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Abstract

We consider a system of functional differential equations with infinite delay and derive con-

ditions on Liapunov functionals to ensure that solutions are uniformly bounded and uniformly

ultimately bounded. The analysis is based on the method of finding a bound on the average

values of unknown solutions and Jensen’s inequality. Comparisons between our theorems and

those existing in the literature are also given.

1 Introduction

Consider a system of functional differential equations

x′(t) = F (t, xt), x(t) ∈ Rn (1.1)

in which F (t, φ) is a functional defined for t ≥ 0 and φ ∈ C , where C is the set of
bounded continuous functions φ : (−∞, 0] → Rn with the supremum norm. For each
t ∈ R+ = [0, +∞), C(t) denotes the set of continuous functions φ : [0, t] → Rn with
‖φ‖ = sup{|φ(s)‖ : 0 ≤ s ≤ t}, where | · | is the Euclidean norm on Rn. We assume
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that for each t0 ≥ 0 and each φ ∈ C(t0) there is at least one solution x(t, t0, φ) of
(1.1) defined on an interval [t0, α) with xt0 = φ. Here, xt(s) = x(t + s) for s ≤ 0.
Moreover, if the solution remains bounded, then α = ∞.

We are interested in conditions on Liapunov functionals which will ensure that so-
lutions are uniformly bounded (UB) and uniformly ultimately bounded (UUB). Much
discussion of these concepts and of the above mentioned existence properties may be
found in Burton [3] or Yoshizawa [15], for example.

Definition 1.1. Solutions of (1.1) are UB if for each B1 > 0 there exists B2 > 0
such that [t0 ≥ 0, φ ∈ C, ‖φ‖ < B1, t ≥ t0] imply that |x(t, t0, φ)| ≤ B2.

Definition 1.2. Solutions of (1.1) are UUB if there is a B > 0 and for each
B3 > 0 there is a T > 0 such that [t0 ≥ 0, φ ∈ C, ‖φ‖ < B3, t ≥ t0 + T ] imply that
|x(t, t0, φ)| < B.

These are generalizations of uniform stability and uniform asymptotic stability.
An example will bring our work into focus.

Example 1.1. Let D : [0,∞) → [0, 1) be continuous, L1[0,∞), and let
∫ ∞

t D(u)du
∈ L1[0,∞). Suppose that a, b : [0,∞) → [0,∞) are continuous, that n is the quotient
of odd positive integers, and that p : [0,∞) → R is bounded and continuous. Finally,
suppose that there is an L > 0 such that

−a(t) +
∫ ∞

0
D(s)ds + [b2(t)/(2L)] ≤ 0. (1.2)

Note that p(t) is bounded, but we will be most interested in the case in which b(t)
ranges from zero to infinity.

Consider the scalar equation

x′ = −a(t)x3 − xn +
∫ t

0
D(t − s)x3(s)ds + b(t)p(t) (1.3)

and define a Liapunov functional V by

V (t, xt) = (1/4)x4 + (1/2)
∫ t

0

∫ ∞

t−s
D(u)dux6(s)ds (1.4)
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so that along a solution of (1.3) we obtain

V ′(t, xt) = −a(t)x6 − xn+3 + x3
∫ t

0
D(t − s)x3(s)ds + x3b(t)p(t)

+(1/2)
∫ ∞

0
D(u)dux6 − (1/2)

∫ t

0
D(t − s)x6(s)ds

≤ −a(t)x6 − xn+3 + (1/2)
∫ t

0
D(t − s)(x6(t) + x6(s))ds + (1/2L)x6b2(t) + (L/2)p2(t)

+(1/2)
∫ ∞

0
D(u)dux6 − (1/2)

∫ t

0
D(t − s)x6(s)ds

= [−a(t) + (1/2)
∫ t

0
D(s)ds + (1/2)

∫ ∞

0
D(u)du + (1/2L)b2(t)]x6

−xn+3 + (L/2)p2(t)

so that
V ′(t, xt) ≤ −xn+3 + (L/2)p2(t).

This gives us a very familiar set of inequalities:

(1/4)x4 ≤ V (t, xt) ≤ (1/4)x4 +
∫ t

0
Φ(t − s)x6(s)ds (1.5)

and

V ′(t, xt) ≤ −xn+3 + M (1.6)

for some M > 0 and Φ(t) =
∫ +∞

t D(u)du/2.

Investigators have struggled for more than fifty years to find combinations of terms
in such inequalities which will yield UB and UUB. We will present several results here
and the reader should find it very interesting to interpret them in terms of the three
quantities x4, x6, xn+3.

The ideas from which UB and UUB came were extensively studied by the Lef-
schetz school during the 1940’s with much work on a Liénard equation being done
by Cartwright and Littlewood with a view to proving the existence of a periodic
solution. That type of work is given in detail in the book by Sansoni and Conti
[14]. Levinson [11] noticed that these concepts were general and fundamental. That
work stimulated research in asymptotic fixed point theory for proving the existence
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of periodic solutions in very general systems. One can trace that work from Browder
[2] (followed by many other results), to Jones [9], and on to one of the most useful
of all by Horn [8]. Applications of this type are found in Arino-Burton-Haddock [1],
for example, in connection with Liapunov functionals sharing relations (1.5) and (1.6).

General relations of this type are frequently written as

W1(|x|) ≤ V (t, xt) ≤ W2(|x|) + W3(
∫ t

0
Φ(t − s)W4(|x(s)|)ds) (1.7)

and

V ′(t, xt) ≤ −W5(|x(t)|) + M (1.8)

where the Wi are strictly increasing functions with Wi(0) = 0, called wedges. And
that is the form we will consider here. There are three cases in which these very
readily yield UB and UUB. If W4 = W5 and Φ′(t) ≤ 0, then the analysis is simple, as
may be seen in Burton and S. Zhang ([5], p.144). If (1.8) can actually be written as a
differential inequality in V , rather than in x, say V ′ ≤ g(t, V ), then Lakshmikantham
and Leela ([10], p. 214) gives a full discussion. If (1.8) involves the norm of the
right-hand-side of the differential equation, then lengthy, but simple, analysis may be
found in many places including Burton ([3], p. 275). More recent and general results
of that type are also found in Makay ([12], [13]).

But when none of those three situations obtain, it becomes a very difficult prob-
lem. Yoshizawa ([15], p. 206) will bring into focus the type of analysis that is then
needed. Hale ([6], p. 139) states that the conditions become so restrictive that he
declines to discuss them.

Our work begins with the idea that (1.6) can generate an average value of a power
of the unknown solution. This average can then be substituted into the integral in
(1.4) to obtain a bound on V and, hence, on the unknown x4.

2 The Main Result

Theorem 2.1. Suppose there exists a continuous function Φ : R+ → R+ with
Φ ∈ L1(R+), wedges Wj with W1(r) → +∞ as r → +∞, positive constants U, M
with W5(U) > M , and a continuous functional V : R+ ×C → R+ such that for each
x ∈ C(t), the following conditions hold:
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(i) W1(|x(t)|) ≤ V (t, xt) ≤ W2(|x(t)|) + W3(
∫ t

0
Φ(t− s)W4(|x(s)|)ds),

(ii) V ′
(1.1)(t, xt) ≤ −W5(|x(t)|) + M.

Then solutions of (1.1) are UB if and only if for each K1 > 0, there exists K2 > 0
such that if x(t) = x(t, t0, φ) is a solution of (1.1) with ‖φ‖ ≤ K1, then

∫ t̄

t0
Φ(t̄− s)W4(|x(s)|)ds ≤ K2 (2.1)

whenever v(s) < v(t̄) for t0 ≤ s < t̄, where v(s) = V (s, xs).

Proof. Suppose that solutions of (1.1) are UB. Then for each B1 > 0, there exists
B2 > 0 such that [t0 ≥ 0, ‖φ‖ < B1, t ≥ t0] imply |x(t, t0, φ)| ≤ B2. We may assume
that B2 > B1. Now let x(t) = x(t, t0, φ) and

∫ +∞

0 Φ(u)du = J . Then for t ≥ t0, we
have

∫ t

t0
Φ(t − s)W4(|x(s)|)ds ≤

∫ t

t0
Φ(t − s)W4(B2)ds ≤ JW4(B2).

This implies that (2.1) holds for all t ≥ t0.

On the other hand, suppose that (2.1) holds. Let x(t) = x(t, t0, φ) and v(t) =
V (t, xt) with ‖φ‖ ≤ K1. Then we have either

(A) v(t) ≤ v(t0) for all t ≥ t0 or

(B) v(s) < v(t̄) for some t̄ > t0 and all t0 ≤ s < t̄.

If (A) holds, then

W1(|x(t)|) ≤ v(t) ≤ v(t0) ≤ W2(K1) + W3(JW4(K1)).

Thus, |x(t)| ≤ W−1
1 [W2(K1) + W3(JW4(K1))]. Now suppose that (B) holds. By the

definition of t̄, we have W5(|x(t̄)|) ≤ M and |x(t̄)| ≤ W−1
5 (M). Note that W−1

5 (M)
is well defined since W5(U) > M . It follows from (i) and (2.1) that

v(t̄) ≤ W2(|x(t̄)|) + W3[
∫ t̄

0
Φ(t̄ − s)W4(|x(s)|)ds]

= W2(|x(t̄)|) + W3[
∫ t0

0
Φ(t̄ − s)W4(|x(s)|)ds +

∫ t̄

t0
Φ(t̄ − s)W4(|x(s)|)ds]

≤ W2[W
−1
5 (M)] + W3[JW4(K1) + K2].
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Since t̄ is arbitrary, we obtain for all t ≥ t0

v(t) ≤ W2[W
−1
5 (M)] + W3[JW4(K1) + K2] + v(t0)

≤ W2[W
−1
5 (M)] + W3[JW4(K1) + K2] + W2(K1) + W3(JW4(K1)).

This yields |x(t)| ≤ B2 for all t ≥ t0, where

B2 = W−1
1 [W2(W

−1
5 (M)) + W3(JW4(K1) + K2) + W2(K1) + W3(JW4(K1))].

Thus, solutions of (1.1) are UB.

Lemma 2.1. Suppose Φ : R+ → R+ is continuous with Φ(u), Φ′(u)u ∈ L1(R+)
and q ∈ C([t0, t], R

+). If there exist positive constants α and β such that

1

t− s

∫ t

s
q(u)du ≤ α +

β

t − s
(2.2)

for all t0 ≤ s < t, then
∫ t

t0
Φ(t − u)q(u)du ≤ J∗α + J ′β (2.3)

with J ≤ J∗, where

J =
∫ +∞

0
Φ(u)du, J ′ =

∫ +∞

0
|Φ′(u)|du, J∗ = sup

t≥0
[Φ(t)t +

∫ t

0
|Φ′(u)|udu]

Proof. First, observe that for each b > 0, we have

∫ b

0
|Φ′(u)|udu ≥ |

∫ b

0
Φ′(u)udu| = |Φ(u)u

∣

∣

∣

b

0
−

∫ b

0
Φ(u)du|

and
∫ +∞

b
|Φ′(u)|du ≥ |

∫ +∞

b
Φ′(u)du| = |Φ(+∞) − Φ(b)|.

where Φ(+∞) = 0 since Φ(u), Φ′(u)u ∈ L1(R+). It is clear from the first inequality
that J ≤ J∗. We also have

Φ(b)b ≤
∫ +∞

0
[Φ(u) + |Φ′(u)|udu] < +∞
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and
∫ +∞

b |Φ′(u)|du ≥ Φ(b) for all b ≥ 0. Now integrating by parts on the left-hand
side of (2.3) from t0 to t and using (2.2), we obtain

∫ t

t0
Φ(t − s)q(s)ds = Φ(t − s)

(

−
∫ t

s
q(u)du

)
∣

∣

∣

t

t0
−

∫ t

t0
Φ′(t − s)

∫ t

s
q(u)duds

≤ [Φ(t− t0)(t − t0) +
∫ t

t0
|Φ′(t− s)|(t− s)ds]α

+[Φ(t− t0) +
∫ t

t0
|Φ′(t− s)|ds]β

= [Φ(t− t0)(t − t0) +
∫ t−t0

0
|Φ′(u)|udu]α

+[Φ(t− t0) +
∫ t−t0

0
|Φ′(u)|du]β

≤ J∗α + [Φ(t− t0) −
∫ +∞

t−t0
|Φ′(u)|du +

∫ +∞

0
|Φ′(u)|du]β

≤ J∗α + J ′β.

This completes the proof.

Remark 2.1. If Φ : R+ → R+ with Φ′(t) ≤ 0 and Φ ∈ L1(R+), then
∫ +∞

0 |Φ′(u)|udu < +∞ and J = J∗. Indeed,

Φ(t)t +
∫ t

0
|Φ′(u)|udu = Φ(t)t−

∫ t

0
Φ′(u)udu =

∫ t

0
Φ(u)du.

If Φ(t) = e−2t sin2(t), then Φ(u), Φ′(u)u ∈ L1(R+). However, Φ′(t) ≤ 0 for all t ∈ R+

is not satisfied. Condition Φ′(t) ≤ 0 was used in the early work of Burton and S.
Zhang [5], Burton and Hering [4], and B. Zhang [16].

Remark 2.2. The wedge W2 in Theorem 2.1 can be replaced by W 2(r)+Q, where
W 2 is a wedge and Q is a positive constant. If W4 is bounded, then the right-hand
side of (i) can be reduced to this case and solutions of (1.1) are UB by Theorem
2.1. Therefore, we assume that the constants J and J∗ in Lemma 2.1 are positive
throughout this paper.

Corollary 2.1. Suppose there exists a continuous function Φ : R+ → R+ with
Φ(u), Φ′(u)u ∈ L1(R+), wedges Wj with W1(r) → +∞ as r → +∞, positive constants
U, M with W5(U) > M , and a continuous functional V : R+ ×C → R+ such that (i)
and (ii) hold for each x ∈ C(t). Suppose also that for each α > 0, there exists α∗ > 0
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such that

1

t − s

∫ t

s
W5(|x(u)|)du ≤ α implies

1

t − s

∫ t

s
W4(|x(u)|)du ≤ α∗ (2.4)

for any 0 ≤ s < t, x ∈ C(t). Then solutions of (1.1) are UB.

Proof. Let B1 > 0 and x(t) = x(t, t0, φ) be a solution of (1.1) with ‖φ‖ ≤ B1.
Define v(t) = V (t, xt). Suppose that there exists a t̄ > t0 such that v(s) < v(t̄) for all
t0 ≤ s < t̄. Integrate (ii) from s to t̄ to obtain

v(t̄) − v(s) ≤ −
∫ t̄

s
W5(|x(u)|)ds + M(t̄ − s).

This implies

1

t̄− s

∫ t̄

s
W5(|x(u)|)du ≤ M. (2.5)

By (2.4), there exists M∗ > 0 such that

1

t̄ − s

∫ t̄

s
W4(|x(u)|)du ≤ M∗. (2.6)

Applying Lemma 2.1 with q(u) = W4(|x(u)|), α = M∗, and β = 0, we obtain (2.1).
By Theorem 2.1, solutions of (1.1) are UB.

Remark 2.3. If W5(W
−1
4 (r)) is convex downward, then (2.4) holds. Indeed, by

Jensen’s Inequality, we have

1

t − s

∫ t

s
W5(|x(u)|)du ≥ W5

[

W−1
4

(

∫ t

s
W4(|x(u)|)du

/

(t − s)
)]

.

Moreover, since W5[W
−1
4 (r)] is convex downward, there are positive constants a and

b such that
W5[W

−1
4 (r)] ≥ ar − b

for all r ≥ 0. Thus, (ii) can be written as

V ′(t) ≤ −W̃4(|x(t)|) + M̃

where W̃4(r) = aW4(r) and M̃ = M + b.
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Remark 2.4. In general, (2.4) is not true for arbitrary wedges. For example, let
W4(r) = r, W5(r) =

√
r and xm(u) = m3/2e−2mu for m = 1, 2, · · ·. Then

∫ 1

0
W5(|xm(u)|)du =

1

m1/4
(1 − e−m) ≤ 1.

However,
∫ 1

0
W4(|xm(u)|)du =

m1/2

2
(1 − e−2m) → +∞

as m → +∞.

Theorem 2.2. Suppose that all conditions of Theorem 2.1 hold including (2.1).
Then solutions of (1.1) are UUB if and only if there are constants B∗, B∗∗ so that
for each B1 > 0, there exists a positive constant K such that for each solution
x(t) = x(t, t0, φ) of (1.1) with ‖φ‖ ≤ B1, there exists a t̂ ∈ [t0 + h, t0 + K + h] such
that

sup
t̂−h≤s≤t̂

v(s) ≤ B∗ (2.7)

and whenever t > t̂ with v(s) < v(t) for t̂− h ≤ s < t, then

∫ t

t̂−h
Φ(t − s)W4(|x(s)|)ds ≤ B∗∗ (2.8)

where v(s) = V (s, xs) and h > 0 satisfies W4(B2)
∫ +∞

h Φ(u)du < 1 with B2 given in
the definition of UB for B1.

Proof. Since (2.1) holds, solutions of (1.1) are UB. For each B1 > 0, there
exists B2 > 0 such that [t0 ≥ 0, ‖φ‖ ≤ B1, t ≥ t0] imply |x(t, t0, φ)| < B2. First,
suppose that solutions of (1.1) are UUB. We show that (2.7) and (2.8) hold. By
the definition of UUB for bound B, for each B1 > 0, there exists T > 0 such that
[t0 ≥ 0, ‖φ‖ ≤ B1, t ≥ T +t0] imply |x(t, t0, φ)| < B. Let K = T +h and t̂ = t0+K+h.
Thus, for any t ∈ [t̂− h, t̂], we have t − h ≥ t̂ − 2h = t0 + T and |x(t)| < B with

v(t) ≤ W2(|x(t)|) + W3(
∫ t

0
Φ(t− s)W4(|x(s)|)ds)

≤ W2(B) + W3

(

∫ t−h

0
Φ(t − s)dsW4(B2) +

∫ t

t−h
Φ(t− s)W4(|x(s)|)ds

)

≤ W2(B) + W3[1 + JW4(B)] =: B∗.
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This proves (2.7). It also follows from the definition of t̂ that |x(s)| < B for all
s ≥ t̂ − h. Thus,

∫ t

t̂−h
Φ(t − s)W4(|x(s)|)ds ≤ JW4(B) = B∗∗

for all t ≥ t̂ and (2.8) is satisfied.

Now suppose (2.7) and (2.8) hold. We will show that solutions of (1.1) are UUB.
For t̂ ∈ [t0 + h, t0 + K + h], we have either

(C) v(t) ≤ supt̂−h≤s≤t̂ v(s) for all t ≥ t̂ or

(D) v(s) < v(t̄) for some t̄ > t̂ and all t̂ − h ≤ s < t̄.

Let T = K + h. If (C) holds, then for t ≥ T + t0 ≥ t̂, W1(|x(t)|) ≤ v(t) ≤
supt̂−h≤s≤t̂ v(s) ≤ B∗ and |x(t)| ≤ W−1

1 (B∗). Next, suppose (D) holds. By the

definition of t̄, we have |x(t̄)| ≤ W−1
5 (M) and

v(t̄) ≤ W2(|x(t̄)|) + W3(
∫ t̄

0
Φ(t̄ − s)W4(|x(s)|)ds)

≤ W2[W
−1
5 (M)] + W3[

∫ t̂−h

0
Φ(t̄ − s)W4(|x(s)|)ds +

∫ t̄

t̂−h
Φ(t̄ − s)W4(|x(s)|)ds]

≤ W2[W
−1
5 (M)] + W3[W4(B2)

∫ +∞

t̄−t̂+h
Φ(u)du +

∫ t̄

t̂−h
Φ(t̄ − s)W4(|x(s)|)ds]

≤ W2[W
−1
5 (M)] + W3[1 + B∗∗].

Since t̄ is arbitrary, we have |x(t)| ≤ W−1
1 [W2(W

−1
5 (M)) + W3(1 + B∗∗)] for t ≥ t̂ if

(D) holds. Let

B = W−1
1 (B∗) + W−1

1 [W2(W
−1
5 (M)) + W3(1 + B∗∗)].

Then |x(t)| ≤ B for all t ≥ T + t0. The proof is complete.

Lemma 2.2. Suppose there exists a continuous function Φ : R+ → R+ with
Φ ∈ L1(R+), wedges Wj, positive constants U, M with W5(U) > M , and a continuous
functional V : R+×C → R+ such that (i) and (ii) hold for each x ∈ C(t). If solutions
of (1.1) are UB, then for any positive constants B1, γ, h, U∗ with U∗ ≤ U and
W5(U

∗) > M , there exists a constant T ∗ > 0 with the following properties: for each
solution x(t) = x(t, t0, φ) of (1.1) with ‖φ‖ ≤ B1, there exists a t̄ ∈ [t0 +h, t0 +T ∗+h]
such that

|x(t̄)| ≤ U∗ and v(s) ≤ γ + v(t̄) (2.9)
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for s ∈ [t̄ − h, t̄ ], where v(s) = V (s, xs).

Proof. Let B1 > 0 be given and find B2 > 0 satisfying the definition of UB. We
may assume B1 < B2. Let x(t) = x(t, t0, φ) be a solution of (1.1) with ‖φ‖ ≤ B1.
Then |x(t, t0, φ)| < B2 for all t ≥ t0. Set v(t) = V (t, xt). By (i), we have v(t) ≤
W2(B2) + W3(JW4(B2)). It follows from (ii) that there exists a constant L > 0 such
that |x(t)| > U∗ cannot hold for any interval of a length greater than or equal to L
after t0. Define

Ij = [t0 + (j − 1)(L + h), t0 + j(L + h)], j = 1, 2, · · ·.

On each Ij, there is the first t∗j ≥ t0 + (j − 1)(L + h) such that |x(t∗j)| ≤ U∗ and
t∗j ≤ t0 + j(L + h) − h. Next, define

I∗
j = [t∗j , t0 + j(L + h)] and v(tj) = max{v(s) : s ∈ I∗

j }

for some tj ∈ I∗
j . Then |x(tj)| ≤ U∗. Now consider the intervals Lj = [tj − h, tj] j =

2, 3, · · ·. For each j, there are two cases:

(I) v(tj) + γ ≥ v(s) for all s ∈ Lj or

(II) v(tj) + γ < v(sj) for some sj ∈ Lj.

Notice that in case (II), sj 6∈ I∗
j . Thus, sj ≤ t∗j . We will show that if case (II) holds,

then

v(tj) + γ ≤ v(tj−1), (2.10)

where v(tj−1) = max{v(s) : s ∈ I∗
j−1}. In fact, if sj ∈ [t0 + (j − 1)(L + h), t∗j ], then

v(tj) + γ ≤ v(sj) ≤ v(t0 + (j − 1)(L + h)) ≤ v(tj−1) (2.11)

since v(s) ≤ −W5(U
∗) + M < 0 for s ∈ [t0 + (j − 1)(L + h), t∗j ] by the definition of

t∗j . If sj ≤ t0 + (j − 1)(L + h), (2.10) is automatically satisfied by the definition of
tj−1. Thus, there is a positive integer N such that case (II) cannot hold on N−1
consecutive intervals L2, L3, · · ·, LN . This implies that case (I) must occur on some
Lj∗ with j∗ ≤ N . Define T ∗ = N(L + h) and t̄ = tj∗ . This proves the lemma.

The next result removes the restriction Φ′(t) ≤ 0 in ([5],p.144).

Theorem 2.3. Suppose there exists a continuous function Φ : R+ → R+ with
Φ(u), Φ′(u)u ∈ L1(R+), wedges Wj with W1(r) → +∞ as r → +∞, positive constants

11



U, M with W5(U) > M , and a continuous functional V : R+ × C → R+ such that
(i) and (ii) hold for each x ∈ C(t). If W5(r) = W4(r) for all r ≥ 0, then solutions of
(1.1) are UB and UUB.

Proof. By Corollary 2.1, solutions of (1.1) are UB. We now show the UUB.
For each B1 > 0, there exists B2 > 0 such that [t0 ≥ 0, ‖φ‖ ≤ B1, t ≥ t0] imply
|x(t, t0, φ)| ≤ B2. Let x(t) = x(t, t0, φ) and v(s) = V (s, xs). Choose h > 0 large
enough so that W4(B2)

∫ +∞

h Φ(u)du < 1. By Lemma 2.2, there exists a constant
T ∗ > 0 depending on B1 and a t̄ ∈ [t0 + h, t0 + T ∗ + h] such that |x(t̄)| ≤ U and
v(s) ≤ 1 + v(t̄). For s ∈ [t̄− h, t̄ ], integrate (ii) from s to t̄ to obtain

v(t̄) ≤ v(s) −
∫ t̄

s
W4(|x(u)|)du + M(t̄ − s)

≤ v(t̄) + 1 −
∫ t̄

s
W4(|x(u)|)du + M(t̄ − s).

Thus,
1

t̄ − s

∫ t̄

s
W4(|x(u)|)du ≤ M +

1

(t̄ − s)
.

By Lemma 2.1 with α = M and β = 1, we obtain
∫ t̄

t̄−h
Φ(t̄ − u)W4(|x(u)|)du ≤ J∗M + J ′ =: M∗∗.

This yields

v(t̄) ≤ W2(|x(t̄)|) + W3[
{

∫ t̄−h

0
+

∫ t̄

t̄−h

}

Φ(t̄ − u)W4(|x(u)|)du]

≤ W2(U) + W3[W4(B2)
∫ +∞

h
Φ(u)du + M∗∗]

≤ W2(U) + W3(1 + M∗∗)

and

v(s) ≤ 1 + v(t̂) ≤ 1 + W2(U) + W3(1 + M∗∗) (2.12)

for all s ∈ [t̂ − h, t̂]. Now let t > t̄ such that v(s) < v(t) for t̄ − h ≤ s < t. Then
|x(t)| ≤ U . Integrate (ii) from s to t to obtain

0 ≤ v(t)− v(s) ≤ −
∫ t

s
W4(|x(u)|)du + M(t − s).

12



Thus,

1

t− s

∫ t

s
W4(|x(u)|)du ≤ M. (2.13)

Applying Lemma 2.1 to (2.13) with q(u) = W4(|x(u)|) and having (2.12), we obtain
(2.7) and (2.8) with K = T ∗. Thus, solutions of (1.1) are UUB by Theorem 2.2. The
proof is complete.

Theorem 2.4. Suppose there exists a continuous function Φ : R+ → R+ with
Φ(u), Φ′(u)u ∈ L1(R+), wedges Wj with W1(r) → +∞ as r → +∞, positive constants
U, M , and M∗ with W5(U) > M and M∗ > M , and a continuous functional V :
R+ × C → R+ such that (i) and (ii) hold for each x ∈ C(t). Suppose also that
W4(r) → +∞ as r → +∞ and there are positive constants σ, r0 such that r ≥ r0

implies
∫ r

0
W5(W

−1
4 (s))ds > (J∗/J)M∗W4(W

−1
1 [W2(U) + W3(σ + Jr)]) (2.14)

where J and J∗ are given in (2.3). Then solutions of (1.1) are UB and UUB.

Proof. We first show solutions of (1.1) are UB. Let B1 > 0 and σ > 0 be given in
(2.14). Choose h > 0 such that

W4(B1)
∫ +∞

h
Φ(u)du < σ and

∫ h

0
Φ(u)du ≥ JM/M∗.

Let x(t) = x(t, t0, φ) be a solution with ‖φ‖ ≤ B1. Then we have either

(A∗) v(t) ≤ max{v(s) : t0 ≤ s ≤ t0 + h} for all t ≥ t0 + h or

(B∗) v(s) < v(t̄) for some t̄ > t0 + h and all t0 ≤ s < t̄.

Notice that max{v(s) : t0 ≤ s ≤ t0 + h} ≤ v(t0) + Mh by (ii) and v(t0) ≤ W2(B1) +
W3(JW4(B1)). Thus, if (A∗) holds, then

|x(t)| ≤ W−1
1 [W2(B1) + W3(JW4(B1)) + Mh]

for all t ≥ t0. Now suppose (B∗) holds. By the definition of t̄ and (ii), we have
|x(t̄)| ≤ U . Let t̂ ∈ [t0, t̄ ] such that |x(t̂)| = maxt0≤s≤t̄ |x(s)|. Then

W1(|x(t̂)|) ≤ v(t̂) ≤ v(t̄)

13



≤ W2(|x(t̄)|) + W3[
∫ t0

0
Φ(t̄ − s)W4(|x(s)|)ds +

∫ t̄

t0
Φ(t̄ − s)W4(|x(s)|)ds]

≤ W2(U) + W3[W4(B1)
∫ ∞

t̄−t0
Φ(u)du +

∫ t̄

t0
Φ(t̄ − s)W4(|x(s)|)ds]

≤ W2(U) + W3(σ + X)

where

X =
∫ t̄

t0
Φ(t̄ − u)W4(|x(u)|)du.

This yields
|x(t̂)| ≤ W−1

1 [W2(U) + W3(σ + X)]

and

W4(|x(t̂)|) ≤ W4(W
−1
1 [W2(U) + W3(σ + X)]). (2.15)

Next, define

W6(r) =
∫ r

0
W5[W

−1
4 (u)]du.

Since the domain of W−1
4 is [0, +∞), W6 is well defined, convex downward, and

satisfies
W6(r) ≤ W5[W

−1
4 (r)]r∗ on 0 ≤ r ≤ r∗.

Particularly,

W6(r) ≤ W5[W
−1
4 (r)]W4(|x(t̂)|) for 0 ≤ r ≤ W4(|x(t̂)|).

Thus,

W6(W4(|x(s)|)) ≤ W5(W
−1
4 [W4(|x(s)|)])W4(|x(t̂)|) = W5(|x(s)|)W4(|x(t̂)|) (2.16)

for t0 ≤ s ≤ t̄. For any s ∈ [t0, t̄ ], we have

0 ≤ v(t̄) − v(s) ≤ −
∫ t̄

s
W5(|x(u)|)du + M(t̄ − s).

Apply Lemma 2.1 to get

∫ t̄

t0
Φ(t̄ − u)W5(|x(u)|)du ≤ J∗M. (2.17)
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Using (2.16), (2.17), and Jensen’s inequality, we obtain

∫ t̄

t0
Φ(t̄ − u)duW6

[

∫ t̄
t0

Φ(t̄ − u)W4(|x(u)|)du
∫ t̄
t0

Φ(t̄− u)du

]

≤ J∗MW4(|x(t̂)|).

Notice that
∫ t̄

t0
Φ(t̄ − u)du =

∫ t̄−t0

0
Φ(u)du ≥

∫ h

0
Φ(u)du ≥ JM/M∗.

This implies

W6(X/J) ≤ J∗M
∫ h
0 Φ(u)du

W4(|x(t̂)|) ≤ (J∗/J)M∗W4(|x(t̂)|)

and
∫ X/J

0
W5[W

−1
4 (u)]du ≤ (J∗/J)M∗W4(W

−1
1 [W2(U

∗) + W3(σ + X)]).

By (2.14), we must have X ≤ Jr0. Thus,

W1(|x(t̄)|) ≤ v(t̄) ≤ W2(U) + W3(σ + Jr0). (2.18)

Since t̄ is arbitrary, we have for all t ≥ t0

W1(|x(t)|) ≤ v(t) ≤ W2(U) + W3(σ + Jr0) + max{v(s) : t0 ≤ s ≤ t0 + h}
≤ W2(U) + W3(σ + Jr0) + W2(B1) + W3(JW4(B1)) + Mh

and

|x(t)| ≤ W−1
1 [W2(U) + W3(σ + Jr0) + W2(B1) + W3(JW4(B1)) + Mh] =: B2.

This completes the proof of uniform boundedness.

Now we show that solutions of (1.1) are UUB. For the constants B1, B2 given
above, h > 0 with W4(B2)

∫ +∞

h Φ(u)du < σ, U∗ < U with W5(U
∗) > M , we define

γ = min
{M(M∗ − M)J∗

(M∗ + M)J ′
, W2(U) − W2(U

∗)
}

where J∗, J ′ are given in (2.3). By Lemma 2.2 there exists T ∗ > 0 such that for each
solution x(t) = x(t, t0, φ) of (1.1) with ‖φ‖ ≤ B1, there is a t̄ ∈ [t0+h, t0+T ∗+h] such
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that |x(t̄)| ≤ U∗ and v(s) ≤ γ + v(t̄) for s ∈ [t̄− h, t̄ ], where v(s) = V (s, xs). Choose
h > 0 so that

∫ h
0 Φ(u)du ≥ 2MJ/(M∗+M). Let |x(t∗)| = max{|x(s)| : t̄−h ≤ s ≤ t̄}.

Then
W6(r) ≤ W5[W

−1
4 (r)]W4(|x(t∗)|) for 0 ≤ r ≤ W4(|x(t∗)|)

and W6(W4(|x(s)|)) ≤ W5(|x(s)|)W4(|x(t∗)|) for all t̄ − h ≤ s ≤ t̄. For s ∈ [t̄ − h, t̄ ],
we have

v(t̄) ≤ v(s) −
∫ t̄

s
W5(|x(u)|)du + M(t̄ − s)

≤ γ + v(t̄) −
∫ t̄

s
W5(|x(u)|)du + M(t̄ − s).

This implies
1

t̄− s

∫ t̄

s
W5(|x(u)|)du ≤ M +

γ

t̄ − s

for t̄− h ≤ s < t̄. By Lemma 2.1, we obtain

∫ t̄

t̄−h
Φ(t̄ − u)W5(|x(u)|)du ≤ J∗M + J ′γ.

By the definition of W6 and Jensen’s inequality, we have

∫ t̄

t̄−h
Φ(t̄ − u)duW6

[

∫ t̄
t̄−h Φ(t̄− u)W4(|x(u)|)du

∫ t̄
t̄−h Φ(t̄ − u)du

]

≤ (J∗M + J ′γ)W4(|x(t∗)|). (2.19)

Define

X∗ =
∫ t̄

t̄−h
Φ(t̄ − u)W4(|x(u)|)du.

Since
∫ t̄
t̄−h Φ(t̄ − u)du =

∫ h
0 Φ(u)du ≥ 2MJ/(M∗ + M), we get from (2.19) that

∫ X∗/J

0
W5[W

−1
4 (u)]du ≤ M∗ + M

2MJ
[J∗M + J ′γ]W4(|x(t∗)|).

Notice also that

W1(|x(t∗)|) ≤ v(t∗) ≤ v(t̄) + γ

≤ γ + W2(U
∗) + W3[σ +

∫ t̄

t̄−h
Φ(t̄ − u)W4(|x(u)|)du]

≤ W2(U) + W3[σ +
∫ t̄

t̄−h
Φ(t̄ − u)W4(|x(u)|)du].

16



Thus,
W4(|x(t∗)|) ≤ W4[W

−1
1 (W2(U) + W3(σ + X∗))]

and
∫ X∗/J

0
W5[W

−1
4 (u)]du ≤ [

(M∗ + M)J∗

2J
+

J ′γ(M∗ + M)

2JM
]W4(|x(t∗)|)

≤ (J∗/J)M∗W4[W
−1
1 (W2(U) + W3(σ + X∗))].

This implies that X∗ ≤ Jr0 by (2.14). Thus,

v(t̄) ≤ W2(U) + W3[σ + Jr0]

and

sup
t̂−h≤s≤t̂

v(s) ≤ γ + W2(U) + W3[σ + Jr0]. (2.20)

Now let t > t̄ such that v(s) < v(t) for t̄ − h ≤ s < t. Then |x(t)| ≤ U . Integrate
(ii) from s to t to obtain

0 ≤ v(t)− v(s) ≤ −
∫ t

s
W5(|x(u)|du + M(t − s).

This yields
1

t − s

∫ t

s
W5(|x(u)|)du ≤ M

and
∫ t

t̄−h
Φ(t − u)W5(|x(u)|)du ≤ J∗M

by Lemma 2.1. Let

|x(t∗∗)| = max{|x(s)| : t̄ − h ≤ s ≤ t}.

It follows from Jensen’s inequality that

∫ t

t̄−h
Φ(t − s)dsW6

[

∫ t
t̄−h Φ(t − s)W4(|x(s)|)ds

∫ t
t̄−h Φ(t − s)ds

]

≤ J∗MW4(|x(t∗∗)|). (2.21)

Observing
∫ t

t̄−h
Φ(t − s)ds =

∫ t̄−t+h

0
Φ(u)du ≥ 2MJ

M∗ + M
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and letting

X∗∗ =
∫ t

t̄−h
Φ(t − u)W4(|x(u)|)du,

we obtain from (2.21)

∫ X∗∗/J

0
W5[W

−1
4 (u)]du ≤ (J∗/J)M∗W4(|x(t∗∗)|).

By the definition of t, we have

W1(|x(t∗∗)|) ≤ v(t∗∗) ≤ v(t)

≤ W2(U) + W3(
∫ t̄−h

0
Φ(t− u)W4(|x(u)|)du +

∫ t

t̄−h
Φ(t − u)W4(|x(u)|)du)

≤ W2(U) + W3(σ + X∗∗).

This implies

∫ X∗∗/J

0
W5[W

−1
4 (u)]du ≤ (J∗/J)M∗W4[W

−1
1 (W2(U) + W3(σ + X∗∗))]

and X∗∗ ≤ Jr0 by (2.14). Thus, (2.7) and (2.8) hold. By Theorem 2.2, solutions of
(1.1) are UUB. This completes the proof.

Remark 2.5. By Remark 2.1, if Φ′(t) ≤ 0, then J∗ = J . In this case, (2.14) can
be reduced to

∫ r

0
W5(W

−1
4 (s))ds > M∗W4(W

−1
1 [W2(U) + W3(σ + Jr)]) (2.22)

for all r ≥ r0.

Example 2.1. Under condition (1.2), solutions of (1.3) are UB and UUB.

Indeed, let Φ(t) =
∫ +∞

t D(u)du/2. Then Φ′(t) ≤ 0. Thus, Φ′(u)u ∈ L1[0, +∞)
by Remark 2.1. Define W1(r) = W2(r) = r4/4, W3(r) = r, W4(r) = r6, and W5(r) =
rn+3. Then (1.5) and (1.6) satisfy (i) and (ii) of Theorem 2.1. To show solutions of
(1.3) are UB and UUB, we need to verify that (2.22) holds. Notice that W−1

1 (r) =
(4r)1/4 and W−1

4 (r) = r1/6. Then

∫ r

0
W5[W

−1
4 (s)]ds =

∫ r

0
s

n+3

6 ds =
6

n + 9
r

n+9

6 .
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For any M∗ > M and σ > 0, we have

M∗W4(W
−1
1 [W2(U) + W3(σ + Jr)])

= M∗
(

[4(W2(U) + σ + Jr)]1/4
)6

= M∗[4(W2(U) + σ + Jr)]3/2.

Thus, there exists r0 > 0 such that (2.22) holds since n > 0.

Corollary 2.2. Suppose there exists a continuous function Φ : R+ → R+ with
Φ(u), Φ′(u)u ∈ L1(R+), wedges Wj with W1(r) → +∞ as r → +∞, positive con-
stants U, M with W5(U) > J∗M/J , where J∗, J are given in (2.3), and a continuous
functional V : R+ × C → R+ such that (i) and (ii) hold for each x ∈ C(t). Suppose
also that W4(r) = r and there exists a positive constant r0 such that r ≥ r0 implies

W1(r) −W3(Jr) > W2(U) (2.23)

where J is given in (2.3). Then solutions of (1.1) are UB and UUB.

Proof. Choose W5(U) > (J∗/J)M∗ > (J∗/J)M . By (2.23), we have

W1(r + 1/J) > W2(U) + W3(1 + Jr)

for r ≥ r0 − 1/J . Thus,

r + 1/J > W−1
1 [W2(U) + W3(1 + Jr)]

for r ≥ r0 −1/J . Since W5(U) > (J∗/J)M∗, there exists a constant r̄0 ≥ r0 such that
r ≥ r̄ implies

∫ r

0
W5(u)du > (J∗/J)M∗(r + 1/J).

Thus, for r ≥ r̄, we have
∫ r

0
W5(u)du > (J∗/J)M∗W−1

1 [W2(U) + W3(1 + Jr)]

which is equivalent to (2.14). By Theorem 2.4, solutions of (1.1) are UB and UUB.

Remark 2.6. Condition (2.23) is similar to those given by Hering [7], Yoshizawa
([15],p.202), and Zhang [17].
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Corollary 2.3. Suppose there exists a continuous function Φ : R+ → R+ with
Φ(u), Φ′(u)u ∈ L1(R+), wedges Wj with W1(r) → +∞ as r → +∞, positive constants
U, M , and M∗ with W5(U) > M and M∗ > M , and a continuous functional V :
R+ × C → R+ such that (i) and (ii) hold for each x ∈ C(t). Suppose also that
W4(r) → +∞ as r → +∞, W3 is uniformly continuous on R+, and there exists a
positive constant r0 such that r ≥ r0 implies

∫ r

0
W5(W

−1
4 (s))ds > (J∗/J)M∗W4(W

−1
1 [W2(U) + W3(Jr)])

where J is given in (2.3). Then solutions of (1.1) are UB and UUB.

Proof. Choose U∗ < U with W5(U
∗) > M and let δ = W5(U) − W5(U

∗). Since
W3 is uniformly continuous on R+, there exists a constant σ > 0 such that
W3(s + σ)− W3(s) < δ for all s ∈ R+. Thus,

∫ r

0
W5(W

−1
4 (s))ds > (J∗/J)M∗W4(W

−1
1 [W2(U) + W3(Jr)])

= (J∗/J)M∗W4{W−1
1 [W2(U) + W3(σ + Jr) − W3(σ + Jr) + W3(Jr)]}

≥ (J∗/J)M∗W4{W−1
1 [W2(U) + W3(σ + Jr) − δ]}

≥ (J∗/J)M∗W4{W−1
1 [W2(U

∗) + W3(σ + Jr)]}.

This implies that (2.14) holds with U replaced by U∗. Thus, solutions of (1.1) are
UB and UUB.
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