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1. Introduction: finite delay

This paper is concerned with systems of functional differential equations with either

finite or infinite delay. We give conditions on the system and on a Liapunov function to

ensure that the zero solution is asymptotically stable. Section 2 is devoted to finite delay,

Section 3 to infinite delay, and Section 4 to examples.

The remainder of this section introduces the problem for the finite delay case.

We consider a system of functional differential equations with finite delay written as

x′(t) = f(t, xt),
′ = d/dt, (1)

where f : [0,∞) × CH → R
m is continuous and takes bounded sets into bounded sets and

f(t, 0) = 0. Here, (C, ‖ · ‖) is the Banach space of continuous functions φ : [−h, 0] → R
m

with the supremum norm, h is a non-negative constant, CH is the open H-ball in C, and

xt(s) = x(t + s) for −h ≤ s ≤ 0. Standard existence theory shows that if φ ∈ CH and

t ≥ 0, then there is at least one continuous solution x(t, t0 , φ) on [t0, t0 + α) satisfying (1)

for t > t0, xt(t0, φ) = φ and α some positive constant; if there is a closed subset B ⊂ CH

such that the solution remains in B, then α = ∞. Also, | · | will denote the norm in R
m

with |x| =max1≤i≤m|xi|.

We are concerned here with asymptotic stability in the context of Liapunov’s di-

rect method. Thus, we are concerned with continuous, strictly increasing functions

Wi : [0,∞) → [0,∞) with Wi(0) = 0, called wedges, and with Liapunov functionals.
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Definition 1: A continuous functional V : [0,∞) × CH → [0,∞) which is locally

Lipschitz in φ is called a Liapunov functional for (1) if there is a wedge W with

(i) W (|φ(0)|) ≤ V (t, φ), V (t, 0) = 0, and

(ii) V ′
(1)(t, xt) = lim supδ→0

1
δ
{V (t+ δ, xt+δ(t0, φ)) − V (t, xt(t0, φ))} ≤ 0.

Remark: A standard result states that if there is a Liapunov functional for (1), then

x = 0 is stable. Definitions will be given in the next section.

The classical result on asymptotic stability may be traced back to Marachkov [17]

through Krasovskii [15;pp. 151-154]. It may be stated as follows.

Theorem MK: Suppose there are a constant M , wedges Wi, and a Liapunov func-

tional V (so W1(|φ(0)|) ≤ V (t, φ) and V (t, 0) = 0) with

(i) V ′
(1)(t, xt) ≤ −W2(|x(t)|) and

(ii) |f(t, φ)| ≤M if t ≥ 0 and ‖φ‖ < H.

Then x = 0 is asymptotically stable.

Condition (ii) is troublesome, since it excludes many examples of considerable interest.

And there are several results which reduce or eliminate (ii). For example, we showed [3]

that if

(iii) V (t, φ) ≤ W2(|x|) +W3(|xt|2),

where | · |2 is the L2-norm, then uniform asymptotic stability would result. Other alterna-

tives may be found in [1,4,6,8], for example.

In an earlier paper [7] we gave a very general theorem and proof which had the

following result as a corollary.

Theorem A: Suppose there is a Liapunov functional V , wedgesWi, positive constants

K and J , a sequence {tn} ↑ ∞ with tn − tn−1 ≤ K such that

(i) V (tn, φ) ≤ W2(‖φ‖),

(ii) V ′
(1)(t, xt) ≤ −W3(|x(t)|) if tn − h ≤ t ≤ tn, and

(iii) |f(t, φ)| ≤ J(t+ 1)ln(t + 2) for t ≥ 0 and ‖φ‖ < H.

Then x = 0 is AS.

Our first result here generalizes that slightly, but more importantly, it gives a simple

and instructive proof that shows exactly what is happening so that the infinite delay case
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follows exactly. It is a simple exercise to see that the statement of Theorem 1 below still

holds if condition (ii) of that theorem is replaced by condition (ii) of Theorem A.

2. Stability for finite delay

We now define the terminology to be used here.

Definition 2: The solution x = 0 of (1) is:

(a) stable if for each ε > 0 and t0 ≥ 0 there is a δ > 0 such that [‖φ‖ < δ, t ≥ t0] imply

that |x(t, t0, φ)| < ε;

(b) uniformly stable (US) if for each ε > 0 there is a δ > 0 such that [t0 ≥ 0, ‖φ‖ < δ, t ≥ t0]

imply that |x(t, t0, φ)| < ε;

(c) uniformly equi-asymptotically stable (UEAS) if it is uniformly stable and if there is a

K > 0 and for each [µ > 0, t0 ≥ 0] there is a T > 0 such that [t ≥ t0 + T , ‖φ‖ < K]

implies that |x(t, t0, φ)| < µ.

Lemma: Let F : [0,∞) → [1,∞) be continuous and increasing. Then

∫ ∞

1

(1/F (t))dt = ∞

if and only if
∞
∑

i=1

(1/F (t0 + ih)) = ∞

for t0 ≥ 0.

Theorem 1: Suppose there is a V : [0,∞) × CH → [0,∞), wedges Wi, and a

continuous increasing function F : [0,∞) → [1,∞) such that

(i) W1(|φ(0)|) ≤ V (t, φ) ≤W2(‖φ‖),

(ii) V ′
(1)(t, xt) ≤ −W3(|x(t)|),

(iii) |f(t, φ)| ≤ F (t) on [0,∞) ×CH , and

(iv)
∫ ∞

1
(1/F (t))dt = ∞.

Then the zero solution of (1) is uniformly equi-asymptotically stable.

Proof: A classical result yields uniform stability. For the H > 0, find K > 0 so that

[t0 ≥ 0, ‖φ‖ < K, t ≥ t0] implies that |x(t, t0, φ)| < H.
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Let µ < K and t0 ≥ 0 be given. We must find T > 0 so that [‖φ‖ < K, t ≥ t0 + T ]

implies that |x(t, t0, φ)| < µ. For an arbitrary such φ, let x(t) := x(t, t0, φ) and V (t, xt) =:

V (t).

Next, for this µ find δ ≤ 1 of US. Define

In := In(t0) = [t0 + (n− 1)h, t0 + nh].

By the US, if there is an n with |x(t)| < δ on In, then |x(t)| < µ for t ≥ t0 + nh. Thus,

until t enters such an In, if ever, for each n there is a tn ∈ In with |x(tn)| ≥ δ. It follows

readily that there is an αn ∈ (0, h] with |x(t)| ≥ δ/2 on [tn, tn +αn] and let αn be maximal

with this property.

If αn < h (and consequently |x(tn +αn)| = δ/2), then we now obtain a lower estimate

of αn. Integrating (1) yields

δ/2 ≤ |x(tn) − x(tn + αn)| = |

∫ tn+αn

tn

f(s, xs)ds| ≤ F (tn + αn)αn

or

αn ≥ δ/[2F (tn + αn)] ≥ δ/[2F (tn + h)] ≥ δ/[2F (tn+2)]

Hence we have αn ≥ δ/[2F (tn+2)] for this case, and also (supposing that F (t) ≥ 1/2h) in

the case when αn = h.

Next, integration of (ii) and tn + αn ≤ tn+2 yield

V (tn+2) − V (tn) ≤ V (tn + αn) − V (tn) ≤ −

∫ tn+αn

tn

W3(|x(s)|)ds

≤ −W3(δ/2)αn

≤ −W3(δ/2)δ/[2F (tn+2)]

Hence,

V (tn+2) ≤ W2(K) −W3(δ/2)(δ/2)
n

∑

i=1

1/F (t2i).

There is an n = n(t0) with the right-hand-side negative. For this n let T = (n+1)h. This

completes the proof.

If we consider the paragraph after Theorem MK with the result of [3], the reader

naturally believes that it may be possible to strengthen the conclusion of Theorem 1 to

uniform asymptotic stability. The following proposition shows that this can not be done.
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Proposition. There is a function f such that all conditions of Theorem 1 are satisfied,

but the zero solution is not uniformly asymptotically stable.

Proof: Let ψ be a continuously differentiable function with the following properties:

1. ψ(n) = 1/(n+ 1) for n = 0, 1, . . .,

2. ψ(t) = 0 unless t ∈ [n− (1/2(n + 1)), n + (1/2(n+ 1))],

3. ψ(t) is increasing on the interval t ∈ [n−(1/2(n+1)), n] and decreasing on the interval

t ∈ [n, n+ (1/2(n + 1))],

4. |ψ′(t)| ≤ C for some C > 0.

Clearly there is such a ψ. Now let h = 1 and we define the right hand side of the

equation on the interval [n, n+ 1):

f(t, xt) :=















ψ′(t)

ψ(n)
x(n), if |x(t)| ≤ ||xt||

n+ 1

n+ 2
or t ∈ [n, n+

1

2
)

(n + 1)(||xt|| − |x(t)|)

|x(t)|

ψ′(t)

ψ(n)
x(n), otherwise

It is easy to see that f is continuous and satisfies the local Lipschitz condition in its

second variable; to prove this, one needs to use the fact that when the second definition

holds, then
(n + 1)(||xt|| − |x(t)|)

|x(t)|
≤ 1.

Also, |f(t, φ)| ≤ C(t+ 1)||φ||.

Next note that the supremum norm of the solution is non-increasing, because of the

second part of the definition.

It is also clear that all functions of the form cψ(t) are solutions. Now let us start a

solution at t0 by an initial function φ, and let n be the smallest integer not smaller than

t0. Then for t ≥ n we have

x(t, t0, φ) =
x(n, t0, φ)

ψ(n)
ψ(t)

Obviously, after t reaches the next integer after t0 we will always have the first part of the

definition in effect, and the solution is a constant times ψ.

Now we define a Liapunov functional

V (t, φ) := ||φ||+

∫ ∞

t

|x(s, t, φ)|ds
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First we prove that V exists as well as the upper bound on V. Let n be the smallest

integer larger than t. Then (using the fact that ||xt|| is non-increasing and the properties

of ψ)

V (t, φ) = ||φ||+

∫ n

t

|x(s, t, φ)|ds +

∫ ∞

n

|x(s, t, φ)|ds

≤ ||φ||+

∫ n

n−1

||φ||ds+

∫ ∞

n

||φ||

ψ(n)
ψ(s)ds

≤ 2||φ||+ (n+ 1)||φ||
∞

∑

i=n

1

(i+ 1)2

≤ 2||φ||+
(n+ 1)||φ||

n
≤ 4||φ||

We also have |x(t)| ≤ V (t, xt) and V ′(t, xt) ≤ −|x(t)| using the fact that |x(s, t, φ)| → 0 as

s → ∞. Therefore all conditions of Theorem 1 are satisfied, and hence the solutions are

equi-asymptotically stable.

All that is left to be proved is that the solutions are not uniformly asymptotically

stable. Suppose for contradiction that there is a K > 0 and for all µ > 0 there is a T

such that if t0 ≥ 0, t ≥ t0 + T , and ||φ|| < K then |x(t, t0, φ)| < µ. Then let µ < K/2 be

given and let T be fixed. Choose φ(s) = K/2 (s ∈ [−1, 0]) with n large enough so that

n/(n+ [T ] + 1) > 2µ/K, and t0 = n. Then we know from the previous notes that

x(t, t0, φ) =
K

2ψ(n)
ψ(t).

Choosing t = t0 + [T ] + 1 > t0 + T we find that

x(t0 + [T ] + 1, t0, φ) =
Kψ(n + [T ] + 1)

2ψ(n)
=

Kn

2(n+ [T ] + 1)
> µ

which is a contradiction to our assumption. This contradiction shows that the solutions

are not uniformly asymptotically stable.

Note that the above example can easily be modified so that F (t) in Theorem 1 can

be tα for any α > 0 and still UAS does not hold.

3. Introduction and stability for infinite delay

Seifert[19] seems to have been the first to clearly show the importance of a fading

memory in the study of stability for a system with infinite delay. That concept is now
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central in the study of stability, boundedness, and periodicity. The fading memory is

deduced from the differential equation itself and then is reflected in the Liapunov functional

used in the stability investigation. Thus, in a formal presentation the fading memory

properties frequently are first seen in the wedges on the Liapunov functional in the form

of a weighted norm.

Let g : (−∞, 0] → [1,∞) be a continuous nonincreasing function with limt→−∞ g(t) =

+∞. Then

(C, | · |g)

is the Banach space of continuous functions φ : (−∞, 0] → Rn for which

sup
t≤0

|φ(t)|/g(t) =: |φ|g

exists. For H > 0, (CH , | · |g) is that subset of C with |φ|g < H.

If A > 0 and if x : (−∞, A] → Rn is continuous, then for 0 ≤ t ≤ A, xt is that element

of C defined by

xt(s) = x(t + s),−∞ < s ≤ 0,

provided that |xt|g exists.

Let f : [0,∞) × CH → Rn and consider the system

x′(t) = f(t, xt). (2)

We suppose the usual conditions (continuity and local Lipschitz condition on f), that

imply that for each (t0, φ) in [0,∞) × CH there is a solution x, having value x(t, t0, φ),

satisfying (2) on an interval [t0, α) with xt0 = φ; moreover, we suppose that if H1 < H

and if |x(t)| ≤ H1 for all t for which x is defined, then α = ∞.

There are many existence theorems for (2) showing exactly what is needed for the

conditions in the above paragraph to be satisfied. Sawano [18] gives one for bounded

continuous initial functions, while Hino-Murakami-Naito [14; p. 36] have one for initial

functions in C . But existence of solutions is closely tied to the existence of a Liapunov

function, as is discussed extensively in Burton [2], especially Theorem 4. If the system

is continuous in the g norm, if the g function is unbounded, if the Liapunov function is
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mildly unbounded in the g norm, and if the derivative along (2) is non-positive, that is

sufficient for existence of solutions.

Our interest here is purely in stability and our result will hold whenever the above

type of existence obtains. Systems of this kind are extensively discussed in the literature

and the reader is referred to Hale-Kato [12], Haddock-Krisztin-Terjéki [10] for phase space

theory, Burton-Feng [5] for continuous dependence, Hering [13] for stability and Liapunov

functions, and Hino-Murakami-Naito [14] for an in depth treatment of the subject of infinite

delay problems.

In setting up phase spaces for infinite delay problems, fairly stringent translation

conditions frequently emerge which require g to decrease almost exponentially. See, for

example, Chapter 1 of Hino-Murakami-Naito [14] or Hale-Kato [12;p. 24]. The paper by

Haddock [9] is devoted in large part to spaces where g is exponential. In this paper we

also use exponential g’s, but we also show asymptotic stability when this condition does

not hold. We now introduce the properties used here.

Definition 3. Let φ ∈ C and define

φ̃(s) :=

{

φ(s), if s ≤ 0

0, if s > 0

We say that (C, | · |g) is a fading memory space if for all φ ∈ C we have |φ̃t|g → 0 as t→ ∞.

Definition 4. We say that g satisfies the exponential condition if for each δ > 0 there

is an h > 0 such that 0 ≤ t1 < t2 and t2 − t1 ≥ h imply that

g(u− t2) ≥ g(u− t1)2H/δ for u ≤ t1. (3)

This condition makes it possible to prove an exact counterpart of Theorem 1 for the

infinite delay case. It will play an important role in the paper and the following proposition

explains its properties.

Proposition 1. The following conditions are equivalent.

1. There is an α ∈ (0, 1) and l > 0 such that

sup
s≤0

g(s)

g(s− l)
≤ α
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2. g satisfies the exponential condition.

3. The space (C, | · |g) is a fading memory space.

Proof:

1 implies 2: Let δ be given. Choose the natural number n > 0 so that αn ≤ δ/2H

and let h = nl. If 0 ≤ t1 < t2 and t2 − t1 ≥ h, then choosing s = u − t1 and using the

property that g is monotone non-increasing we obtain

g(u− t1)

g(u− t2)
=

g(s)

g(s − (t2 − t1))
≤

g(s)

g(s − nl)
=

g(s)

g(s− l)
· · ·

g(s− (n − 1)l)

g(s − nl)
≤ αn ≤

δ

2H

which gives the desired result.

2 implies 3: let φ be given. Then

|φ̃t|g = sup
s≤0

|φ(s)|

g(s− t)
≤ sup

s≤0

|φ(s)|

g(s)
sup
s≤0

g(s)

g(s − t)
= |φ|g sup

s≤0

g(s)

g(s − t)
<
δ|φ|g
2H

if t ≥ h, where h is chosen from the exponential condition on g for δ. Letting δ tend to 0

we get condition 3.

3 implies 1: We apply the condition of the fading memory space to φ(s) =

(g(s), 0, 0, ..., 0) ∈ R
n and we obtain

|φ̃t|g = sup
s≤0

g(s)

g(s − t)
→ 0

as t→ ∞, which clearly implies condition 1.

Stability definitions from Section 2 carry over by replacing ‖φ‖ by |φ|g, but to be more

precise we say (asymptotic) stability in the g-norm. The goal of this section is to prove

Theorem 1 for system (2) making only the change of W2(‖φ‖) into W2(|φ|g). In particular,

here is our result.

Theorem 2: Let G : (−∞, 0] → [1,∞) be a function such that G(s) ≤ cg(s) (c > 0

constant) and |G̃t|g → 0 as t→ ∞. Suppose there is a V : [0,∞) × CH → [0,∞), wedges

Wi, and a continuous increasing function F : [0,∞) → [1,∞) such that

(i) W1(|φ(0)|) ≤ V (t, φ) ≤W2(|φ|g),

(ii) V ′
(2)(t, xt) ≤ −W3(|x(t)|),

(iii) |f(t, φ)| ≤ F (t) on [0,∞) ×CH , and

(iv)
∫ ∞

1
(1/F (t))dt = ∞.
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Then the zero solution of (2) is uniformly equi-asymptotically stable in the G-norm.

Proof: We follow the proof of Theorem 1. Uniform stability in the g-norm follows

immediately. Since c|φ|G ≥ |φ|g, we also have uniform stability in the G-norm. Let

H1 < H and we find K > 0 with W1(H1) = W2(K). Then for |φ|g < K, t0 ≥ 0, and

x(t) := x(t, t0 , φ), since V ′
(2)(t, xt) ≤ 0, by (i) if t ≥ t0 we have

W1(|x(t)|) ≤ V (t, xt) ≤ V (t0, φ) ≤ W2(|φ|g) < W2(K)

so

|x(t)| < W−1
1 (W2(K)) = H1,

and hence x(t) is defined on the interval [t0,∞).

Let µ < K and t0 ≥ 0 be given. We must find T > 0 so that [|φ|g < K, t ≥ t0 + T ]

implies that |x(t, t0, φ)| < µ.

Pick δ = W−1
2 (W1(µ)). We will now find an h > 0 such that if |x(t)| < δ on an

interval [t1, t2] with t0 ≤ t1 and t2 − t1 ≥ h, then |x(t)| < µ for t ≥ t2. The reader will

readily verify that if we can do this, then the remainder of the proof is identical to that of

Theorem 1.

Now for the given δ, find h such that |G̃s|g < δ/H for s ≥ h. Let t0 ≤ t1 < t2,

t2 − t1 ≥ h, |x(t)| < δ on [t1, t2]. We then have

|xt2 |g = sup
s≤0

|x(s + t2)|

g(s)
= sup

u≤t2

|x(u)|

g(u− t2)

≤ max

{

sup
u≤t1

|x(u)|

g(u− t2)
, sup
t1≤u≤t2

|x(u)|

}

≤ max

{

sup
u≤t1

|x(u)|

G(u− t1)

G(u− t1)

g(u− t2)
, sup
t1≤u≤t2

|x(u)|

}

≤ max

{

|xt1 |G|G̃t2−t1 |g, sup
t1≤u≤t2

|x(u)|

}

< max

{

H
δ

H
, δ

}

= δ

Since V ′
(2)(t, xt) ≤ 0, for t ≥ t2 we have

W1(|x(t)|) ≤ V (t, xt) ≤ V (t2, xt2 ) ≤ W2(|xt2 |g) < W2(δ)

so

|x(t)| < W−1
1 (W2(δ)) = µ,

10



as required.

The remainder of the proof is identical to that of Theorem 1.

Note that if we have a fading memory space, then we can state the following simplified

version of the above theorem, which does not need G.

Theorem 3: Suppose that g satisfies (3) and conditions (i)-(iv) of Theorem 2 hold.

Then |g̃t|g → 0 (as t → ∞) and hence choosing G(s) = g(s) all conditions of Theorem 2

are satisfied and (2) is UEAS in the g-norm.

REMARK. If g does not satisfy (3), then we still have the task of constructing a

G for which |G̃t|g → 0 holds. For a particular example of (2), one may construct a

Liapunov functional V without any reference to a function g. (The reader should follow

our subsequent Example 2 to see how this develops.) From the properties of V we then

construct the wedges and g. Two questions then arise. First, what conditons must g

satisfy to ensure existence of solutions? We refer the reader to [2], Theorem 4 for a typical

answer. Next, what conditions are needed for G to satisfy |G̃t|g → 0? We formalize one

result concerning this question as follows.

Lemma: If G(s)/g(s) → 0 as s→ −∞, then |G̃t|g → 0 as t→ ∞.

Proof: Let δ > 0 be given and h > 0 large enough so that G(s)/g(s) < δ/2 for s ≤ −h.

Now choose T > 0 large enough so that g(s) ≥ 2max−h≤u≤0G(u)/δ for s ≤ −T . Then if

t ≥ T we obtain

|G̃t|g = sup
s≤0

G(s)

g(s − t)
≤ sup

s≤−h

G(s)

g(s)
+ sup

−h≤s≤0

G(s)

g(s− t)
≤
δ

2
+
δ

2
= δ.

As a consequence of this Lemma we can always choose G(s) ≡ 1 and then prove

uniform equi-asymptotic stability in the supremum norm using Theorem 2. This is a very

useful consequence of our theorems, because in practical examples initial functions are

frequently bounded.

There are two final remarks concerning the conditions in Theorem 2. First, (supposing

that G(s) ≤ cg(s)) if either G(s)/g(s) → 0 as s → −∞, or g satisfies the exponential

condition, then |G̃t|g → 0 as t → ∞. Next, the opposite direction is not true. One can

construct g and G so that they do not satisfy either of the above conditions, but |G̃t|g → 0

holds.
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4. Examples

Lemma: Let x be a solution of (2) and t0 be fixed. Then

lim sup
t→t0+0

|xt|g − |xt0 |g
t− t0

≤ |x′(t0)|

Proof. Let t > t0 be arbitrarily fixed. Then

|xt|g = sup
s≤0

|x(t + s)|

g(s)
= max

{

sup
s≤−(t−t0)

|x(t + s)|

g(s)
, max
s∈[−(t−t0),0]

|x(t + s)|

g(s)

}

≤ max

{

sup
s≤0

|x(t0 + s)|

g(s)
, max
s∈[−(t−t0),0]

|x(t + s)|

}

= max

{

|xt0 |g, max
s∈[t0,t]

|x(s)|

}

There are two cases:

1. If |xt0 |g < maxs∈[t0,t] |x(s)|, then using |xt0 |g ≥ |x(t0)| we get

|xt|g − |xt0 |g
t− t0

≤
maxs∈[t0,t] |x(s)| − |x(t0)|

t− t0

=
|x(θt)| − |x(t0)|

θt − t0

θt − t0
t− t0

≤

∣

∣

∣

∣

x(θt) − x(t0)

θt − t0

∣

∣

∣

∣

where θt ∈ [t0, t] is a point where |x(s)| takes it’s maximum on the interval [t0, t].

Note that |xt0 |g ≥ |x(t0)| and |xt0 |g < maxs∈[t0,t] |x(s)| implies that θt > t0 and hence

the above expression is valid.

2. If |xt0 |g ≥ maxs∈[t0,t] |x(s)|, then

|xt|g − |xt0 |g
t− t0

≤
|xt0 |g − |xt0 |g

t− t0
= 0

In this case we define θt = t.

Therefore, in both cases we have

|xt|g − |xt0 |g
t− t0

≤

∣

∣

∣

∣

x(θt) − x(t0)

θt − t0

∣

∣

∣

∣

for some θt ∈ (t0, t]. Then letting t→ t0 +0 we also have θt → t0 +0 and hence we obtain

the desired result.

Note that |xt|g may not be differentiable everywhere. The main problem is that when

|xt1 |g > |x(t1)|, x
′(t) > 0 on some interval [t1, t2], and at some point t3 ∈ (t1, t2) we have
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|xt3 |g = x(t3). When t < t3 then |xt|g is monotone non-increasing, but when t3 < t we

have |xt|g = |x(t)| and hence it is strictly increasing. Therefore |xt|g has a break point at

t3 so it is not differentiable at t3.

Example 1. Consider the equation

x′ = −a(t)x+ f(t, xt) (4)

where

1 ≤ a(t) ≤ k(t+ 1) ln(t+ 2)

(k > 0 constant) and

|f(t, xt)| ≤ b(t)|xt|g,

∫ ∞

0

b(t)dt <∞,

where g satisfies the exponential condition. Then the conditions of Theorem 2 (with G = g)

are satisfied.

Proof. Define

V (t, xt) = [2|x(t)| + |xt|g] exp

(

−3

∫ t

0

b(s)ds

)

.

Then

V ′
(4)(t, xt) exp

(

3

∫ t

0

b(s)ds

)

≤ −6|x(t)|b(t) − b(t)|xt|g − 2a(t)|x| + a(t)|x| + b(t)|xt|g

≤ [−6b(t) − a(t)]|x|

≤ −|x|.

We then have α > 0 with

α|x| ≤ V (t, xt) ≤ 2|x| + |xt|g

and

V ′ ≤ −α|x|.

The conditions of Theorem 2 are satisfied. Moreover, the conditions for existence of

solutions are also satisfied, as may be seen in Theorem 4 of [2].
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Example 2. Consider the scalar equation

x′ = −a(t)x−

∫ t

−∞

D(t, s)h(x(s))ds (5)

with h : R→ R, h, a, and D continuous, and if −∞ < s < t <∞ then

D(t, s) ≥ 0, Ds(t, s) ≥ 0, Dst(t, s) ≤ 0, (6)

and

1 ≤ a(t) ≤ k(t+ 1) ln(t + 2) and xh(x) > 0 for x 6= 0. (7)

In order to make the equation be defined for bounded initial function we need the following

conditions: let

∫ t

−∞

[

D(t, s)+Ds(t, s)(t− s+1)2 + |Dst(t, s)|(t− s)
2
]

ds be bounded and continuous (8)

and

lim
s→−∞

(t− s)D(t, s) = 0 for fixed t. (9)

These will imply that

there is a B > 0 with

∫ t

−∞

Ds(t, s)ds ≤ B. (10)

Using (8) we obtain that equation (5) satisfies condition (iii) of Theorem 2. Now we define

a Liapunov functional as

V (t, x(·)) = 2

∫ x

0

h(s)ds +

∫ t

−∞

Ds(t, s)

(
∫ t

s

h(x(v))dv

)2

ds (11)

so that along a bounded solution of (5) we have

V ′(t, x(·)) = 2h(x)

[

−

∫ t

−∞

D(t, s)h(x(s))ds − a(t)x

]

+

∫ t

−∞

Dst(t, s)

(
∫ t

s

h(x(v))dv

)2

ds

+ 2h(x)

∫ t

−∞

Ds(t, s)

∫ t

s

h(x(v))dv ds.
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If we integrate the last term by parts and use (8) and (9) we get

V ′(t, x(·)) =

∫ t

−∞

Dst(t, s)

(
∫ t

s

h(x(v))dv

)2

ds

+ 2h(x)
[

−a(t)x
]

≤ −xh(x)

(12)

Since h has the sign of x the derivative satisfies condition (ii) of Theorem 2.

Next, lets take care of existence. We need a place to start so lets ask that

h(x) = xn,

where n is an odd integer. Let g be given, and consider

|

∫ t

s

xn(u)du| = |

∫ 0

s−t

xn(u+ t)du| = |

∫ 0

s−t

(xn(u+ t)/gn(u))gn(u)du|

≤ sup
−∞<u≤0

|x(u+ t)/g(u)|n|

∫ 0

s−t

gn(u)du|

≤ (|xt|g)n|

∫ 0

s−t

gn(u)du|.

(13)

If g satisfies the condition that

∫ t

−∞

Ds(t, s)(

∫ 0

s−t

gn(u)du)2ds < M <∞. (14)

then

2

∫ x

0

h(s)ds ≤ V ≤ 2

∫ x

0

h(s)ds +M(|xt|g)
2n (15)

Condition (14) will make the Liapunov function satisfy condition (i) of Theorem 2 for

bounded initial functions, but we will need an additional condition for unbounded initial

functions. To make (5) defined for initial functions from a (C, | · |G) space, we have

∫ t

−∞

D(t, s)h(x(s))ds =

∫ 0

−∞

D(t, u + t)h(x(u + t))du

and |x(u+ t)|/G(u) ≤ H implies |x(u+ t))| ≤ HG(u) and so we need to strengthen (8) to

get that
∫ 0

−∞

D(t, u+ t)h(HG(u))du is bounded and continuous. (16)
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In addition, the derivative of the Liapunov function must be defined so we need also

strengthen (8) by

−

∫ t

−∞

Dst(t, s)

(
∫ 0

s−t

h(HG(v))dv

)2

ds <∞. (17)

Finally, (9) must be strengthened to

D(t, s)

∫ 0

s−t

h(HG(v))dv → 0 as s→ −∞. (18)

Now condition (16), (17) and (18) are mainly conditions on D and G: they can be satisfied

by either decreasingD and Dst, or by choosing a ”small” G. If we do the later, and choose

a G so that G(s) ≤ cg(s) and |G̃t|g → 0 as t → ∞, then all conditions of Theorem 2 are

satisfied, so we have equi-asymptotic stability in the G-norm.
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