0, φ) of (1) (or (2)) is asymptotically

almost periodic and approaches x0(t) as t→ ∞.

(ii) If for any K > 0 there is a J > K such that (25-1) (or (25-2)) holds for the J and

any t0 ∈ R+ (or R), then any solution of (1) (or (2)) is asymptotically almost periodic and

approaches x0(t) as t→ ∞.

Remark 2. (i) It is easy to see that if ‖a‖ < ∞, P (t, s, x) = P (t, s)x, and if for some

λ < 1, sup

{

t
∫

−∞

|P (t, s)|ds : t ∈ R

}

5 λ with |P | = sup{|Px| : |x| = 1}, then for any

K > 0 there is a J > K such that (25-1) (or (25-2)) with QJ (t, s) ≡ 0 holds for the J and

any t0 ∈ R.

(ii) In [3], we showed the existence of an asymptotically periodic solution of an asymp-

totically periodic equation using Schauder’s first theorem. But a similar method is not

applicable to (1) unless (1) is an asymptotically periodic equation (see 8.1 in [6]).

Next, from Lemma 3 we have the following theorem.

Theorem 2. If (4)–(6) and (7-1) (or (7-2)) hold, and if (1) (or (2)) has an asymptotically

almost periodic solution with an initial time in R+ (or R), then its almost periodic part is

an almost periodic solution of (3).

Proof. Let x(t) be an asymptotically almost periodic solution of (1) with an initial

time t0 ∈ R+ such that x(t) = y(t) + z(t), y(t) is continuous almost periodic on R,

15



z ∈ C1(t0) and z(t) → 0 as t→ ∞. Then we have

(26) y(t) + z(t) = p(t) + q(t) −

∫ t

0

D(t, s, x(s))ds, t = t0.

From Lemma 3, taking the almost periodic part of both sides of (26) we obtain

y(t) = p(t) −

∫ t

−∞

P (t, s, y(s))ds, t = t0.

From this, it is easy to see that y(t) is an almost periodic solution of (3).

Another part can be proved similarly.

Concerning a relation between (1) and (3), we have the following theorem.

Theorem 3. Under the assumptions (4)–(6) and (7-1), the following five conditions

are equivalent.

(i) Equation (3) has an almost periodic solution.

(ii) For some q(t) and Q(t, s, x) ≡ 0, (1) has an almost periodic solution which satisfies

(1) on R+.

(iii) For some q(t) and Q(t, s, x) ≡ 0, (1) has an asymptotically almost periodic solution

with an initial time in R+.

(iv) For some q(t) and Q(t, s, x), (1) has an almost periodic solution which satisfies (1) on

R+.

(v) For some q(t) and Q(t, s, x), (1) has an asymptotically almost periodic solution with

an initial time in R+.

Proof. First we prove that (i) implies (ii). Let ψ(t) be an almost periodic solution of

(3) and let

q(t) := −

∫ 0

−∞

P (t, s, ψ(s))ds, t ∈ R+.

Then clearly q(t) is continuous and q(t) → 0 as t→ ∞. Thus it is easy to see that for the

q(t) and Q(t, s, x) ≡ 0, (1) has an almost periodic solution ψ(t), which satisfies (1) on R+.
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Next, it is clear that (ii) and (iii) imply (iii) and (v) respectively. Moreover, from

Theorem 2, (v) yields (i).

Finally, since it is trivial that (ii) implies (iv), we prove that (iv) yields (ii). Let π(t)

be an almost periodic solution of (1) with some q(t) and Q(t, s, x) which satisfies (1) on

R+, and let

γ(t) := −

∫ t

0

Q(t, s, π(s))ds, t ∈ R+.

Then clearly γ(t) is continuous and γ(t) → 0 as t → ∞. Thus it is easy to see that for

a(t) = p(t) + q(t) + γ(t) and Q(t, s, x) ≡ 0, (1) has an almost periodic solution π(t) which

satisfies (1) on R+.

5. Almost periodic solutions. Among the assumptions of Theorem 1, the uniqueness

of R-bounded solutions of (3) which satisfy (3) on R seems to be most important. In this

section we give two different conditions for the uniqueness of R-bounded solutions of (3)

which satisfy (3) on R, and show the existence of almost periodic solutions.

First we give a condition of a contraction type. Suppose that for any J > 0 there is

a continuous function LJ : ∆ → R+ such that LJ (t, s) is almost periodic in t and that

(27) |P (t, s, x) − P (t, s, y)| 5 LJ (t, s)|x− y| if t, s ∈ R, |x| 5 J and |y| 5 J.

Then we have the following theorem.

Theorem 4. Under the assumptions (4)–(6) and (27), the following hold.

(i) If for some λ < 1

(28) λJ := sup

{
∫ t

−∞

LJ(t, s)ds : t ∈ R

}

5 λ for any J > 0

holds, then for any (e,E) in H(p, P ), (3H) has a unique almost periodic solution, and it

is a unique R-bounded solution which satisfies (3H) on R and its module is contained in

mod(p, P ).
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(ii) If for some J > 0

‖p‖ +

∫ t

−∞

PJ (t, s)ds 5 J for any t ∈ R

and λJ < 1 hold, then for any (e,E) in H(p, P ), (3H) has a unique almost periodic

solution in XJ , and it is a unique R-bounded solution in XJ which satisfies (3H) on R and

its module is contained in mod(p, P (XJ )).

Proof. From (27) and (28) it is easy to see that for any (e,E) in H(p, P ), there is

a KJ in H(LJ ) such that KJ satisfies (27) and (28) with LJ = KJ . Let (A, ‖ · ‖) be

the complete metric space of continuous almost periodic functions ξ : R → Rn with the

supremum norm ‖ · ‖ such that mod(ξ) is contained in mod(p, P ). From Lemma 3(ii), the

map M defined by

(Mξ)(t) := e(t) −

∫ t

−∞

E(t, s, ξ(s))ds, t ∈ R

maps A into A. Moreover, for any ξi ∈ A with ‖ξi‖ 5 J (i = 1, 2) for some J > 0 we have

|(Mξ1)(t) − (Mξ2)(t)| 5

∫ t

−∞

KJ (t, s)|ξ1(s) − ξ2(s)|ds 5 λJ‖ξ1 − ξ2‖, t ∈ R,

which together with (28) yields

‖Mξ1 −Mξ2‖ 5 λ‖ξ1 − ξ2‖.

Thus M : A → A is a contraction mapping. Hence M has a unique fixed point in A,

which gives a unique almost periodic solution of (3H), say π(t). It is easy to see that from

(27) and (28), π(t) is a unique R-bounded solution which satisfies (3H) on R, and that

mod(π) ⊂ mod(p, P (XJ ).

(ii) This part can be proved similarly as in the proof of (i) by taking a subset S of A

defined by

S := { ξ ∈ A : ‖ξ‖ 5 J and mod(ξ) ⊂ mod(p, P (XJ ))} .
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Although Theorems 1 and 4 give asymptotic behavior of R-bounded solutions of (3H),

they do not necessarily give asymptotic behavior of all solutions of (3H). But, for linear

equations, we can obtain asymptotic behavior of all solutions. Consider the linear equation

(29) x(t) = p(t) −

∫ t

−∞

P (t, s)x(s)ds, t ∈ R,

where p : R → Rn and P : R× R → Rn×n are continuous and almost periodic. Then we

have the following theorem.

Theorem 5. If for some λ < 1

(30)

∫ t

−∞

|P (t, s)|ds 5 λ for any t ∈ R

holds, then (29) has a unique R-bounded solution which satisfies (29) on R, and it is an

almost periodic solution with a module contained in mod(p, P ), and globally attractive.

Proof. It is easy to see that for any t0 ∈ R and any bounded continuous function

φ : (−∞, t0) → Rn, the solution x(t) := x(t, t0, φ) of (29) satisfies

|x(t)| 5 max
(

sup{Π(s) : t0 5 s 5 t}, sup{|φ(s)| : s < t0}, |x(t0+)|
)

, t = t0,

where Π(s) := sup{|p(u)| : t0 5 u 5 s}/(1 − λ), s = t0. Thus, the conclusions are direct

consequences of Theorems 1 and 4.

Now we show an example.

Example. Consider the scalar linear equation

(31) x(t) = p(t) −m

∫ t

−∞

e−t+sb(t)x(s)ds, t ∈ R,

where p : R→ R is continuous almost periodic, m is a constant with |m| < 1, and b(t) :=
∞
∑

k=1

2−k cos kt. Equation (31) is a special case of (29) with n = 1 and P (t, s) = me−t+sb(t).

Hence, (4) with q(t) ≡ 0, (5) with Q(t, s, x) ≡ 0, (27) with LJ (t, s) = |m|e−t+sb(t), and (30)
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with λ = |m| hold. Thus, from Theorem 4, (31) has a uniqueR-bounded solution satisfying

(31) on R, say π(t), and it is an almost periodic solution with mod(π) ⊂ mod(p, P ), and

globally attractive.

On the other hand, it is easy to see that π(t) is a unique R+-bounded solution of the

equation

(32) x(t) = p(t) −m

∫ 0

−∞

e−t+sb(t)π(s)ds −m

∫ t

0

e−t+sb(t)x(s)ds, t ∈ R+,

which satisfies (32) on R+. Moreover, from Corollary 1(ii) the almost periodic solution

π(t) of (32) is globally attractive.

Next we seek another condition for the uniqueness of R-bounded solutions of the

equation

(33) x(t) = p(t) −

∫ t

−∞

G(t, s)g(s, x(s))ds, t ∈ R,

where p : R→ Rn, G : R×R→ Rn×n and g : R×Rn → Rn are continuous, and

Gs(t) is continuous, symmetric, and Gst(t, s) is continuous,(34)
∫ t

−∞

(

|G(t, s)| + |Gs(t, s)|(t − s)2 + |Gst(t, s)|(t − s)2
)

ds is R-bounded,(35)

∫ t−T

−∞

|Gs(t, s)|(t − s)2ds→ 0 uniformly for t ∈ R as T → ∞,(36)

lim
s→−∞

sG(t, s) = 0 for each fixed t ∈ R,(37)

Gst(t, s) is negative (positive) semi-definite,(38)

and

g(t, x) − g(t, y) = C(t, x, y)(x− y) if t ∈ R, x ∈ Rn and y ∈ Rn,(39)

where C : R×Rn×Rn → Rn×n is continuous, symmetric, and positive (negative) definite,

and for any J > 0 there are AJ > 0 and BJ with

AJ 5 |C(t, x, y)| 5 BJ if t ∈ R, |x| 5 J and |y| 5 J.
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For (33), which is a special case of (3), we have the following theorem.

Theorem 6. If (34)–(39) hold, then (33) has at most one R-bounded solution which

satisfies (33) on R.

This theorem can be proved using a function

V (t) :=

∫ t

−∞

(
∫ t

s

z∗(v)C(v)dv

)

Gs(t, s)

∫ t

s

C(v)z(v)dv ds, t ∈ R,

where z∗ denotes the transpose of z, z(t) := x1(t)−x2(t), t ∈ R, C(t) := C(t, x1(t), x2(t)),

t ∈ R, and where x1(t) and x2(t) are R-bounded solutions of (33) which satisfy (33) on R.

For the details, see Theorem 3 in [3].

Combining Theorems 1 and 6, we have the following corollary.

Corollary 2. In addition to (34)–(39), if p(t) and G(t, s, x) := G(t, s)g(s, x) are almost

periodic in t, and if (33) has an R-bounded solution with an initial time in R, then (33)

has a unique almost periodic solution with a module contained in mod(p,G), and it is a

unique R-bounded solution of (33) which satisfies (33) on R. Moreover, any R-bounded

solution of (33) approaches the unique almost periodic solution as t→ ∞.
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