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1. Introduction

We consider a system of functional differential equations with finite delay written as

x′(t) = f(t, xt),
′ = d/dt, (1)

where f : [0,∞) × CH → R
m is continuous and takes bounded sets into bounded sets and

f(t, 0) = 0. Here, (C, ‖ · ‖) is the Banach space of continuous functions φ : [−h, 0] → R
m

with the supremum norm, h is a non-negative constant, CH is the open H-ball in C, and

xt(s) = x(t + s) for −h ≤ s ≤ 0. Standard existence theory shows that if φ ∈ CH and

t ≥ 0, then there is at least one continuous solution x(t, t0 , φ) on [t0, t0 + α) satisfying (1)

for t > t0, xt(t0, φ) = φ and α some positive constant; if there is a closed subset B ⊂ CH

such that the solution remains in B, then α = ∞. Also, | · | will denote the norm in R
m

with |x| =max1≤i≤m|xi|.

We are concerned here with asymptotic stability in the context of Liapunov’s di-

rect method. Thus, we are concerned with continuous, strictly increasing functions

Wi : [0,∞) → [0,∞) with Wi(0) = 0, called wedges, and with Liapunov functionals

V .

Definition: A continuous functional V : [0,∞) × CH → [0,∞) which is locally

Lipschitz in φ is called a Liapunov functional for (1) if there is a wedge W with

(i) W (|φ(0)|) ≤ V (t, φ), V (t, 0) = 0, and

(ii) V ′
(1)(t, xt) = lim supδ→0

1
δ {V (t + δ, xt+δ(t0, φ)) − V (t, xt(t0, φ))} ≤ 0.

Remark: A standard result states that if there is a Liapunov functional for (1), then

x = 0 is stable. Definitions will be given in the next section.
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The classical result on asymptotic stability may be traced back to Marachkov [9]

through Krasovskii [7;pp. 151-154]. It may be stated as follows.

Theorem MK: Suppose there are a constant M , wedges Wi, and a Liapunov func-

tional V (so W1(|φ(0)|) ≤ V (t, φ) and V (t, 0) = 0) with

(i) V ′
(1)(t, xt) ≤ −W2(|x(t)|) and

(ii) |f(t, φ)| ≤ M if t ≥ 0 and ‖φ‖ < H.

Then x = 0 is asymptotically stable.

Condition (ii) is troublesome, since it excludes many examples of considerable interest.

And there are several results which reduce or eliminate (ii). For example, we showed [2]

that if

(iii) V (t, φ) ≤ W3(|xt|2),

where | · |2 is the L2-norm, then uniform asymptotic stability would result. Other alterna-

tives may be found in [3,4,5,6], for example.

We reduce (ii) in a variety of ways and obtain results on asymptotic stability, partial

stability, and uniform asymptotic stability. We give an example in which we show that the

zero solution of

x′′ + tx′ + x = 0 (2)

is uniformly asymptotically stable.

The following is a simplified corollary to our results and is stated here to focus the

paper.

Theorem A: Suppose there is a Liapunov functional V , wedges Wi, positive constants

K and J , a sequence {tn} ↑ ∞ with tn − tn−1 ≤ K such that

(i) V (tn, φ) ≤ W2(‖φ‖),

(ii) V ′
(1)(t, xt) ≤ −W3(|x(t)|) if tn − h ≤ t ≤ tn, and

(iii) |f(t, φ)| ≤ J(t + 1)ln(t + 2) for t ≥ 0 and ‖φ‖ < H.

Then x = 0 is AS.

2. Statement of results and examples

We now define the terminology to be used here.
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Definition: The solution x = 0 of (1) is:

(a) stable if for each ε > 0 and t0 ≥ 0 there is a δ > 0 such that [‖φ‖ < δ, t ≥ t0] imply

that |x(t, t0, φ)| < ε;

(b) uniformly stable (US) if for each ε > 0 there is a δ > 0 such that [t0 ≥ 0, ‖φ‖ < δ, t ≥ t0]

imply that |x(t, t0, φ)| < ε;

(c) asymptotically stable (AS) if it is stable and if for each t0 ≥ 0 there is a γ > 0 such

that ‖φ‖ < γ implies that x(t, t0, φ) → 0 as t → ∞;

(d) uniformly asymptotically stable (UAS) if it is US and if there is a γ > 0 and for

each µ > 0 there is a T > 0 such that [t0 ≥ 0, ‖φ‖ < γ, t ≥ t0 + T ] imply that

|x(t, t0, φ)| < µ.

In preparation for our main result we remind the reader that if V is a Liapunov

functional, then W1(|φ(0)|) ≤ V (t, φ), V (t, 0) = 0, and V ′
(1)(t, xt) ≤ 0. So that our result

applies also to ODE’s we introduce a positive number k which will replace h found in (1).

Theorem 1: Let k > 0, k ≥ h, let V be a Liapunov functional for (1) (so that

W1(|φ(0)|) ≤ V (t, φ), V (t, 0) = 0, and V ′
(1)(t, xt) ≤ 0) and x = (x1, ..., xm). Consider the

following conditions for a given i (1 ≤ i ≤ m) and a given sequence {tn} with tn ↑ ∞:

(i) there are wedges Wi, Ui, Qi,

(ii) there is a sequence
{

λ
(i)
n

}

with λ
(i)
n ≥ λ > 0, λ is a constant, and that

(iii) there are locally integrable functions Mi, Pi : [0,∞) → [0,∞) such that

(iv) either Mi ≡ 0 or for each D > 0 with D/λ
(i)
n ≤ k there is a sequence

{

c
(i)
n

}

, c
(i)
n >

0, such that if a, b ∈ [tn − k, tn] with a < b, then
∫ b

a
Mi(t)dt ≤ λ

(i)
n (b − a) and

∫ sn+D/λ(i)
n

sn

Pi(s)ds ≥ c
(i)
n for all sn ∈ [tn − k, tn −D/λ

(i)
n ],

(v) V ′
(1)(t, xt) ≤ −Pi(t)Ui(|xi|) for ‖xt‖ < H and t ∈ [tn − k, tn], and

(vi) V ′
(1)(t, xt) ≤ −Qi(|x

′
i|) + Mi(t) for ‖xt‖ < H and t ∈ [tn − k, tn] with Qi convex

downward.

We then have the following conclusions:

(I) If (i)-(vi) hold for all i satisfying 1 ≤ i ≤ m and for some {tn} ↑ ∞ with c
(i)
n ≥ c0 > 0

for all n and all i, if tn − tn−1 is bounded, and if V (t, φ) ≤ W (‖φ‖), then x = 0 is

UAS.

(II) If (i)-(vi) hold for an arbitrary sequence {tn} ↑ ∞ and for some i satisfying 1 ≤ i ≤ m,
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if c
(i)
n ≥ c0 > 0 for all n then any solution x(t) which remains in CH satisfies xi(t) → 0

as t → ∞.

(III) If (i)-(vi) hold for all i satisfying 1 ≤ i ≤ m and for some sequence {tn} ↑ ∞, if

V (tn, φ) ≤ W (‖φ‖), if c
(i)
n ≥ cn for 1 ≤ i ≤ m and some cn with

∑∞

n=1 cn = ∞, then

x = 0 is AS.

Remark: Theorem 1 is long because it is stated in terms of separate components

of x; but an example will show that it is well worth the detail. However, to grasp the

significance we will now state some useful corollaries.

Corollary 1: Suppose there is a Liapunov functional V , a locally integrable function

M : [0,∞) → [0,∞) and a monotone increasing function λ : [0,∞) → (1,∞) such that if

0 < b − a < h then

(i)
∫ b

a
M(t)dt ≤ λ(b)(b − a) and

∫ ∞

1
dt

λ(t) = ∞.

Suppose also that there are wedges, a constant K > 0, and a sequence {tn} ↑ ∞ with

tn − tn−1 ≤ K such that

(ii) V (tn, φ) ≤ W (‖φ‖)

and if tn − h ≤ t ≤ tn then

(iii) V ′
(1)(t, xt) ≤ −W2(|x(t)|) and

(iv) V ′
(1)(t, xt) ≤ −W3(|x

′(t)|) + M(t), W3 is convex downward.

Then x = 0 is AS.

Corollary 2: Suppose there is a Liapunov functional V , wedges Wi, positive

constants K and J , a sequence {tn} ↑ ∞ with tn − tn−1 ≤ K such that

(i) V (tn, φ) ≤ W2(‖φ‖),

(ii) V ′
(1)(t, xt) ≤ −W3(|x(t)|) if tn − h ≤ t ≤ tn, and

(iii) |f(t, φ)| ≤ J(t + 1)ln(t + 2) for t ≥ 0 and ‖φ‖ < H.

Then x = 0 is AS.

Corollary 3: Suppose there are a Liapunov functional V and a wedge W2 with

(i) V (t, φ) ≤ W2(‖φ‖).

In addition, suppose there are locally integrable functions M,P : [0,∞) → [0,∞), a

positive constant K, sequences {tn} ↑ ∞ and {λn} with tn − tn−1 ≤ K, such that if

0 < b− a < h and if tn −h ≤ t ≤ tn with b ≤ tn, then for each D > 0 there is a c > 0 with
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(ii)
∫ b

a
M(s)ds ≤ λn(b − a) and

∫ t+D/λn

t
P (s)ds ≥ c,

(iii) V ′
(1)(t, xt) ≤ −P (t)W3(|x(t)|) for tn − h ≤ t ≤ tn, and

(iv) V ′
(1)(t, xt) ≤ −W4(|x

′(t)|) + M(t), W4 is convex downward.

Then x = 0 if UAS.

Corollary 4: (Marachkov-Krasovskii) If there is a Liapunov functional V , wedges

Wi, and a constant M such that

(i) V (t, φ) ≤ W2(‖φ‖),

(ii) V ′
(1)(t, xt) ≤ −W3(|x(t)|),

(iii) |f(t, φ)| ≤ M if t ≥ 0 and ‖φ‖ < H,

then x = 0 is UAS.

We now give an example of Corollary 2.

Example 1: Let a, b : [0,∞) → R be continuous and suppose there are constants

c1 ≥ 1, c2 > 0, c3 > 0, c4 > 0 with

(a) a(t) − c1|b(t + 1)| =: α(t) ≥ c3,

(b) there is a sequence {tn} ↑ ∞ and K > 0 with 1 ≤ tn+1−tn ≤ K and
∫ tn

tn−1
|b(s+1)|ds ≤

c2.

(c) a(t) + |b(t)| ≤ c4(t + 1)ln(t + 2).

Then the zero solution of

x′(t) = −a(t)x + b(t)x(t − 1) (3)

is AS.

Proof: Define

V (t, xt) = |x(t)| + c1

∫ t

t−1

|b(s + 1)||x(s)|ds

so that

V ′
(3)(t, xt) ≤ −a(t)|x| + |b(t)||x(t − 1)| + c1|b(t + 1)||x| − c1|b(t)||x(t − 1)|

≤ −[a(t) − c1|b(t + 1)|]|x| ≤ −α(t)|x|.

Take H = 1 and W (r) = r. Then for ‖φ‖ < H we have

|φ(0)| ≤ V (t, φ), V (t, 0) = 0

V (tn, φ) ≤ |φ(0)| + c1c2‖φ‖
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and

V ′(t, xt) ≤ −c3|x(t)|.

The conditions of Corollary 2 are satisfied.

Examples of a(t) and b(t) are easily constructed so that this equation is not uniformly

stable. Let m(t) = −[t]sin2πt, r(t) = −[t](cos2πt− 1)/2π and c(t) = |sinπt| − sinπt, where

[·] stands for the greatest integer function. Consider the scalar equation

x′ = (m(t) − 1 − e2ln(t + 1))x(t) +
1

2
c(t)(lnt)x(t − 1)

for t ≥ 1. Note that

∫ n+1

n

[t]sin2πtdt = n

∫ n+1

n

sin2πtdt = −
n

2π
(cos2π(n + 1) − cos2πn) = 0

so that if n ≤ t < n + 1 then

r(t) =

∫ t

0

−[s]sin2πsds =
n

2π
(cos2πt − 1) =

[t]

2π
(cos2πt − 1).

Let

V (t) = V (t, xt) = e2r(t)x2 +
1

2

∫ t

t−1

e2r(s+1)ln(s + 1)c(s + 1)x2(s)ds

so that

V ′(t) ≤ (−2m(t) + 2m(t) − 2 − 2e2ln(t + 1))e2r(t)x2 + c(t)(lnt)x(t)x(t − 1)e2r(t)

+
1

2
e2r(t+1)ln(t + 1)c(t + 1)x2 −

1

2
e2r(t)(lnt)c(t)x2(t − 1)

≤ −(2 + 2e2ln(t + 1))e2r(t)x2 + (lnt)e2r(t)x2 +
c(t)

2
(lnt)e2r(t)x2(t − 1)

+ e2r(t+1)ln(t + 1)x2(t) −
1

2
e2r(t)(lnt)c(t)x2(t − 1).

Now

e2r(t+1) = e−2([t]+1)(cos2πt−1)/2π ≤ e2e2r(t)

so V ′(t) ≤ −2x2(t). Also, V (t) ≥ x2(t). Finally, when n is even

V (n) = x2 +
1

2

∫ n

n−1

e2r(s+1)ln(s + 1)(|sinπ(s + 1)| − sinπ(s + 1))x2(s)ds = x2.

Hence, the conditions of Corollary 2 are satisfied and x = 0 is AS.
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Remark: This result will not follow from the work of Busenberg and Cooke [6]

because they require that for each η > 0 there exists τ > 0 such that
∫ t+η

t
a(s)ds ≤ τ . It

will not follow from Burton [2] because that result requires that V (t, φ) ≤ W2(|φ(0)|) +

W3(|φ|2), where | · |2 is the L2-norm. It will not follow from Burton-Hatvani [5] for the

same reason. It will not follow from Makay [8] because he requires V (t, φ) ≤ W (‖φ‖). It

will not follow from Wang [12] because he requires uniform stability.

In the next example it is very easy to show AS by a variety of classical techniques

[1,10,11]. But it requires all of the flexibility of Theorem 1 to show UAS.

Example 2: The zero solution of

x′′ + tx′ + x = 0, t ≥ 1 (4)

is UAS.

Proof: Write (4) as

x′ = −
x + y

t

y′ =
2x

t
+

(

2

t
− t

)

y.

Let (x1, x2) = (x, y) and define V = (x2 + y2)/2 so that

V ′ = −
1

t
x2 −

1

t
xy +

2

t
xy +

(

2

t
− t

)

y2

≤ −
1

t
x2 +

1

2t
(x2 + y2) +

(

2

t
− t

)

y2

= −
1

2t
x2 +

(

1

2t
+

2

t
− t

)

y2.

Thus, for t ≥ 4 we have (v) of Theorem 1 satisfied:

(v) V ′ ≤ − 1
2tx

2 − t
2y2 =: −P1(t)U1(|x1|) − P2(t)U2(|x2|).

(We remark that at this point we have V ′ ≤ −k
t V so the zero solution is AS.)

Again for t ≥ 4 we have

V ′ ≤ −
1

2t
(x2 + y2) ≤ −

1

4t
|x + y|2 = −

t

4
|x′(t)|2

or

(vi) V ′ ≤ − 1
4 |x

′(t)|2 + 0 = −Q1(|x
′
1|) + M1(t)
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so that for i = 1 we satisfy (vi) with M1(t) = 0. Likewise, for t ≥ 4 we have

V ′ ≤ −
1

2t
|x| −

t

2
|y| +

1

2t
+

t

2
for |(x, y)| ≤ 1

≤ −
1

4
|y′| + t;

thus, for t ≥ 4 and |(x, y)| ≤ 1 we have

(vi) V ′ ≤ − 1
4 |y

′| + t =: −Q2(|x
′
2|) + M2(t).

We see that (iv) is satisfied for i = 1, while for i = 2 we have

∫ b

a

M2(t)dt =

∫ b

a

tdt =
t2

2

∣

∣

∣

∣

b

a

=
b + a

2
(b − a)

≤ b(b − a);

thus, if k = 1, tn = n, b ≤ tn, then we have

∫ b

a

M2(t)dt ≤ n(b − a) =: λ(2)
n (b − a)

so that if D > 0, then for n − 1 ≤ sn ≤ n − D
n

we have

∫ sn+D/n

sn

P2(t)dt ≥

∫ sn+D/n

sn

t

2
dt ≥

n − 1

2

D

n
≥

D

4
.

We have (ii) satisfied with tn = n, λ
(2)
n = n, and (iv) satisfied for i = 2 with c

(2)
n = D/4. As

V is autonomous, it is a Liapunov function and conditions of Theorem 1 (I) are satisfied.

This completes the proof.

3. Proof of Theorem 1

We prove (I) first. Since V is a Liapunov functional we have W1(|φ(0)|) ≤ V (t, φ) and

V ′
(1)(t, xt) ≤ 0. The additional assumptions that V (t, φ) ≤ W (‖φ‖) yields US. For ε1 = H

find δ1 of US and take γ = δ1 in the definition of UAS. Let µ > 0 be given and find the δ2

of US so that [‖φ‖ < δ2, t0 ≥ 0, t ≥ t0] imply that |x(t, t0 , φ)| < µ.

We will find T > 0 such that if φ ∈ Cγ and t0 ≥ 0, then |x(t, t0, φ)| < µ if t ≥ t0 + T .

Let x(t) = x(t, t0, φ) and V (t) = V (t, xt(t0, φ)).

Consider the intervals Sn = [tn − k, tn], where we may suppose, by renumbering, that

tn − k ≥ tn−1. For a given n, suppose that ‖xt‖ ≥ δ2. Then there is an rn ∈ Sn with

|xi(rn)| ≥ δ2 for some i. Let −αn = V (tn) − V (tn − k).
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(a) If |xi(t)| ≥ δ2/2 for t ∈ Sn, then by (v) we have V ′(t) ≤ −Pi(t)Ui(δ2/2) on Sn. Let

D = kλ, so that

−αn = V (tn) − V (tn − k) ≤ −Ui(δ2/2)

∫ tn

tn−k

Pi(s)ds ≤ −c(i)
n Ui(δ2/2).

(b) If (a) fails, the there are pn < qn with [pn, qn] ⊂ Sn and with |xi(t)| between δ2/2

and δ2 on [pn, qn]; to be definite, say |xi(pn)| = δ2/2 and |xi(qn)| = δ2. To simplify

arithmetic in Jensen’s inequality, let k ≤ 1. Then we integrate (vi), use Jensen’s

inequality, and have

−αn ≤ V (qn) − V (pn) ≤ −Qi

(
∫ qn

pn

|x′
i(s)|ds

)

+

∫ qn

pn

Mi(s)ds ≤ −Qi(δ2/2) + (qn − pn)λ(i)
n .

If Mi = 0, then αn ≥ Qi(δ2/2).

(bi) If αn ≥ Qi(δ2/2)/2, this will suffice for our proof.

(bii) If αn < Qi(δ2/2)/2, then D := Qi(δ2/2)/2 ≤ (qn − pn)λ
(i)
n . We then integrate (v) and

have

−αn ≤ V (qn) − V (pn) ≤ −Ui(δ2/2)

∫ qn

pn

Pi(s)ds

≤ −Ui(δ2/2)

∫ pn+D/λ(i)
n

pn

Pi(s)ds ≤ −c(i)
n Ui(δ2/2).

From (a), (b), (bi) and (bii) we find

αn ≥ min
i

[c(i)
n Ui(δ2/2), Qi(δ2/2)/2] ≥ min

i
[c0Ui(δ2/2), Qi(δ2/2)/2] =: α.

If t > tn, then

0 ≤ V (t) ≤ V (t0) − nα ≤ W (δ1) − nα,

a contradiction if n > W (δ1)/α. Now there is a k > 0 with tn − tn−1 ≤ k so we may select

N > W (δ1)/α and then T = Nk. This completes the proof of (I).

The other proofs are parallel. We must only change tn for (II), while in (III) we need

to change tn and c
(i)
n .

To prove (II) we first note that it is not vacuous. The zero solution is stable so there

are solutions remaining in CH . Suppose that x(t) remains in CH and xi(t) 6→ 0 as t → ∞.
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Then there is an ε > 0 and a sequence {tn} ↑ ∞ with tn+1 ≥ tn + k and |xi(tn)| ≥ ε. Let

Sn = [tn − k, tn] and −αn = V (tn) − V (tn − k) where V (t) = V (t, xt). Using the same

proof as in (I) we have

αn ≥ min
i

[c0Ui(ε/2), Qi(ε/2)/2] =: α.

If t > tn, then 0 ≤ V (t) ≤ V (t0) − nα, a contradiction for large n. This proves (II).

To prove (III), we note again that it is not vacuous, as in (II), and we consider a

solution x(t) remaining in CH on an interval [t0,∞). Suppose that x(t) 6→ 0 and note that

V ′(t, xt) ≤ 0 so that if t ≥ tn then W1(|x(t)|) ≤ V (t, xt) ≤ V (tn, xtn
) ≤ W (‖xtn

‖); thus

there is an ε > 0 with ‖xtn
‖ ≥ ε and so there is an i for each n with |xi(rn)| ≥ ε, where

rn ∈ [tn − h, tn]. Let Sn = [tn − k, tn]. Once again the same proof gives

αn ≥ min
i

[c(i)
n Ui(ε/2), Qi(ε/2)/2] ≥ min

i
[cnUi(ε/2), Qi(ε/2)/2]. (∗)

Since t > tn yields

0 ≤ V (t, xt) ≤ V (t1, xt1) −
n

∑

i=2

αi

≤ W (‖xt1‖) −
n

∑

i=2

αi,

(∗∗)

the second choice in (*) can hold only for finitely many n. Since
∑∞

n=0 cn = ∞, a contra-

diction results in (**) for large n. This completes the proof.

4. Proofs of the corollaries

First, note that Corollary 1 is just a statement of Theorem 1 (III) without a separate

statement for each component. Also, λn = λ(tn) will suffice, since P (t) = 1 and so

∫ sn+D/λn

sn

1dt =

∫ sn+D/λ(tn)

sn

dt =
D

λ(tn)
=: cn

and
∑

cn diverges since
∫ ∞

1
dt

λ(t) diverges and λ is increasing.

Corollary 2 follows from Corollary 1 when we note that (iv) of Corollary 1 is satisfied,

because for ‖φ‖ < 1 we have

V ′(t, xt) ≤ −W2(|x(t)|) ≤ −|f(t, xt)| + J(t + 1)ln(t + 2)
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and M(t) = J(t + 1)ln(t + 2) satisfies condition (iv) of Corollary 1.

Corollary 3 plays the role for Theorem 1 (I) that Corollary 1 plays for Theorem 1

(III). It merely avoids the component conditions.
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