A FIXED POINT THEOREM OF KRASNOSELSKII-SCHAEFER TYPE

T.A. Burton and Colleen Kirk

Abstract

In this paper we focus on three fixed point theorems and an integral equation. Schaefer's fixed point theorem will yield a T-periodic solution of

$$
\begin{equation*}
x(t)=a(t)+\int_{t-h}^{t} D(t, s) g(s, x(s)) d s \tag{1}
\end{equation*}
$$

if D and g satisfy certain sign conditions independent of their magnitude. A combination of the contraction mapping theorem and Schauder's theorem (known as Krasnoselskii's theorem) will yield a T-periodic solution of

$$
\begin{equation*}
x(t)=f(t, x(t))+\int_{t-h}^{t} D(t, s) g(s, x(s)) d s \tag{2}
\end{equation*}
$$

if f defines a contraction and if D and g are small enough.
We prove a fixed point theorem which is a combination of the contraction mapping theorem and Schaefer's theorem which yields a T-periodic solution of (2) when f defines a contraction mapping, while D and g satisfy the aforementioned sign conditions.

1. Introduction. We are interested in proving that equations of the type

$$
\begin{equation*}
x(t)=f(t, x(t))-\int_{t-h}^{t} D(t, s) g(s, x(s)) d s \tag{1}
\end{equation*}
$$

possess a T-periodic solution when D is essentially a positive kernel and f is a contraction. In particular, D may be large.

Equations of this form are interesting in their own right. It is an equation with memory: the present value of x depends on its past history.

But (1) can also arise from a much more familiar problem such as

$$
\begin{equation*}
x^{\prime}(t)=-a(t) x(t)-g(t, x(t)) \tag{D}
\end{equation*}
$$

where $a(t+T)=a(t)$ and $g(t+T, x)=g(t, x)$ for some $T>0$. Krasnoselskii (cf. Schauder [14] and Smart [15; p. 31]) observed that in a variety of problems the inversion of a perturbed differential operator yields a contraction and a compact map. For
example, in (D) we write

$$
\left(x \exp \int_{0}^{t} a(s) d s\right)^{\prime}=-g(t, x) \exp \int_{0}^{t} a(s) d s
$$

and integrate from $t-T$ to t obtaining

$$
\begin{align*}
x(t)= & x(t-T) \exp -\int_{t-T}^{t} a(s) d s \tag{ID}\\
& -\int_{t-T}^{t} g(u, x(u))\left[\exp -\int_{u}^{t} a(s) d s\right] d u .
\end{align*}
$$

If $\exp -\int_{t-T}^{t} a(s) d s=Q<1$ and if $(\mathcal{B},\|\cdot\|)$ is the Banach space of continuous T periodic functions $\varphi: R \rightarrow R$, then (ID) can be expressed as

$$
\begin{equation*}
\varphi(t)=(B \varphi)(t)+(A \varphi)(t) \tag{ID}
\end{equation*}
$$

where B is a contraction and A maps bounded subsets of \mathcal{B} into compact subsets of \mathcal{B}. In fact, B can take a portion of the integral which might not be well-behaved in some sense. The above integral maps bounded sets of T-periodic functions into equicontinuous sets, as may be seen in the last section in the proof of Lemma 2.

Contraction mappings shrink sets. Krasnoselskii showed that if $B \varphi+A \psi$ shrinks a certain set, then there will be a fixed point, a solution of (ID), which is in \mathcal{B} and, hence, is periodic. His result can be stated as follows (Krasnoselskii [8; p. 370] or Smart [15; p. 31]). Concerning the terminology of compact mapping used in this theorem, Krasnoselskii is using the convention of Smart [15;p. 25] to mean the following: Let A map a set M into a topological space X. If $A M$ is contained in a compact subset of X, we say that A is compact. In particular, M need not be bounded.

Theorem K. Let M be a closed convex nonempty subset of a Banach space $(\mathcal{B},\|\cdot\|)$. Suppose that A and B map M into \mathcal{B} such that
(i) $x, y \in M \Rightarrow A x+B y \in M$,
(ii) A is compact and continuous,
(iii) B is a contraction mapping.

Then $\exists y \in M$ with $y=A y+B y$.

As we will emphasize again soon, the assumptions of the theorem are verified directly from the functions appearing in the operator equation (ID) and the proof rests on Schauder's second fixed point theorem.

There is a theorem of Schaefer ([13] or Smart [15; [p. 29]) which competes with Schauder's and which usually yields much more, but it also requires much more. Schaefer's theorem requires that we have an a priori bound on utterly unknown solutions of an operator equation $\varphi=\lambda A \varphi$ for $0<\lambda<1$, in contrast with Schauder's which requires conditions on the clearly visible mapping A. Schaefer's theorem may be stated as follows. This is Smart's formulation; Schaefer proved the result for a locally convex space.

Theorem S. Let $(\mathcal{B},\|\cdot\|)$ be a normed space, H a continuous mapping of \mathcal{B} into \mathcal{B} which is compact on each bounded subset X of \mathcal{B}. Then either
(i) the equation $x=\lambda H x$ has a solution for $\lambda=1$, or
(ii) the set of all such solutions x, for $0<\lambda<1$, is unbounded.

The problem which we focus on here is this: Can we substitute Schaefer-type conditions on A for Krasnoselskii's Schauder-type conditions? We show that we can and that there are interesting applications. In particular, for (1) Krasnoselskii would require f to be a contraction and $D g$ to be small, while we allow $D g$ to be large, provided D and g satisfy certain conditions.

2. A fixed point theorem. We start with an equation

$$
x=B x+A x
$$

where B is a contraction. Now contractions shrink functions, but we are led to the homotopy equation

$$
x=\lambda B(x / \lambda)+\lambda A x
$$

and we still need $\lambda B(x / \lambda)$ to shrink functions. Our first result shows that it does; applications depend heavily on this.

Proposition. If $(\mathcal{B},\|\cdot\|)$ is a normed space, if $0<\lambda<1$, and if $B: \mathcal{B} \rightarrow \mathcal{B}$ is a contraction mapping with contraction constant α, then $\lambda B \frac{1}{\lambda}: \mathcal{B} \rightarrow \mathcal{B}$ is also a contraction mapping with contraction constant α, independent of λ; in particular

$$
\|\lambda B(x / \lambda)\| \leq \alpha\|x\|+\|B 0\|
$$

Proof.
To see that $\lambda B \frac{1}{\lambda}$ is a contraction, $x \in \mathcal{B} \Rightarrow x / \lambda \in \mathcal{B} \Rightarrow B(x / \lambda) \in \mathcal{B} \Rightarrow \lambda B(x / \lambda) \in$ $\mathcal{B} ;$ moreover, $x, y \in \mathcal{B} \Rightarrow$

$$
\begin{gathered}
\|\lambda B(x / \lambda)-\lambda B(y / \lambda)\|=\lambda\|B(x / \lambda)-B(y / \lambda)\| \\
\leq \lambda \alpha\|(x / \lambda)-(y / \lambda)\|=\alpha\|x-y\|
\end{gathered}
$$

To obtain the bound, for any $x \in \mathcal{B}$ we have

$$
\begin{aligned}
& \|\lambda B(x / \lambda)\|=\lambda\|B(x / \lambda)\|= \\
& \quad \lambda(\|B(x / \lambda)-B 0+B 0\|) \\
& \quad \leq \lambda(\|B(x / \lambda)-B 0\|+\|B 0\|) \\
& \quad \leq \lambda(\alpha\|(x / \lambda)-0\|+\|B 0\|) \\
& \quad=(\lambda \alpha / \lambda)\|x\|+\|B 0\|
\end{aligned}
$$

as required.
Theorem 1. Let $(\mathcal{B},\|\cdot\|)$ be a Banach space, $A, B: \mathcal{B} \rightarrow \mathcal{B}, B$ a contraction with contraction constant $\alpha<1$, and A continuous with A mapping bounded sets into compact sets. Either
(i) $x=\lambda B(x / \lambda)+\lambda A x$ has a solution in \mathcal{B} for $\lambda=1$, or
(ii) the set of all such solutions, $0<\lambda<1$, is unbounded.

Proof.
By the proposition, $\lambda B \frac{1}{\lambda}$ is a contraction mapping from \mathcal{B} into \mathcal{B}. Consequently, for each $y \in \mathcal{B}$, the mapping $x \rightarrow \lambda B(x / \lambda)+\lambda A y$ is also a contraction with unique solution $x=\lambda B(x / \lambda)+\lambda A y$ in \mathcal{B}. This yields

$$
\frac{x}{\lambda}=B \frac{x}{\lambda}+A y
$$

or

$$
(I-B) \frac{x}{\lambda}=A y
$$

so

$$
\frac{x}{\lambda}=(I-B)^{-1} A y
$$

and

$$
\begin{equation*}
x=\lambda(I-B)^{-1} A y \tag{*}
\end{equation*}
$$

Now $(I-B)^{-1}$ exists and is continuous (cf. Smart [15; p. 32]). Since A is continuous and maps bounded sets into compact sets, so does $(I-B)^{-1} A$ (The proof given by Kreyszig [9; p. 412, 656] is valid for general metric spaces.).

By Schaefer's theorem, either $\left(^{*}\right)$ has a solution with $x=y$ for $\lambda=1$ (hence, (i) has a solution for $\lambda=1$), or the set of all such solutions, $0<\lambda<1$, is unbounded. This completes the proof.
3. An example. Equation (1) is related to a large class of important problems going back at least to Volterra [16] who suggested that the growth of solutions of

$$
x^{\prime}=-\int_{0}^{t} k(t-s) g(x(s)) d s
$$

could be controlled if $x g(x)>0$ for $x \neq 0, k(t)>0, k^{\prime}(t)<0, k^{\prime \prime}(t)>0$. Appropriate details were provided by Levin [10] through construction of a very clever Liapunov function. Subsequently, both that equation and its integral equation counterpart were widely studied in the literature ([6], [7], [11], [12]) both by means of Liapunov functions and by transform theory.

We have studied integrodifferential equations in ([3], [4]) and variants of (1) in ([1], [2], [5]) when $f(t, x)$ is independent of x using Schaefer's theorem or an analog; but Schaefer's theorem does not apply here since $f(t, x)$ can not define a compact mapping. Thus, we are interested in Krasnoselskii's theorem. But we want the kernel to be free to grow large; this means that we will not be able to satisfy Krasnoselskii's conditions. That was the motivation for our theorem.

Let $(\mathcal{B},\|\cdot\|)$ be the Banach space of continuous T-periodic functions $\varphi: R \rightarrow R$ with the supremum norm. Consider (1) and suppose there is a $T>0$ and $\alpha \in(0,1)$ with:

$$
\begin{gather*}
f(t+T, x)=f(t, x), \quad D(t+T, s+T)=D(t, s), \quad g(t+T, x)=g(t, x), \tag{2}\\
t-h \leq s \leq t \text { implies that } D_{s}(t, t-h) \geq 0, \tag{3}\\
D_{s t}(t, s) \leq 0, \quad D(t, t-h)=0, \\
|f(t, x)-f(t, y)| \leq \alpha|x-y|, \quad x g(t, x) \geq 0, \tag{4}\\
\forall k>0 \exists P>0 \exists \beta>0 \text { with } \tag{5}\\
2 \lambda[-(1-\alpha) x g(t, x)+k|g(t, x)|] \leq \lambda[P-\beta|g(t, x)|] \tag{6}
\end{gather*}
$$

f, g, and $D_{\text {st }}$ are continuous.

Theorem 2. If (2)-(6) hold, then (1) has a T-periodic solution.

Proof.
Define a mapping $B: \mathcal{B} \rightarrow \mathcal{B}$ by $\varphi \in \mathcal{B}$ implies

$$
\begin{equation*}
(B \varphi)(t)=f(t, \varphi(t)) . \tag{7}
\end{equation*}
$$

Lemma 1. If B is defined by (7), then B is a contraction mapping from \mathcal{B} into \mathcal{B} with contraction constant α of (4).

Proof.
If $\varphi, \psi \in \mathcal{B}$, then

$$
\begin{aligned}
\|B \varphi-B \psi\| & =\sup _{t \in[0, T]}|(B \varphi)(t)-(B \psi)(t)| \\
& =\sup _{t \in[0, T]}|f(t, \varphi(t))-f(t, \psi(t))| \\
& \leq \sup _{t \in[0, T]} \alpha|\varphi(t)-\psi(t)|=\alpha\|\varphi-\psi\|,
\end{aligned}
$$

as required.
Define a mapping $A: \mathcal{B} \rightarrow \mathcal{B}$ by $\varphi \in \mathcal{B}$ implies

$$
\begin{equation*}
(A \varphi)(t)=-\int_{t-h}^{t} D(t, s) g(s, \varphi(s)) d s \tag{8}
\end{equation*}
$$

Lemma 2. If A is defined by (8) then $A: \mathcal{B} \rightarrow \mathcal{B}, A$ is continuous, A maps bounded sets into compact sets.

Proof.

This is a standard exercise. For completeness, here are the details. Let $k>0$ be given, $\varphi \in \mathcal{B}$ be an arbitrary element with $\|\varphi\| \leq k$. By the continuity of D, if $0 \leq t \leq T$ and $-h \leq s \leq T$, there is an $M>0$ with

$$
\begin{equation*}
|D(t, s)| \leq M \tag{I}
\end{equation*}
$$

By the uniform continuity of D on $[0, T] \times[-h, T]$, for each $\varepsilon>0$ there is a $\delta_{1}>0$ such that $u, v \in[0, T], s, t \in[-h, T],|u-v|+|s-t| \leq \delta_{1}$ implies

$$
\begin{equation*}
|D(u, s)-D(v, t)| \leq \varepsilon \tag{II}
\end{equation*}
$$

Next, since g is continuous on $[0, T] \times[-k, k]$ and periodic in t there is an $L>0$ with

$$
\begin{equation*}
|g(s, x)| \leq L \text { for } s \in R \text { and } x \in[-k, k] \tag{III}
\end{equation*}
$$

In fact, by the uniform continuity of g on that set, for any $\varepsilon>0$ there is a positive $\delta_{2}(\varepsilon)<T$ such that if $s, t \in[0, T]$ and $x, y \in[-k, k]$ with $|s-t|+|x-y| \leq \delta_{2}$, then $|g(s, x)-g(t, y)| \leq \varepsilon$ and, by the periodicity,

$$
\begin{equation*}
|g(s, x)-g(t, y)| \leq \varepsilon \text { for } s, t \in R \text { and } x, y \in[-k, k] \tag{IV}
\end{equation*}
$$

with $|s-t|+|x-y|<\delta_{2}$.
The assertions about A will now follow. If $\varphi \in \mathcal{B}$, a change of variable shows that $A \varphi$ is T-periodic. Clearly, if $\varphi \in \mathcal{B}$, then $A \varphi$ is continuous. Thus, $A \varphi \in \mathcal{B}$.

We now show that A maps bounded sets into compact sets. First,

$$
\begin{equation*}
\{A \varphi: \varphi \in \mathcal{B} \text { and }\|\varphi\| \leq k\} \text { is equicontinuous. } \tag{V}
\end{equation*}
$$

To see this, note that if $u<v$, then

$$
\begin{aligned}
& (A \varphi)(u)-(A \varphi)(v)=-\int_{u-h}^{v-h} D(u, s) g(s, \varphi(s)) d s \\
& \quad-\int_{v-h}^{u}[D(u, s)-D(v, s)] g(s, \varphi(s)) d s \\
& \quad+\int_{u}^{v} D(v, s) g(s, \varphi(s)) d s
\end{aligned}
$$

By (I)-(III), for all $u, v \in[0, T]$ with $|u-v|<\delta_{1}$, if $\varphi \in \mathcal{B}$ and $\|\varphi\| \leq k$, then

$$
\begin{gather*}
|(A \varphi)(u)-(A \varphi)(v)| \leq M L|u-v|+L|u-v+h| \varepsilon \\
+M L|u-v| \tag{VI}\\
\leq 2 M L \delta_{1}+L\left(\delta_{1}+h\right) \varepsilon
\end{gather*}
$$

Next, for $\varphi \in \mathcal{B}$ and $\|\varphi\| \leq k$, it follows from (I) and (III) that $|(A \varphi)(u)| \leq$ LMh so that

$$
\begin{equation*}
\|A \varphi\| \leq L M h \text { for } \varphi \in \mathcal{B} \text { and }\|\varphi\| \leq k . \tag{VII}
\end{equation*}
$$

By Ascoli's theorem A maps bounded sets into compact sets.
To see that A is continuous, fix φ and $\psi \in \mathcal{B}$ with $\|\varphi-\psi\|<\delta_{2},\|\varphi\| \leq k$, $\|\psi\| \leq k$. Then for $0 \leq u \leq T$ we have by (I) and (IV) that

$$
\begin{aligned}
|(A \varphi)(u)-(A \psi)(u)| & \leq \int_{u-h}^{u}|D(u, s)||g(s, \varphi(s))-g(s, \psi(s))| d s \\
& \leq M h \varepsilon
\end{aligned}
$$

This completes the proof of Lemma 2.
Next, notice that if $B: \mathcal{B} \rightarrow \mathcal{B}$ is defined by

$$
(B x)(t)=f(t, x(t)), \text { then }\left(\lambda B \frac{x}{\lambda}\right)(t)=\lambda f\left(t, \frac{x(t)}{\lambda}\right) .
$$

Lemma 3. There is a $K \geq 0$ such that if $0<\lambda<1$ and if $x \in \mathcal{B}$ solves

$$
x(t)=\lambda f\left(t, \frac{x}{\lambda}\right)-\lambda \int_{t-h}^{t} D(t, s) g(s, x(s)) d s
$$

then $\|x\| \leq K$.
Proof.
Let $x \in \mathcal{B}$ solve (1_{λ}) and define

$$
V(t)=\lambda^{2} \int_{t-h}^{t} D_{s}(t, s)\left(\int_{s}^{t} g(v, x(v)) d v\right)^{2} d s
$$

This is a type of Liapunov function obtained from $\left(1_{\lambda}\right)$ by squaring $x-\lambda f$, integrating by parts, and using the Schwarz inequality.

Now $D_{s t}(t, s) \leq 0$ so

$$
\begin{aligned}
& V^{\prime}(t) \leq-\lambda^{2} D_{s}(t, t-h)\left(\int_{t-h}^{t} g(v, x(v)) d v\right)^{2} \\
& +2 \lambda^{2} g(t, x) \int_{t-h}^{t} D_{s}(t, s) \int_{s}^{t} g(v, x(v)) d v d s
\end{aligned}
$$

The first term on the right-hand-side is not positive by (3); if we integrate the last term by parts and use (3) again we have

$$
\begin{aligned}
V^{\prime}(t) \leq & 2 \lambda g(t, x) \int_{t-h}^{t} \lambda D(t, s) g(s, x(s)) d s \\
& =2 \lambda g(t, x)\left[\lambda f\left(t, \frac{x}{\lambda}\right)-x(t)\right]
\end{aligned}
$$

from $\left(1_{\lambda}\right)$. But by the reasoning in the proposition,

$$
\left|\lambda f\left(t, \frac{x}{\lambda}\right)\right| \leq \alpha|x(t)|+|f(t, 0)| \leq \alpha|x(t)|+k
$$

for some $k>0$. Thus,

$$
\begin{aligned}
V^{\prime}(t) & \leq 2 \lambda\{|g(t, x)|[\alpha|x|+k]-x g(t, x)\} \\
& =2 \lambda[|\alpha x g(t, x)|+k|g(t, x)|-x g(t, x)] \\
& \leq 2 \lambda[-(1-\alpha) x g(t, x)+k|g(t, x)|]
\end{aligned}
$$

As $\alpha<1$, from (5) we have

$$
V^{\prime}(t) \leq \lambda[-\beta|g(t, x)|+P]
$$

Thus, $x \in \mathcal{B}$ implies $V \in \mathcal{B}$ so that

$$
0=V(T)-V(0) \leq \lambda\left[-\beta \int_{0}^{T}|g(t, x(t))| d t+P T\right]
$$

or

$$
\begin{equation*}
\int_{0}^{T}|g(t, x(t))| d t \leq P T / \beta \tag{9}
\end{equation*}
$$

since $\lambda>0$. As $g(t, x(t)) \in \mathcal{B}$, there is an $n>0$ with

$$
\begin{equation*}
\int_{t-h}^{t}|g(t, x(t))| d t \leq n \tag{10}
\end{equation*}
$$

Taking $M=\max _{-h \leq s \leq t \leq T}|D(t, s)|$, then from the proposition, (1_{λ}), and (10) we have

$$
\begin{aligned}
|x(t)| & \leq\left|\lambda f\left(t, \frac{x}{\lambda}\right)\right|+\lambda\left|\int_{t-h}^{t} D(t, s) g(s, x(s)) d s\right| \\
& \leq \alpha|x(t)|+k+M n
\end{aligned}
$$

or

$$
\|x\| \leq(M n+k) /(1-\alpha),
$$

as required. Application of Theorem 1 completes the proof.

References

[1] T.A. BURTON, Liapunov functionals and periodicity in integral equations, Tohoku Math. J. 46 (1994) 207-220
[2] T.A. BURTON, Boundedness and periodicity in integral and integro-differential equations, Differential Equations and Dynamical Systems 1 (1993) 161-172
[3] T.A. BURTON, P.W. ELOE, and M.N. ISLAM, Periodic solutions of linear integrodifferential equations, Math. Nachr. 147 (1990) 175-184
[4] T.A. BURTON, P.W. ELOE, and M.N. ISLAM, Nonlinear integrodifferential equations and a priori bounds on periodic solutions, Ann. Mat. pura appl. CLXI (1992) 271-283
[5] T.A. BURTON and TETSUO FURUMOCHI, Periodic solutions of Volterra equations and attractivity, Dynamic Systems and Applications 3 (1994) 583-598
[6] C. CORDUNEANU, Integral Equations and Applications, Cambridge University Press, Cambridge, 1991
[7] G. GRIPENBERG, S.O. LONDEN, and O. STAFFANS, Volterra Integral and Functional Equations, Cambridge University Press, Cambridge, 1990
[8] M.A. KRASNOSELSKII, in Amer. Math. Soc. Trans. (2) 10 (1958) 345-409
[9] ERWIN KREYSZIG, Introductory Functional Analysis with Applications, Wiley, New York, 1978
[10] J.J. LEVIN, The asymptotic behavior of a Volterra equation, Proc. Amer. Math. Soc. 14 (1963) 534-541
[11] J.J. LEVIN, On a nonlinear Volterra equation, J. Math. Anal. Appl. 39 (1972) 458-476
[12] J.J. LEVIN and J. NOHEL, On a nonlinear delay equation, J. Math. Anal. Appl. 8 (1964) 31-44
[13] H. SCHAEFER, Über die Methode der a priori-Schranken, Math. Ann. 129 (1955) 415-416
[14] J. SCHAUDER, Über den Zusammenhang zwishen der Eindeutigkeit and Lösbarkeit partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Math. Ann. 106 (1932) 661-721
[15] D.R. SMART, Fixed Point Theorems, Cambridge University Press, Cambridge, 1980
[16] V. VOLTERRA, Lecons sur la théorie mathématique de la lutte pour la vie, Gauthier-Villars, Paris, 1931
Department of Mathematics Southern Illinois University Carbondale, IL 62901

