ASYMPTOTIC STABILITY FOR FUNCTIONAL DIFFERENTIAL EQUATIONS

T. A. Burton and G. Makay
Department of Mathematics, Southern Illinois University at Carbondale
Carbondale, Illinois 62901-4408

1. Introduction

We consider a system of functional differential equations with finite delay written as

$$
\begin{equation*}
x^{\prime}(t)=f\left(t, x_{t}\right), \quad \quad=d / d t \tag{1}
\end{equation*}
$$

where $f:[0, \infty) \times \mathcal{C}_{H} \rightarrow \mathbf{R}^{m}$ is continuous and takes bounded sets into bounded sets and $f(t, 0)=0$. Here, $(\mathcal{C},\|\cdot\|)$ is the Banach space of continuous functions $\phi:[-h, 0] \rightarrow \mathbf{R}^{m}$ with the supremum norm, h is a non-negative constant, \mathcal{C}_{H} is the open H-ball in \mathcal{C}, and $x_{t}(s)=x(t+s)$ for $-h \leq s \leq 0$. Standard existence theory shows that if $\phi \in \mathcal{C}_{H}$ and $t \geq 0$, then there is at least one continuous solution $x\left(t, t_{0}, \phi\right)$ on $\left[t_{0}, t_{0}+\alpha\right)$ satisfying (1) for $t>t_{0}, x_{t}\left(t_{0}, \phi\right)=\phi$ and α some positive constant; if there is a closed subset $B \subset \mathcal{C}_{H}$ such that the solution remains in B, then $\alpha=\infty$. Also, $|\cdot|$ will denote the norm in \mathbf{R}^{m} with $|x|=\max _{1 \leq i \leq m}\left|x_{i}\right|$.

We are concerned here with asymptotic stability in the context of Liapunov's direct method. Thus, we are concerned with continuous, strictly increasing functions $W_{i}:[0, \infty) \rightarrow[0, \infty)$ with $W_{i}(0)=0$, called wedges, and with Liapunov functionals V.

Definition: A continuous functional $V:[0, \infty) \times \mathcal{C}_{H} \rightarrow[0, \infty)$ which is locally Lipschitz in ϕ is called a Liapunov functional for (1) if there is a wedge W with
(i) $W(|\phi(0)|) \leq V(t, \phi), V(t, 0)=0$, and
(ii) $V_{(1)}^{\prime}\left(t, x_{t}\right)=\lim \sup _{\delta \rightarrow 0} \frac{1}{\delta}\left\{V\left(t+\delta, x_{t+\delta}\left(t_{0}, \phi\right)\right)-V\left(t, x_{t}\left(t_{0}, \phi\right)\right)\right\} \leq 0$.

REmARK: A standard result states that if there is a Liapunov functional for (1), then $x=0$ is stable. Definitions will be given in the next section.

The classical result on asymptotic stability may be traced back to Marachkov [9] through Krasovskii [7;pp. 151-154]. It may be stated as follows.

Theorem MK: Suppose there are a constant M, wedges W_{i}, and a Liapunov functional V (so $W_{1}(|\phi(0)|) \leq V(t, \phi)$ and $\left.V(t, 0)=0\right)$ with
(i) $V_{(1)}^{\prime}\left(t, x_{t}\right) \leq-W_{2}(|x(t)|)$ and
(ii) $|f(t, \phi)| \leq M$ if $t \geq 0$ and $\|\phi\|<H$.

Then $x=0$ is asymptotically stable.
Condition (ii) is troublesome, since it excludes many examples of considerable interest. And there are several results which reduce or eliminate (ii). For example, we showed [2] that if
(iii) $V(t, \phi) \leq W_{3}\left(\left|x_{t}\right|_{2}\right)$,
where $|\cdot|_{2}$ is the L^{2}-norm, then uniform asymptotic stability would result. Other alternatives may be found in $[3,4,5,6]$, for example.

We reduce (ii) in a variety of ways and obtain results on asymptotic stability, partial stability, and uniform asymptotic stability. We give an example in which we show that the zero solution of

$$
\begin{equation*}
x^{\prime \prime}+t x^{\prime}+x=0 \tag{2}
\end{equation*}
$$

is uniformly asymptotically stable.
The following is a simplified corollary to our results and is stated here to focus the paper.

Theorem A: Suppose there is a Liapunov functional V, wedges W_{i}, positive constants K and J, a sequence $\left\{t_{n}\right\} \uparrow \infty$ with $t_{n}-t_{n-1} \leq K$ such that
(i) $V\left(t_{n}, \phi\right) \leq W_{2}(\|\phi\|)$,
(ii) $V_{(1)}^{\prime}\left(t, x_{t}\right) \leq-W_{3}(|x(t)|)$ if $t_{n}-h \leq t \leq t_{n}$, and
(iii) $|f(t, \phi)| \leq J(t+1) \ln (t+2)$ for $t \geq 0$ and $\|\phi\|<H$.

Then $x=0$ is AS.

2. Statement of results and examples

We now define the terminology to be used here.

Definition: The solution $x=0$ of (1) is:
(a) stable if for each $\varepsilon>0$ and $t_{0} \geq 0$ there is a $\delta>0$ such that $\left[\|\phi\|<\delta, t \geq t_{0}\right]$ imply that $\left|x\left(t, t_{0}, \phi\right)\right|<\varepsilon ;$
(b) uniformly stable (US) if for each $\varepsilon>0$ there is a $\delta>0$ such that $\left[t_{0} \geq 0,\|\phi\|<\delta, t \geq t_{0}\right]$ imply that $\left|x\left(t, t_{0}, \phi\right)\right|<\varepsilon ;$
(c) asymptotically stable (AS) if it is stable and if for each $t_{0} \geq 0$ there is a $\gamma>0$ such that $\|\phi\|<\gamma$ implies that $x\left(t, t_{0}, \phi\right) \rightarrow 0$ as $t \rightarrow \infty ;$
(d) uniformly asymptotically stable (UAS) if it is US and if there is a $\gamma>0$ and for each $\mu>0$ there is a $T>0$ such that $\left[t_{0} \geq 0,\|\phi\|<\gamma, t \geq t_{0}+T\right]$ imply that $\left|x\left(t, t_{0}, \phi\right)\right|<\mu$.
In preparation for our main result we remind the reader that if V is a Liapunov functional, then $W_{1}(|\phi(0)|) \leq V(t, \phi), V(t, 0)=0$, and $V_{(1)}^{\prime}\left(t, x_{t}\right) \leq 0$. So that our result applies also to ODE's we introduce a positive number k which will replace h found in (1).

Theorem 1: Let $k>0, k \geq h$, let V be a Liapunov functional for (1) (so that $W_{1}(|\phi(0)|) \leq V(t, \phi), V(t, 0)=0$, and $\left.V_{(1)}^{\prime}\left(t, x_{t}\right) \leq 0\right)$ and $x=\left(x_{1}, \ldots, x_{m}\right)$. Consider the following conditions for a given $i(1 \leq i \leq m)$ and a given sequence $\left\{t_{n}\right\}$ with $t_{n} \uparrow \infty$:
(i) there are wedges W_{i}, U_{i}, Q_{i},
(ii) there is a sequence $\left\{\lambda_{n}^{(i)}\right\}$ with $\lambda_{n}^{(i)} \geq \lambda>0, \lambda$ is a constant, and that
(iii) there are locally integrable functions $M_{i}, P_{i}:[0, \infty) \rightarrow[0, \infty)$ such that
(iv) either $M_{i} \equiv 0$ or for each $D>0$ with $D / \lambda_{n}^{(i)} \leq k$ there is a sequence $\left\{c_{n}^{(i)}\right\}, c_{n}^{(i)}>$ 0 , such that if $a, b \in\left[t_{n}-k, t_{n}\right]$ with $a<b$, then $\int_{a}^{b} M_{i}(t) d t \leq \lambda_{n}^{(i)}(b-a)$ and $\int_{s_{n}}^{s_{n}+D / \lambda_{n}^{(i)}} P_{i}(s) d s \geq c_{n}^{(i)}$ for all $s_{n} \in\left[t_{n}-k, t_{n}-D / \lambda_{n}^{(i)}\right]$,
(v) $V_{(1)}^{\prime}\left(t, x_{t}\right) \leq-P_{i}(t) U_{i}\left(\left|x_{i}\right|\right)$ for $\left\|x_{t}\right\|<H$ and $t \in\left[t_{n}-k, t_{n}\right]$, and
(vi) $V_{(1)}^{\prime}\left(t, x_{t}\right) \leq-Q_{i}\left(\left|x_{i}^{\prime}\right|\right)+M_{i}(t)$ for $\left\|x_{t}\right\|<H$ and $t \in\left[t_{n}-k, t_{n}\right]$ with Q_{i} convex downward.
We then have the following conclusions:
(I) If (i)-(vi) hold for all i satisfying $1 \leq i \leq m$ and for some $\left\{t_{n}\right\} \uparrow \infty$ with $c_{n}^{(i)} \geq c_{0}>0$ for all n and all i, if $t_{n}-t_{n-1}$ is bounded, and if $V(t, \phi) \leq W(\|\phi\|)$, then $x=0$ is UAS.
(II) If (i)-(vi) hold for an arbitrary sequence $\left\{t_{n}\right\} \uparrow \infty$ and for some i satisfying $1 \leq i \leq m$,
if $c_{n}^{(i)} \geq c_{0}>0$ for all n then any solution $x(t)$ which remains in \mathcal{C}_{H} satisfies $x_{i}(t) \rightarrow 0$ as $t \rightarrow \infty$.
(III) If (i)-(vi) hold for all i satisfying $1 \leq i \leq m$ and for some sequence $\left\{t_{n}\right\} \uparrow \infty$, if $V\left(t_{n}, \phi\right) \leq W(\|\phi\|)$, if $c_{n}^{(i)} \geq c_{n}$ for $1 \leq i \leq m$ and some c_{n} with $\sum_{n=1}^{\infty} c_{n}=\infty$, then $x=0$ is AS.

REmARK: Theorem 1 is long because it is stated in terms of separate components of x; but an example will show that it is well worth the detail. However, to grasp the significance we will now state some useful corollaries.

Corollary 1: Suppose there is a Liapunov functional V, a locally integrable function $M:[0, \infty) \rightarrow[0, \infty)$ and a monotone increasing function $\lambda:[0, \infty) \rightarrow(1, \infty)$ such that if $0<b-a<h$ then
(i) $\int_{a}^{b} M(t) d t \leq \lambda(b)(b-a)$ and $\int_{1}^{\infty} \frac{d t}{\lambda(t)}=\infty$.

Suppose also that there are wedges, a constant $K>0$, and a sequence $\left\{t_{n}\right\} \uparrow \infty$ with $t_{n}-t_{n-1} \leq K$ such that
(ii) $V\left(t_{n}, \phi\right) \leq W(\|\phi\|)$
and if $t_{n}-h \leq t \leq t_{n}$ then
(iii) $V_{(1)}^{\prime}\left(t, x_{t}\right) \leq-W_{2}(|x(t)|)$ and
(iv) $V_{(1)}^{\prime}\left(t, x_{t}\right) \leq-W_{3}\left(\left|x^{\prime}(t)\right|\right)+M(t), W_{3}$ is convex downward.

Then $x=0$ is AS.
Corollary 2: Suppose there is a Liapunov functional V, wedges W_{i}, positive constants K and J, a sequence $\left\{t_{n}\right\} \uparrow \infty$ with $t_{n}-t_{n-1} \leq K$ such that
(i) $V\left(t_{n}, \phi\right) \leq W_{2}(\|\phi\|)$,
(ii) $V_{(1)}^{\prime}\left(t, x_{t}\right) \leq-W_{3}(|x(t)|)$ if $t_{n}-h \leq t \leq t_{n}$, and
(iii) $|f(t, \phi)| \leq J(t+1) \ln (t+2)$ for $t \geq 0$ and $\|\phi\|<H$.

Then $x=0$ is AS.
Corollary 3: Suppose there are a Liapunov functional V and a wedge W_{2} with
(i) $V(t, \phi) \leq W_{2}(\|\phi\|)$.

In addition, suppose there are locally integrable functions $M, P:[0, \infty) \rightarrow[0, \infty)$, a positive constant K, sequences $\left\{t_{n}\right\} \uparrow \infty$ and $\left\{\lambda_{n}\right\}$ with $t_{n}-t_{n-1} \leq K$, such that if $0<b-a<h$ and if $t_{n}-h \leq t \leq t_{n}$ with $b \leq t_{n}$, then for each $D>0$ there is a $c>0$ with
(ii) $\int_{a}^{b} M(s) d s \leq \lambda_{n}(b-a)$ and $\int_{t}^{t+D / \lambda_{n}} P(s) d s \geq c$,
(iii) $V_{(1)}^{\prime}\left(t, x_{t}\right) \leq-P(t) W_{3}(|x(t)|)$ for $t_{n}-h \leq t \leq t_{n}$, and
(iv) $V_{(1)}^{\prime}\left(t, x_{t}\right) \leq-W_{4}\left(\left|x^{\prime}(t)\right|\right)+M(t), W_{4}$ is convex downward.

Then $x=0$ if UAS.
Corollary 4: (Marachkov-Krasovskii) If there is a Liapunov functional V, wedges W_{i}, and a constant M such that
(i) $V(t, \phi) \leq W_{2}(\|\phi\|)$,
(ii) $V_{(1)}^{\prime}\left(t, x_{t}\right) \leq-W_{3}(|x(t)|)$,
(iii) $|f(t, \phi)| \leq M$ if $t \geq 0$ and $\|\phi\|<H$, then $x=0$ is UAS.

We now give an example of Corollary 2.
Example 1: Let $a, b:[0, \infty) \rightarrow \mathbf{R}$ be continuous and suppose there are constants $c_{1} \geq 1, c_{2}>0, c_{3}>0, c_{4}>0$ with
(a) $a(t)-c_{1}|b(t+1)|=: \alpha(t) \geq c_{3}$,
(b) there is a sequence $\left\{t_{n}\right\} \uparrow \infty$ and $K>0$ with $1 \leq t_{n+1}-t_{n} \leq K$ and $\int_{t_{n}-1}^{t_{n}}|b(s+1)| d s \leq$ c_{2}.
(c) $a(t)+|b(t)| \leq c_{4}(t+1) \ln (t+2)$.

Then the zero solution of

$$
\begin{equation*}
x^{\prime}(t)=-a(t) x+b(t) x(t-1) \tag{3}
\end{equation*}
$$

is AS.
Proof: Define

$$
V\left(t, x_{t}\right)=|x(t)|+c_{1} \int_{t-1}^{t}|b(s+1)||x(s)| d s
$$

so that

$$
\begin{aligned}
V_{(3)}^{\prime}\left(t, x_{t}\right) & \leq-a(t)|x|+|b(t)||x(t-1)|+c_{1}|b(t+1)||x|-c_{1}|b(t)||x(t-1)| \\
& \leq-\left[a(t)-c_{1}|b(t+1)|\right]|x| \leq-\alpha(t)|x|
\end{aligned}
$$

Take $H=1$ and $W(r)=r$. Then for $\|\phi\|<H$ we have

$$
\begin{gathered}
|\phi(0)| \leq V(t, \phi), \quad V(t, 0)=0 \\
V\left(t_{n}, \phi\right) \leq|\phi(0)|+c_{1} c_{2}\|\phi\|
\end{gathered}
$$

and

$$
V^{\prime}\left(t, x_{t}\right) \leq-c_{3}|x(t)|
$$

The conditions of Corollary 2 are satisfied.
Examples of $a(t)$ and $b(t)$ are easily constructed so that this equation is not uniformly stable. Let $m(t)=-[t] \sin 2 \pi t, r(t)=-[t](\cos 2 \pi t-1) / 2 \pi$ and $c(t)=|\sin \pi t|-\sin \pi t$, where $[\cdot]$ stands for the greatest integer function. Consider the scalar equation

$$
x^{\prime}=\left(m(t)-1-e^{2} \ln (t+1)\right) x(t)+\frac{1}{2} c(t)(\ln t) x(t-1)
$$

for $t \geq 1$. Note that

$$
\int_{n}^{n+1}[t] \sin 2 \pi t d t=n \int_{n}^{n+1} \sin 2 \pi t d t=-\frac{n}{2 \pi}(\cos 2 \pi(n+1)-\cos 2 \pi n)=0
$$

so that if $n \leq t<n+1$ then

$$
r(t)=\int_{0}^{t}-[s] \sin 2 \pi s d s=\frac{n}{2 \pi}(\cos 2 \pi t-1)=\frac{[t]}{2 \pi}(\cos 2 \pi t-1)
$$

Let

$$
V(t)=V\left(t, x_{t}\right)=e^{2 r(t)} x^{2}+\frac{1}{2} \int_{t-1}^{t} e^{2 r(s+1)} \ln (s+1) c(s+1) x^{2}(s) d s
$$

so that

$$
\begin{aligned}
V^{\prime}(t) & \leq\left(-2 m(t)+2 m(t)-2-2 e^{2} \ln (t+1)\right) e^{2 r(t)} x^{2}+c(t)(\ln t) x(t) x(t-1) e^{2 r(t)} \\
& +\frac{1}{2} e^{2 r(t+1)} \ln (t+1) c(t+1) x^{2}-\frac{1}{2} e^{2 r(t)}(\ln t) c(t) x^{2}(t-1) \\
& \leq-\left(2+2 e^{2} \ln (t+1)\right) e^{2 r(t)} x^{2}+(\ln t) e^{2 r(t)} x^{2}+\frac{c(t)}{2}(\ln t) e^{2 r(t)} x^{2}(t-1) \\
& +e^{2 r(t+1)} \ln (t+1) x^{2}(t)-\frac{1}{2} e^{2 r(t)}(\ln t) c(t) x^{2}(t-1)
\end{aligned}
$$

Now

$$
e^{2 r(t+1)}=e^{-2([t]+1)(\cos 2 \pi t-1) / 2 \pi} \leq e^{2} e^{2 r(t)}
$$

so $V^{\prime}(t) \leq-2 x^{2}(t)$. Also, $V(t) \geq x^{2}(t)$. Finally, when n is even

$$
V(n)=x^{2}+\frac{1}{2} \int_{n-1}^{n} e^{2 r(s+1)} \ln (s+1)(|\sin \pi(s+1)|-\sin \pi(s+1)) x^{2}(s) d s=x^{2} .
$$

Hence, the conditions of Corollary 2 are satisfied and $x=0$ is AS.

Remark: This result will not follow from the work of Busenberg and Cooke [6] because they require that for each $\eta>0$ there exists $\tau>0$ such that $\int_{t}^{t+\eta} a(s) d s \leq \tau$. It will not follow from Burton [2] because that result requires that $V(t, \phi) \leq W_{2}(|\phi(0)|)+$ $W_{3}\left(|\phi|_{2}\right)$, where $|\cdot|_{2}$ is the L^{2}-norm. It will not follow from Burton-Hatvani [5] for the same reason. It will not follow from Makay [8] because he requires $V(t, \phi) \leq W(\|\phi\|)$. It will not follow from Wang [12] because he requires uniform stability.

In the next example it is very easy to show AS by a variety of classical techniques $[1,10,11]$. But it requires all of the flexibility of Theorem 1 to show UAS.

Example 2: The zero solution of

$$
\begin{equation*}
x^{\prime \prime}+t x^{\prime}+x=0, \quad t \geq 1 \tag{4}
\end{equation*}
$$

is UAS.
Proof: Write (4) as

$$
\begin{aligned}
x^{\prime} & =-\frac{x+y}{t} \\
y^{\prime} & =\frac{2 x}{t}+\left(\frac{2}{t}-t\right) y
\end{aligned}
$$

Let $\left(x_{1}, x_{2}\right)=(x, y)$ and define $V=\left(x^{2}+y^{2}\right) / 2$ so that

$$
\begin{aligned}
V^{\prime} & =-\frac{1}{t} x^{2}-\frac{1}{t} x y+\frac{2}{t} x y+\left(\frac{2}{t}-t\right) y^{2} \\
& \leq-\frac{1}{t} x^{2}+\frac{1}{2 t}\left(x^{2}+y^{2}\right)+\left(\frac{2}{t}-t\right) y^{2} \\
& =-\frac{1}{2 t} x^{2}+\left(\frac{1}{2 t}+\frac{2}{t}-t\right) y^{2}
\end{aligned}
$$

Thus, for $t \geq 4$ we have (v) of Theorem 1 satisfied:
(v) $V^{\prime} \leq-\frac{1}{2 t} x^{2}-\frac{t}{2} y^{2}=:-P_{1}(t) U_{1}\left(\left|x_{1}\right|\right)-P_{2}(t) U_{2}\left(\left|x_{2}\right|\right)$.
(We remark that at this point we have $V^{\prime} \leq-\frac{k}{t} V$ so the zero solution is AS.)
Again for $t \geq 4$ we have

$$
V^{\prime} \leq-\frac{1}{2 t}\left(x^{2}+y^{2}\right) \leq-\frac{1}{4 t}|x+y|^{2}=-\frac{t}{4}\left|x^{\prime}(t)\right|^{2}
$$

or
(vi) $V^{\prime} \leq-\frac{1}{4}\left|x^{\prime}(t)\right|^{2}+0=-Q_{1}\left(\left|x_{1}^{\prime}\right|\right)+M_{1}(t)$
so that for $i=1$ we satisfy (vi) with $M_{1}(t)=0$. Likewise, for $t \geq 4$ we have

$$
\begin{aligned}
V^{\prime} & \leq-\frac{1}{2 t}|x|-\frac{t}{2}|y|+\frac{1}{2 t}+\frac{t}{2} \quad \text { for }|(x, y)| \leq 1 \\
& \leq-\frac{1}{4}\left|y^{\prime}\right|+t
\end{aligned}
$$

thus, for $t \geq 4$ and $|(x, y)| \leq 1$ we have
(vi) $V^{\prime} \leq-\frac{1}{4}\left|y^{\prime}\right|+t=:-Q_{2}\left(\left|x_{2}^{\prime}\right|\right)+M_{2}(t)$.

We see that (iv) is satisfied for $i=1$, while for $i=2$ we have

$$
\begin{aligned}
\int_{a}^{b} M_{2}(t) d t & =\int_{a}^{b} t d t=\left.\frac{t^{2}}{2}\right|_{a} ^{b}=\frac{b+a}{2}(b-a) \\
& \leq b(b-a)
\end{aligned}
$$

thus, if $k=1, t_{n}=n, b \leq t_{n}$, then we have

$$
\int_{a}^{b} M_{2}(t) d t \leq n(b-a)=: \lambda_{n}^{(2)}(b-a)
$$

so that if $D>0$, then for $n-1 \leq s_{n} \leq n-\frac{D}{n}$ we have

$$
\int_{s_{n}}^{s_{n}+D / n} P_{2}(t) d t \geq \int_{s_{n}}^{s_{n}+D / n} \frac{t}{2} d t \geq \frac{n-1}{2} \frac{D}{n} \geq \frac{D}{4}
$$

We have (ii) satisfied with $t_{n}=n, \lambda_{n}^{(2)}=n$, and (iv) satisfied for $i=2$ with $c_{n}^{(2)}=D / 4$. As V is autonomous, it is a Liapunov function and conditions of Theorem 1 (I) are satisfied. This completes the proof.

3. Proof of Theorem 1

We prove (I) first. Since V is a Liapunov functional we have $W_{1}(|\phi(0)|) \leq V(t, \phi)$ and $V_{(1)}^{\prime}\left(t, x_{t}\right) \leq 0$. The additional assumptions that $V(t, \phi) \leq W(\|\phi\|)$ yields US. For $\varepsilon_{1}=H$ find δ_{1} of US and take $\gamma=\delta_{1}$ in the definition of UAS. Let $\mu>0$ be given and find the δ_{2} of US so that $\left[\|\phi\|<\delta_{2}, t_{0} \geq 0, t \geq t_{0}\right]$ imply that $\left|x\left(t, t_{0}, \phi\right)\right|<\mu$.

We will find $T>0$ such that if $\phi \in \mathcal{C}_{\gamma}$ and $t_{0} \geq 0$, then $\left|x\left(t, t_{0}, \phi\right)\right|<\mu$ if $t \geq t_{0}+T$. Let $x(t)=x\left(t, t_{0}, \phi\right)$ and $V(t)=V\left(t, x_{t}\left(t_{0}, \phi\right)\right)$.

Consider the intervals $S_{n}=\left[t_{n}-k, t_{n}\right]$, where we may suppose, by renumbering, that $t_{n}-k \geq t_{n-1}$. For a given n, suppose that $\left\|x_{t}\right\| \geq \delta_{2}$. Then there is an $r_{n} \in S_{n}$ with $\left|x_{i}\left(r_{n}\right)\right| \geq \delta_{2}$ for some i. Let $-\alpha_{n}=V\left(t_{n}\right)-V\left(t_{n}-k\right)$.
(a) If $\left|x_{i}(t)\right| \geq \delta_{2} / 2$ for $t \in S_{n}$, then by (v) we have $V^{\prime}(t) \leq-P_{i}(t) U_{i}\left(\delta_{2} / 2\right)$ on S_{n}. Let $D=k \lambda$, so that

$$
-\alpha_{n}=V\left(t_{n}\right)-V\left(t_{n}-k\right) \leq-U_{i}\left(\delta_{2} / 2\right) \int_{t_{n}-k}^{t_{n}} P_{i}(s) d s \leq-c_{n}^{(i)} U_{i}\left(\delta_{2} / 2\right)
$$

(b) If (a) fails, the there are $p_{n}<q_{n}$ with $\left[p_{n}, q_{n}\right] \subset S_{n}$ and with $\left|x_{i}(t)\right|$ between $\delta_{2} / 2$ and δ_{2} on $\left[p_{n}, q_{n}\right]$; to be definite, say $\left|x_{i}\left(p_{n}\right)\right|=\delta_{2} / 2$ and $\left|x_{i}\left(q_{n}\right)\right|=\delta_{2}$. To simplify arithmetic in Jensen's inequality, let $k \leq 1$. Then we integrate (vi), use Jensen's inequality, and have

$$
\begin{aligned}
-\alpha_{n} & \leq V\left(q_{n}\right)-V\left(p_{n}\right) \leq-Q_{i}\left(\int_{p_{n}}^{q_{n}}\left|x_{i}^{\prime}(s)\right| d s\right) \\
& +\int_{p_{n}}^{q_{n}} M_{i}(s) d s \leq-Q_{i}\left(\delta_{2} / 2\right)+\left(q_{n}-p_{n}\right) \lambda_{n}^{(i)} .
\end{aligned}
$$

If $M_{i}=0$, then $\alpha_{n} \geq Q_{i}\left(\delta_{2} / 2\right)$.
(bi) If $\alpha_{n} \geq Q_{i}\left(\delta_{2} / 2\right) / 2$, this will suffice for our proof.
(bii) If $\alpha_{n}<Q_{i}\left(\delta_{2} / 2\right) / 2$, then $D:=Q_{i}\left(\delta_{2} / 2\right) / 2 \leq\left(q_{n}-p_{n}\right) \lambda_{n}^{(i)}$. We then integrate (v) and have

$$
\begin{aligned}
-\alpha_{n} & \leq V\left(q_{n}\right)-V\left(p_{n}\right) \leq-U_{i}\left(\delta_{2} / 2\right) \int_{p_{n}}^{q_{n}} P_{i}(s) d s \\
& \leq-U_{i}\left(\delta_{2} / 2\right) \int_{p_{n}}^{p_{n}+D / \lambda_{n}^{(i)}} P_{i}(s) d s \leq-c_{n}^{(i)} U_{i}\left(\delta_{2} / 2\right)
\end{aligned}
$$

From (a), (b), (bi) and (bii) we find

$$
\alpha_{n} \geq \min _{i}\left[c_{n}^{(i)} U_{i}\left(\delta_{2} / 2\right), Q_{i}\left(\delta_{2} / 2\right) / 2\right] \geq \min _{i}\left[c_{0} U_{i}\left(\delta_{2} / 2\right), Q_{i}\left(\delta_{2} / 2\right) / 2\right]=: \alpha
$$

If $t>t_{n}$, then

$$
0 \leq V(t) \leq V\left(t_{0}\right)-n \alpha \leq W\left(\delta_{1}\right)-n \alpha
$$

a contradiction if $n>W\left(\delta_{1}\right) / \alpha$. Now there is a $k>0$ with $t_{n}-t_{n-1} \leq k$ so we may select $N>W\left(\delta_{1}\right) / \alpha$ and then $T=N k$. This completes the proof of (I).

The other proofs are parallel. We must only change t_{n} for (II), while in (III) we need to change t_{n} and $c_{n}^{(i)}$.

To prove (II) we first note that it is not vacuous. The zero solution is stable so there are solutions remaining in \mathcal{C}_{H}. Suppose that $x(t)$ remains in \mathcal{C}_{H} and $x_{i}(t) \nrightarrow 0$ as $t \rightarrow \infty$.

Then there is an $\varepsilon>0$ and a sequence $\left\{t_{n}\right\} \uparrow \infty$ with $t_{n+1} \geq t_{n}+k$ and $\left|x_{i}\left(t_{n}\right)\right| \geq \varepsilon$. Let $S_{n}=\left[t_{n}-k, t_{n}\right]$ and $-\alpha_{n}=V\left(t_{n}\right)-V\left(t_{n}-k\right)$ where $V(t)=V\left(t, x_{t}\right)$. Using the same proof as in (I) we have

$$
\alpha_{n} \geq \min _{i}\left[c_{0} U_{i}(\varepsilon / 2), Q_{i}(\varepsilon / 2) / 2\right]=: \alpha
$$

If $t>t_{n}$, then $0 \leq V(t) \leq V\left(t_{0}\right)-n \alpha$, a contradiction for large n. This proves (II).
To prove (III), we note again that it is not vacuous, as in (II), and we consider a solution $x(t)$ remaining in \mathcal{C}_{H} on an interval $\left[t_{0}, \infty\right)$. Suppose that $x(t) \nrightarrow 0$ and note that $V^{\prime}\left(t, x_{t}\right) \leq 0$ so that if $t \geq t_{n}$ then $W_{1}(|x(t)|) \leq V\left(t, x_{t}\right) \leq V\left(t_{n}, x_{t_{n}}\right) \leq W\left(\left\|x_{t_{n}}\right\|\right)$; thus there is an $\varepsilon>0$ with $\left\|x_{t_{n}}\right\| \geq \varepsilon$ and so there is an i for each n with $\left|x_{i}\left(r_{n}\right)\right| \geq \varepsilon$, where $r_{n} \in\left[t_{n}-h, t_{n}\right]$. Let $S_{n}=\left[t_{n}-k, t_{n}\right]$. Once again the same proof gives

$$
\begin{equation*}
\alpha_{n} \geq \min _{i}\left[c_{n}^{(i)} U_{i}(\varepsilon / 2), Q_{i}(\varepsilon / 2) / 2\right] \geq \min _{i}\left[c_{n} U_{i}(\varepsilon / 2), Q_{i}(\varepsilon / 2) / 2\right] \tag{*}
\end{equation*}
$$

Since $t>t_{n}$ yields

$$
\begin{align*}
0 \leq V\left(t, x_{t}\right) & \leq V\left(t_{1}, x_{t_{1}}\right)-\sum_{i=2}^{n} \alpha_{i} \tag{**}\\
& \leq W\left(\left\|x_{t_{1}}\right\|\right)-\sum_{i=2}^{n} \alpha_{i}
\end{align*}
$$

the second choice in $\left(^{*}\right)$ can hold only for finitely many n. Since $\sum_{n=0}^{\infty} c_{n}=\infty$, a contradiction results in $\left({ }^{* *}\right)$ for large n. This completes the proof.

4. Proofs of the corollaries

First, note that Corollary 1 is just a statement of Theorem 1 (III) without a separate statement for each component. Also, $\lambda_{n}=\lambda\left(t_{n}\right)$ will suffice, since $P(t)=1$ and so

$$
\int_{s_{n}}^{s_{n}+D / \lambda_{n}} 1 d t=\int_{s_{n}}^{s_{n}+D / \lambda\left(t_{n}\right)} d t=\frac{D}{\lambda\left(t_{n}\right)}=: c_{n}
$$

and $\sum c_{n}$ diverges since $\int_{1}^{\infty} \frac{d t}{\lambda(t)}$ diverges and λ is increasing.
Corollary 2 follows from Corollary 1 when we note that (iv) of Corollary 1 is satisfied, because for $\|\phi\|<1$ we have

$$
V^{\prime}\left(t, x_{t}\right) \leq-W_{2}(|x(t)|) \leq-\left|f\left(t, x_{t}\right)\right|+J(t+1) \ln (t+2)
$$

and $M(t)=J(t+1) \ln (t+2)$ satisfies condition (iv) of Corollary 1.
Corollary 3 plays the role for Theorem 1 (I) that Corollary 1 plays for Theorem 1 (III). It merely avoids the component conditions.

References

1. R. J. Ballieu and K. Pfeiffer, Attractivity of the origin for the equation $x^{\prime \prime}+f\left(t, x, x^{\prime}\right)\left|x^{\prime}\right|^{a} x^{\prime}+$ $g(x)=0$, J. Math. Anal. Appl. 65 (1978), 321-332.
2. T. A. Burton, Uniform asymptotic stability in functional differential equations, Proc. Amer. Math. Soc. 68 (1978), 195-199.
3. L. Becker, T. A. Burton and S. Zhang, Functional differential equations and Jensen's inequality, J. Math Anal. Appl., 138 (1989), 137-156.
4. T. A. Burton, A. Casal and A. Somolinos, Upper and lower bounds for Liapunov functionals, Funkcial. Ekvac., 32 (1989), 23-55.
5. T. A. Burton and L. Hatvani, Stability theorems for nonautonomous functional differential equations by Liapunov functionals, Tohoku Math. J. 41 (1989), 65-104.
6. S. N. Busenberg and K. L. Cooke, Stability conditions for linear non-autonomous delay differential equations, Quart. Appl. Math., 42 (1984), 295-306.
7. N. N. Krasovskii, "Stability of Motion", Stanford University Press (1963).
8. G. Makay, On the asymptotic stability in terms of two measures for functional differential equations, J. Nonlinear Anal. 16 (1991), 721-727.
9. M. Marachkov, On a theorem on stability, Bull. Soc. Phy. Math., Kazan 12 (1945), 171-174.
10. R. A. Smith, Asymptotic stability of $x^{\prime \prime}+a(t) x^{\prime}+x=0$, Quart. J. Math. Oxford Ser. (2), 12 (1961), 123-126.
11. L. H. Thurston and J. S. W. Wong, On global stability of certain second order differential equations with integrable forcing terms, SIAM J. Appl. Math., 24 (1973), 50-61.
12. T. Wang, Asymptotic stability and the derivatives of solutions of functional differential equations, Preprint.
