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Abstract: Cohen and Grossberg (1983) studied an almost gradient sys-

tem of ordinary differential equations with application to neural networks and

used a Liapunov function, together with an invariance principle, to show that

some equilibrium points attract solutions. Independently, Hopfield (1984) mod-

eled a neural network by means of a system of ordinary differential equations

which turn out to be a special case of the Cohen-Grossberg system, as pointed

out by Cohen (1990). In the Hopfield model it is clear that the functions

involved in the equations are averages and that current will flow through a

synapse only if a certain threshold is reached; however, none of the models

take into account an averaging technique.

Investigators have been interested in sustained oscillations in neural net-

works and have produced them in computer simulations when there is a point-

wise delay. The linearized systems with a delay have also exhibited sustained

oscillations.

But our conjecture is that oscillations are not caused by a delay. This

paper is intended to put substance to that conjecture by examining models

with both pointwise and distributed delays. None of the models have solutions

with sustained oscillations.
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1. INTRODUCTION

In this paper we study stability properties of several systems of differential equations

which are intended to model certain neural networks. The equations have also been of

considerable mathematical interest in the past.

The study begins with the system of Cohen and Grossberg (1983) and Hopfield (1984)

(1) u̇i = −(∂E(u)/∂ui)/g′

i(ui), i = 1, . . . , n,

(where E is a given smooth scalar function and gi is sigmoidal) which has been studied

for many years. A careful stability analysis of a generalization of it was given by Cohen

and Grossberg (1983) using a Liapunov function (E(u)) and an invariance principle. A

well-motivated derivation of it for neural networks was given by Hopfield (1982 and 1984)

who did not write it in such a compact form, but it is of this type as was pointed out by

Cohen (1990).

In Hopfield’s derivation two items are prominent:

First, each term in (1) is an approximation of a “short term average.”

Next, ui represents the charge on the ith neuron. Many other neurons connect to the

ith one through a synapse. If the total charge at the synapse at a given time is below a

threshold level, then the synapse does not fire. In fact, the charges collect at the synapse

waiting for the threshold to be reached, but dissipate quickly (perhaps in 3 or 4 milliseconds

(see Grundfest (1967)) if the sum of the charges does not reach the threshold level.

We first present a model which will follow (1) but which will take into account both

the fact that the charge at the synapse is collected and averaged over a time period, and

that it dissipates. The dissipation is modeled by selecting functions ai(t) satisfying

(2) ai(0) > 0, a′

i(t) ≤ 0, ai(T ) = 0, a′′

i (t) > 0

where T is the amount of time it takes for a charge at the synapse to dissipate if the total
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charge does not reach the threshold level. Our model then is

(3) u̇i = −[g′

i(ui)]
−1/2

∫ t

t−T

ai(t − s)[∂E(u(s))/∂ui][g
′

i(ui(s))]
−1/2ds.

(The coefficient of the integral is placed there instead of inside as a technical necessity.) We

will discuss (3) in more detail later, but point out here that the stability analysis turns out

to be similar to that for (1); moreover, every solution of (3) approaches the equilibrium

set of (1). Owing to the properties of the equilibrium points in neural networks, it is

very important that those points be preserved in any model that purports to generalize

(1). Discussions of equilibrium points are found in Cohen and Grossberg (1983) and in

Hopfield (1984). System (3) is a generalization of a scalar model of Levin and Nohel (1964)

and Hale (1977) (see p. 120) who also assumed (2) and used a sophisticated invariance

principle in the stability analysis.

Investigators have conjectured that observed sustained oscillations in neural networks

are caused by a delay. Marcus and Westervelt (1989a,b) discuss this extensively in terms

of a pointwise delay which they believe (based on computer simulations and linearization

arguments) point to sustained oscillations.

But we conjecture otherwise. In the actual systems, any delay is very short. System (1)

is almost a gradient system, and gradient systems with asymptotically stable equilibrium

points are the most strongly stable systems possible, as geometrical arguments will show.

This means that small delays should not disrupt the asymptotic stability. But the structure

of (1) is so strongly stable that when a delay is introduced in the nonlinear part of (1) and

when the linear part dominates the nonlinear part, then there are no sustained oscillations

for any size of the delay. This is the content of our second result.

2. THE EQUATION WITH MEMORY

Consider the system (1) in which E is a scalar function of u having the property that:

(4)
For each u0 ∈ Rn, there is an R > 0 such that

|u| ≥ R implies that E(u) > E(u0).






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When (4) holds, if u(t) is a solution of (1) and if Ė(u(t)) ≤ 0, then u(t) is bounded. We

follow Hopfield and ask that

(5) g′

i(r) > 0, gi(0) = 0,

while

(6) ∂E/∂ui and g′

i are continuous.

Under these conditions, for each initial point u0 ∈ R there is at least one solution u(t, u0)

of (1) on an interval [0, α) and, if the solution remains bounded, then α = ∞. This is the

classical Cauchy-Peano existence theorem (cf. Burton (1985), pp. 183–5). We first state

the well-known Cohen and Grossberg (1983) and Hopfield (1984) theorem.

Theorem 1: Let (4), (5), and (6) hold for (1). Then every solution of (1) is bounded

and approaches the set of equilibrium points of (1).

We turn now to (3) with (2) holding and offer a few words of motivation. Hopfield’s

system is

(7) Ciu̇i =
n

∑

j=1

TijVj − ui/Ri + Ii

where Vj = gj(uj), gj is sigmoidal, gj(0) = 0, g′

j(uj) > 0, gj(uj) → ±1 as uj → ±∞.

Now ui is taken to be the mean potential of the ith neuron, while Vj = gj(uj) is the

input-output relation where the jth neuron connects to the ith neuron at a synapse, and

Tij is the efficacy of the synapse. Also, Ci is the capacitance of the cell membrane and Ii

represents any other fixed input to the ith neuron.

When

(8) E = −(1/2)
∑

i

∑

j

TijViVj +
∑

i

(1/Ri)

∫ Vi

0

g−1

i (s)ds −
∑

i

IiVi

and when Tij = Tji, then it is readily seen, and noted by Cohen-Grossberg (1983) (p. 818)

(see also Cohen (1990)), that (1) holds.
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As mentioned in the introduction, if the charge at the synapse does not reach a certain

threshold level, then it does not fire and it quickly dissipates. Thus, we want to explicitly

average the right-hand side of (7), account for the dissipation of the charge at the synapse

and in the neuron, and maintain the location of the equilibrium points of (1).

Let T be the time required for a charge to dissipate at the synapse. The average of a

function q on an interval [t − T, t] is (1/T )
∫ t

t−T
q(s)ds. But to let the charge dissipate in

T time units according to a decay curve a(t), we form
∫ t

t−T
a(t − u)q(u)du and note that

when u = t the integrand is a(0)q(t), while at u = t − T the integrand is a(T )f(t − T ).

A word about existence of solutions of (3) is in order and the reader is referred to

Burton (1985) (see pp. 186–189) or to Hale (1977) (see p. 41) for details. To determine a

solution of (3) we require a continuous initial function φ : [−T, 0] → Rn with u(t) = φ(t)

on [−T, 0]. By the continuity of the equation and the fact that bounded sets are mapped

into bounded sets, one can prove that there is a solution u(t) = u(t, φ) on some interval

[0, α). If the solution remains bounded then α = ∞. We will define a Liapunov functional

V along a solution of (3) with V̇ ≤ 0 which, together with our new assumption

(4∗) E(u) → ∞ as |u| → ∞,

will show that all solutions of (3) are bounded and, hence, continuable on [0,∞). Here, it

will be convenient to explicitly use the fact that the right-hand-side of (3) is bounded for

u bounded.

Theorem 2: Let (2), (4∗), (5), and (6) hold for (3) with T > 0. Then every solution

of (3) is bounded and approaches the equilibrium set of (1).

Proof: Let u(t) be any solution of (3) and for u = u(t) define the functional

(9) V = 2E(u) −
n

∑

i=1

∫ t

t−T

a′

i(t − s)

(
∫ t

s

{(∂E(u(v))/∂ui)[g
′

i(ui(v))]−1/2}dv

)2

ds.

It will greatly simplify notation to write

fi(v) = (∂E(u(v))/∂ui)[g
′

i(ui(v))]−1/2
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so that

u̇i = −[g′

i(ui)]
−1/2

∫ t

t−T

ai(t − s)fi(s)ds

and

V = 2E(u) −
n

∑

i=1

∫ t

t−T

a′

i(t − s)

(
∫ t

s

fi(v)dv

)2

ds.

Then

V̇ = −2

n
∑

i=1

{

(∂E/∂ui)[g
′

i(ui)]
−1/2

∫ t

t−T

ai(t − s)fi(s)ds

}

+

n
∑

i=1

a′

i(T )

(
∫ t

t−T

fi(v)dv

)2

−

n
∑

i=1

∫ t

t−T

a′′

i (t − s)

(
∫ t

s

fi(v)dv

)2

ds

− 2

n
∑

i=1

∫ t

t−T

a′

i(t − s)

∫ t

s

fi(v)dv dsfi(t) ≤ 0.

If we integrate the last term by parts we obtain

−2
n

∑

i=1

fi(t)

{

−ai(t − s)

∫ t

s

fi(v)dv

∣

∣

∣

∣

s=t

s=t−T

−

∫ t

t−T

ai(t − s)fi(s)ds

}

= 2
n

∑

i=1

fi(t)

∫ t

t−T

ai(t − s)fi(s)ds

since ai(T ) = 0 by (2); and this cancels with the first term of V̇ yielding

(10) V̇ ≤ −
n

∑

i=1

∫ t

t−T

a′′

i (t − s)

(
∫ t

s

fi(v)dv

)2

ds.

since a′

i(t) ≤ 0 by (2). Thus, E(u(t)) is bounded using (4∗), and so u(t) is bounded.

Let

M = {u|∂E(u)/∂ui = 0 for i = 1, . . . , n}.

Now for differential equations without a delay the invariance principle of LaSalle (cf. Hirsch

(1989), for example) would show that this bounded solution approaches M. In this case we

have a functional differential equation and the argument of Hale (1977, p.119) will allow

us to conclude that the solution approaches M.

4. CONCLUSION
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The Cohen-Grossberg-Hopfield model (1) shows that when the synapse has zero

threshold, then solutions of (1) converge to the equilibrium points of (1). Our Theorem 2

shows that when the synapse has a threshold, then solutions converge to neighborhoods of

those same equilibrium points.

The Cohen-Grossberg-Hopfield model also shows that when the short term average

charge in a neuron and at a synapse is approximated by the charge at one point in time,

then solutions of (1) converge to the equilibrium points of (1). Theorem 3 shows that when

the charge is averaged and when dissipation of the charge is also modeled, then solutions

converge to the equilibrium points of (1).

Physical systems have been known to exhibit small oscillations in a neighborhood of

the equilibrium points of (1) and there has been much interest in models with a delay that

will produce such effects (cf. Marcus and Westerverlt (1989a) and (1989b) for examples,

discussion, and extensive bibliographies). These authors introduce pointwise delays, in-

stead of distributed delays with decaying properties, and the resulting solutions of those

equations exhibit oscillatory behavior. By contrast our delay model is patterned after the

short-term average discussed by Hopfield and no sustained oscillations occur, while they

can occur in our threshold model. Thus, we offer these two models as possible evidence

that the oscillations observed in physical neural systems may be caused by the threshold

instead of the delay. In this sense, it may be more important to have been able to solve

(2) and (5) separately, than to solve the combined system (6).
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