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Abstract. In this paper we focus on three fixed point theorems and an integral equation.
Schaefer’s fixed point theorem will yield a T -periodic solution of

(1) x(t) = a(t) +

Z

t

t−h

D(t, s)g(s, x(s)) ds

if D and g satisfy certain sign conditions independent of their magnitude. A combination

of the contraction mapping theorem and Schauder’s theorem (known as Krasnoselskii’s
theorem) will yield a T -periodic solution of

(2) x(t) = f(t, x(t)) +

Z

t

t−h

D(t, s)g(s, x(s)) ds

if f defines a contraction and if D and g are small enough.

We prove a fixed point theorem which is a combination of the contraction mapping
theorem and Schaefer’s theorem which yields a T -periodic solution of (2) when f defines

a contraction mapping, while D and g satisfy the aforementioned sign conditions.

1. Introduction. We are interested in proving that equations of the type

(1) x(t) = f(t, x(t)) −

∫ t

t−h

D(t, s)g(s, x(s)) ds

possess a T -periodic solution when D is essentially a positive kernel and f is a contrac-

tion. In particular, D may be large.

Equations of this form are interesting in their own right. It is an equation with

memory: the present value of x depends on its past history.

But (1) can also arise from a much more familiar problem such as

(D) x′(t) = −a(t)x(t) − g(t, x(t))

where a(t + T ) = a(t) and g(t + T, x) = g(t, x) for some T > 0. Krasnoselskii (cf.

Schauder [14] and Smart [15; p. 31]) observed that in a variety of problems the inver-

sion of a perturbed differential operator yields a contraction and a compact map. For
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example, in (D) we write

(

x exp

∫ t

0

a(s)ds

)′

= −g(t, x) exp

∫ t

0

a(s)ds

and integrate from t− T to t obtaining

x(t) = x(t − T ) exp−

∫ t

t−T

a(s)ds(ID)

−

∫ t

t−T

g(u, x(u))

[

exp−

∫ t

u

a(s)ds

]

du.

If exp−
∫ t

t−T
a(s)ds = Q < 1 and if (B, ‖ · ‖) is the Banach space of continuous T -

periodic functions ϕ : R→ R, then (ID) can be expressed as

(ID) ϕ(t) = (Bϕ)(t) + (Aϕ)(t)

whereB is a contraction and Amaps bounded subsets of B into compact subsets of B. In

fact, B can take a portion of the integral which might not be well-behaved in some sense.

The above integral maps bounded sets of T-periodic functions into equicontinuous sets,

as may be seen in the last section in the proof of Lemma 2.

Contraction mappings shrink sets. Krasnoselskii showed that if Bϕ + Aψ shrinks

a certain set, then there will be a fixed point, a solution of (ID), which is in B and,

hence, is periodic. His result can be stated as follows (Krasnoselskii [8; p. 370] or Smart

[15; p. 31]). Concerning the terminology of compact mapping used in this theorem,

Krasnoselskii is using the convention of Smart [15;p. 25] to mean the following: Let A

map a set M into a topological space X. If AM is contained in a compact subset of X,

we say that A is compact. In particular, M need not be bounded.

Theorem K. Let M be a closed convex nonempty subset of a Banach space (B, ‖ ·‖).

Suppose that A and B map M into B such that

(i) x, y ∈M ⇒ Ax+By ∈M ,

(ii) A is compact and continuous,

(iii) B is a contraction mapping.

Then ∃ y ∈M with y = Ay +By.
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As we will emphasize again soon, the assumptions of the theorem are verified directly

from the functions appearing in the operator equation (ID) and the proof rests on

Schauder’s second fixed point theorem.

There is a theorem of Schaefer ([13] or Smart [15; [ p. 29]) which competes with

Schauder’s and which usually yields much more, but it also requires much more. Schae-

fer’s theorem requires that we have an a priori bound on utterly unknown solutions

of an operator equation ϕ = λAϕ for 0 < λ < 1, in contrast with Schauder’s which

requires conditions on the clearly visible mapping A. Schaefer’s theorem may be stated

as follows. This is Smart’s formulation; Schaefer proved the result for a locally convex

space.

Theorem S. Let (B, ‖ · ‖) be a normed space, H a continuous mapping of B into B

which is compact on each bounded subset X of B. Then either

(i) the equation x = λHx has a solution for λ = 1, or

(ii) the set of all such solutions x, for 0 < λ < 1, is unbounded.

The problem which we focus on here is this: Can we substitute Schaefer-type condi-

tions on A for Krasnoselskii’s Schauder-type conditions? We show that we can and that

there are interesting applications. In particular, for (1) Krasnoselskii would require f

to be a contraction and Dg to be small, while we allow Dg to be large, provided D and

g satisfy certain conditions.

2. A fixed point theorem. We start with an equation

x = Bx+ Ax

where B is a contraction. Now contractions shrink functions, but we are led to the

homotopy equation

x = λB(x/λ) + λAx

and we still need λB(x/λ) to shrink functions. Our first result shows that it does;

applications depend heavily on this.
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Proposition. If (B, ‖ · ‖) is a normed space, if 0 < λ < 1, and if B : B → B

is a contraction mapping with contraction constant α, then λB 1
λ

: B → B is also a

contraction mapping with contraction constant α, independent of λ; in particular

‖λB(x/λ)‖ ≤ α‖x‖ + ‖B0‖.

Proof.

To see that λB 1
λ

is a contraction, x ∈ B ⇒ x/λ ∈ B ⇒ B(x/λ) ∈ B ⇒ λB(x/λ) ∈

B; moreover, x, y ∈ B ⇒

‖λB(x/λ) − λB(y/λ)‖ = λ‖B(x/λ) −B(y/λ)‖

≤ λα‖(x/λ) − (y/λ)‖ = α‖x− y‖.

To obtain the bound, for any x ∈ B we have

‖λB(x/λ)‖ = λ‖B(x/λ)‖ =

λ(‖B(x/λ) −B0 +B0‖)

≤ λ(‖B(x/λ) −B0‖ + ‖B0‖)

≤ λ(α‖(x/λ) − 0‖ + ‖B0‖)

= (λα/λ)‖x‖ + ‖B0‖,

as required.

Theorem 1. Let (B, ‖ · ‖) be a Banach space, A, B : B → B, B a contraction

with contraction constant α < 1, and A continuous with A mapping bounded sets into

compact sets. Either

(i) x = λB(x/λ) + λAx has a solution in B for λ = 1, or

(ii) the set of all such solutions, 0 < λ < 1, is unbounded.

Proof.

By the proposition, λB 1
λ

is a contraction mapping from B into B. Consequently,

for each y ∈ B, the mapping x → λB(x/λ) + λAy is also a contraction with unique

solution x = λB(x/λ) + λAy in B. This yields

x

λ
= B

x

λ
+ Ay
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or

(I −B)
x

λ
= Ay

so

x

λ
= (I −B)−1Ay

and

(∗) x = λ(I −B)−1Ay.

Now (I−B)−1 exists and is continuous (cf. Smart [15; p. 32]). Since A is continuous

and maps bounded sets into compact sets, so does (I −B)−1A (The proof given by

Kreyszig [9; p. 412, 656] is valid for general metric spaces.).

By Schaefer’s theorem, either (*) has a solution with x = y for λ = 1 (hence, (i)

has a solution for λ = 1), or the set of all such solutions, 0 < λ < 1, is unbounded.

This completes the proof.

3. An example. Equation (1) is related to a large class of important problems going

back at least to Volterra [16] who suggested that the growth of solutions of

x′ = −

∫ t

0

k(t− s)g(x(s))ds

could be controlled if xg(x) > 0 for x 6= 0, k(t) > 0, k′(t) < 0, k
′′

(t) > 0. Appropriate

details were provided by Levin [10] through construction of a very clever Liapunov

function. Subsequently, both that equation and its integral equation counterpart were

widely studied in the literature ([6], [7], [11], [12]) both by means of Liapunov functions

and by transform theory.

We have studied integrodifferential equations in ([3], [4]) and variants of (1) in ([1],

[2], [5]) when f(t, x) is independent of x using Schaefer’s theorem or an analog; but

Schaefer’s theorem does not apply here since f(t, x) can not define a compact mapping.

Thus, we are interested in Krasnoselskii’s theorem. But we want the kernel to be free

to grow large; this means that we will not be able to satisfy Krasnoselskii’s conditions.

That was the motivation for our theorem.
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Let (B, ‖ · ‖) be the Banach space of continuous T -periodic functions ϕ : R→ R with

the supremum norm. Consider (1) and suppose there is a T > 0 and α ∈ (0, 1) with:

f(t + T, x) = f(t, x), D(t + T, s + T ) = D(t, s), g(t+ T, x) = g(t, x),(2)

t− h ≤ s ≤ t implies that Ds(t, t− h) ≥ 0,(3)

Dst(t, s) ≤ 0, D(t, t − h) = 0,

|f(t, x) − f(t, y)| ≤ α|x− y|, xg(t, x) ≥ 0,(4)

∀ k > 0∃P > 0∃β > 0 with(5)

2λ[−(1− α)xg(t, x) + k|g(t, x)| ] ≤ λ[P − β|g(t, x)| ],

f, g, and Dst are continuous.(6)

Theorem 2. If (2)–(6) hold, then (1) has a T -periodic solution.

Proof.

Define a mapping B : B → B by ϕ ∈ B implies

(7) (Bϕ)(t) = f(t, ϕ(t)).

Lemma 1. If B is defined by (7), then B is a contraction mapping from B into B

with contraction constant α of (4).

Proof.

If ϕ, ψ ∈ B, then

‖Bϕ−Bψ‖ = sup
t∈[0,T ]

|(Bϕ)(t) − (Bψ)(t)|

= sup
t∈[0,T ]

|f(t, ϕ(t)) − f(t, ψ(t))|

≤ sup
t∈[0,T ]

α|ϕ(t) − ψ(t)| = α‖ϕ− ψ‖,

as required.

Define a mapping A : B → B by ϕ ∈ B implies

(8) (Aϕ)(t) = −

∫ t

t−h

D(t, s)g(s, ϕ(s)) ds.
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Lemma 2. If A is defined by (8) then A : B → B, A is continuous, A maps bounded

sets into compact sets.

Proof.

This is a standard exercise. For completeness, here are the details. Let k > 0 be given,

ϕ ∈ B be an arbitrary element with ‖ϕ‖ ≤ k. By the continuity of D, if 0 ≤ t ≤ T and

−h ≤ s ≤ T , there is an M > 0 with

(I) |D(t, s)| ≤M.

By the uniform continuity of D on [0, T ] × [−h, T ], for each ε > 0 there is a

δ1 > 0 such that u, v ∈ [0, T ], s, t ∈ [−h, T ], |u− v| + |s− t| ≤ δ1 implies

(II) |D(u, s) −D(v, t)| ≤ ε.

Next, since g is continuous on [0, T ]× [−k, k] and periodic in t there is an L > 0

with

(III) |g(s, x)| ≤ L for s ∈ R and x ∈ [−k, k].

In fact, by the uniform continuity of g on that set, for any ε > 0 there is a positive

δ2(ε) < T such that if s, t ∈ [0, T ] and x, y ∈ [−k, k] with |s− t|+ |x− y| ≤ δ2, then

|g(s, x) − g(t, y)| ≤ ε and, by the periodicity,

(IV ) |g(s, x) − g(t, y)| ≤ ε for s, t ∈ R and x, y ∈ [−k, k]

with |s − t|+ |x− y| < δ2.

The assertions about A will now follow. If ϕ ∈ B, a change of variable shows

that Aϕ is T -periodic. Clearly, if ϕ ∈ B, then Aϕ is continuous. Thus, Aϕ ∈ B.

We now show that A maps bounded sets into compact sets. First,

(V ) {Aϕ : ϕ ∈ B and ‖ϕ‖ ≤ k} is equicontinuous.

To see this, note that if u < v, then

(Aϕ)(u) − (Aϕ)(v) = −

∫ v−h

u−h

D(u, s)g(s, ϕ(s))ds

−

∫ u

v−h

[D(u, s) −D(v, s)]g(s, ϕ(s))ds

+

∫ v

u

D(v, s)g(s, ϕ(s))ds.
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By (I)-(III), for all u, v ∈ [0, T ] with |u− v| < δ1, if ϕ ∈ B and ‖ϕ‖ ≤ k, then

(V I)

|(Aϕ)(u) − (Aϕ)(v)| ≤ML|u− v|+ L|u− v + h|ε

+ML|u− v|

≤ 2MLδ1 + L(δ1 + h)ε.

Next, for ϕ ∈ B and ‖ϕ‖ ≤ k, it follows from (I) and (III) that |(Aϕ)(u)| ≤

LMh so that

(V II) ‖Aϕ‖ ≤ LMh for ϕ ∈ B and ‖ϕ‖ ≤ k.

By Ascoli’s theorem A maps bounded sets into compact sets.

To see that A is continuous, fix ϕ and ψ ∈ B with ‖ϕ − ψ‖ < δ2, ‖ϕ‖ ≤ k,

‖ψ‖ ≤ k. Then for 0 ≤ u ≤ T we have by (I) and (IV) that

|(Aϕ)(u) − (Aψ)(u)| ≤

∫ u

u−h

|D(u, s)| |g(s, ϕ(s)) − g(s, ψ(s))| ds

≤Mhε.

This completes the proof of Lemma 2.

Next, notice that if B : B → B is defined by

(Bx)(t) = f(t, x(t)), then

(

λB
x

λ

)

(t) = λf

(

t,
x(t)

λ

)

.

Lemma 3. There is a K ≥ 0 such that if 0 < λ < 1 and if x ∈ B solves

(1λ) x(t) = λf

(

t,
x

λ

)

− λ

∫ t

t−h

D(t, s)g(s, x(s))ds

then ‖x‖ ≤ K.

Proof.

Let x ∈ B solve (1λ) and define

V (t) = λ2

∫ t

t−h

Ds(t, s)

(
∫ t

s

g(v, x(v))dv

)2

ds.

This is a type of Liapunov function obtained from (1λ) by squaring x − λf , inte-

grating by parts, and using the Schwarz inequality.
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Now Dst(t, s) ≤ 0 so

V ′(t) ≤ −λ2Ds(t, t − h)

(
∫ t

t−h

g(v, x(v))dv

)2

+2λ2g(t, x)

∫ t

t−h

Ds(t, s)

∫ t

s

g(v, x(v))dv ds.

The first term on the right-hand-side is not positive by (3); if we integrate the last

term by parts and use (3) again we have

V ′(t) ≤ 2λg(t, x)

∫ t

t−h

λD(t, s)g(s, x(s)) ds

= 2λg(t, x)

[

λf(t,
x

λ
) − x(t)

]

from (1λ). But by the reasoning in the proposition,

|λf(t,
x

λ
)| ≤ α|x(t)| + |f(t, 0)| ≤ α|x(t)| + k

for some k > 0. Thus,

V ′(t) ≤ 2λ{|g(t, x)|[α|x| + k]− xg(t, x)}

= 2λ[|αxg(t, x)| + k|g(t, x)| − xg(t, x)]

≤ 2λ[−(1 − α)xg(t, x) + k|g(t, x)| ].

As α < 1, from (5) we have

V ′(t) ≤ λ[−β|g(t, x)| + P ].

Thus, x ∈ B implies V ∈ B so that

0 = V (T ) − V (0) ≤ λ

[

−β

∫ T

0

|g(t, x(t))| dt + PT

]

or

(9)

∫ T

0

|g(t, x(t))| dt ≤ PT/β

since λ > 0. As g(t, x(t)) ∈ B, there is an n > 0 with

(10)

∫ t

t−h

|g(t, x(t))| dt ≤ n.
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Taking M = max
−h≤s≤t≤T

|D(t, s)|, then from the proposition, (1λ), and (10) we

have

|x(t)| ≤

∣

∣

∣

∣

λf

(

t,
x

λ

)
∣

∣

∣

∣

+ λ

∣

∣

∣

∣

∫ t

t−h

D(t, s)g(s, x(s)) ds

∣

∣

∣

∣

≤ α|x(t)| + k +Mn

or

‖x‖ ≤ (Mn + k)/(1 − α),

as required. Application of Theorem 1 completes the proof.
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