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Abstract. In this paper we consider several equations of the general type

x′(t) = −a(t)x3(t) + b(t)x3(t − r(t))

and use Schauder’s fixed point theorem to obtain stability, uniform stability, asymptotic

stability, and uniform asymptotic stability. Distributed delays are among the types con-

sidered.

1. Introduction

In a series of papers [2-6] we have studied stability problems by means of a variety of

fixed point theorems. Much of this study has been motivated by difficulties encountered

in Liapunov’s direct method. In many cases those difficulties have been circumvented by

use of fixed point methods.

The first problem encountered in Liapunov theory is the construction of a Liapunov

function. The parallel problem in fixed point theory is the construction of a suitable set

and a fixed point mapping of that set into itself. It is also necessary to decide on the

proper topology. If the differential equation is of the form

x′(t) = −a(t)x(t) + f(t, xt)

where x dominates f in some sense near zero, then the variation of parameters formula

yields

x(t) = x(0)e
−

∫

t

0
a(s)ds

+

∫ t

0

e
−

∫

t

s
a(u)du

f(s, xs)ds
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and a suitable fixed point mapping can be as simple as

(Pφ)(t) = x0e
−

∫

t

0
a(s)ds

+

∫ t

0

e
−

∫

t

s
a(u)du

f(s, φs)ds,

a suitable fixed point of which solves the equation. We discussed this method in a large

number of examples in [4].

When the leading term is sublinear or superlinear, then methods must be developed

for arriving at suitable mappings. Here, we deal with several forms related to

x′(t) = −a(t)x3(t) + b(t)x3(t − r(t))

and develop a fixed point mapping which may be useful in a variety of superlinear problems.

Furthermore, the literature suggests that there may be much to learn about such problems.

As a starting point, Hale [7; p. 117] shows that for a(t), b(t) bounded continuous

functions with a(t) ≥ δ > 0, 0 < q < 1, |b(t)| < qδ, and r a positive constant, then along

solutions of

x′(t) = −a(t)x3(t) + b(t)x3(t− r)

the Liapunov functional

V (t, xt) =
1

4
x4(t) +

δ

2

∫ t

t−r

x6(s)ds

satisfies

V ′(t, xt) = −a(t)x6(t) + b(t)x3(t)x3(t − r) +
δ

2
x6(t − r)

≤ −η(x6(t) + x6(t− r))

for some η > 0. This implies uniform asymptotic stability by a standard theorem [7; p.

105]. It is the boundedness of a(t), b(t) which is crucial in his result.

By contrast we showed in [2] using fixed point theory that the condition b(t)/a(t) → 0

as t→ ∞ can play a crucial role in compactness arguments yielding asymptotic stability.

In this paper we more carefully construct the mapping set so that we achieve asymp-

totic stability with fewer conditions on a(t), b(t) than in either of the above investigations.

The work depends on the following lemma.
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Let r0 be a fixed nonnegative constant and let h : [−r0,∞) → [1,∞) be any strictly

increasing and continuous function with h(−r0) = 1, h(t) → ∞ as t → ∞. For any t0 ∈
R+ := [0,∞), let Ct0 be the space of continuous functions φ : [t0−r0,∞) → R := (−∞,∞)

with

‖φ‖h := sup

{ |φ(t)|
h(t− t0)

: t ≥ t0 − r0

}

<∞.

Then, clearly ‖ · ‖h is a norm on Ct0 , and (Ct0 , ‖ · ‖h) is a Banach space.

First we state a lemma without proof (See Burton [1; p. 169]).

Lemma. If the set {φk(t)} of R-valued functions on [t0−r0,∞) is uniformly bounded

and equi-continuous, then there is a bounded and continuous function φ and a subsequence

{φkj
(t)} such that ‖φkj

− φ‖h → 0 as j → ∞.

2. Asymptotic behavior of solutions

Consider the scalar nonlinear equation

x′(t) = −a(t)x3(t) + b(t)x3(t − r(t)), t ∈ R+ (2.1)

where a, r : R+ → R+ and b : R+ → R are continuous. Let α be any fixed number with

0 < α ≤ 1/
√

3. We assume that there are constants r0 ≥ 0 and γ > 0 so that

t− r(t) ≥ −r0, (2.2)

σ = σ(t0) := sup
t≥t0

∫ t

t0

(γ3|b(s)| − a(s))ds <∞ for any t0 ∈ R+, (2.3)

and

sup
t≥t0≥0

( 1
2δ2 +

∫ t

t0
(a(s) − γ3|b(s)|)ds

1
2δ2 +

∫ τ(t)

t0
(a(s) − γ3|b(s)|)ds

)1/2

≤ γ for any δ ∈ (0, η], (2.4)

where τ = τ (t) := max(t0, t− r(t)), and η is a number defined by

η = η(t0) :=

(

1

α2
+ 2σ(t0)

)−1/2

. (2.5)

Corresponding to Equation (2.1), consider the scalar nonlinear equation

q′ = (γ3|b(t)| − a(t))q3 , t ∈ R+. (2.6)
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Let q : [t0 − r0,∞) → R be a continuous function such that q(t) = η on [t0 − r0, t0], and

q(t) is the unique solution of the initial value problem

q′ = (γ3|b(t)| − a(t))q3 , q(t0) = η, t ≥ t0.

Then q(t) can be expressed as

q(t) = ηe
−

∫

t

t0

a(s)ds
+

∫ t

t0

e
−

∫

t

s
a(u)du

a(s)(q(s) − q3(s))ds + γ3

∫ t

t0

e
−

∫

t

s
a(u)du|b(s)|q3(s)ds

(2.7)

=

(

1

η2
+ 2

∫ t

t0

(a(s) − γ3|b(s)|)ds
)−1/2

, t ≥ t0,

which together with (2.3) and (2.5), implies

0 < q(t) ≤ α, t ≥ t0. (2.8)

Concerning the stabilities of the zero solution of Equation (2.1), we have the following

theorem.

Theorem 2.1. Suppose that (2.2)-(2.4) hold. Then we have:

(i) The zero solution of Equation (2.1) is stable.

(ii) If we have σ∗ := sup{σ(t) : t ∈ R+} <∞, then the zero solution of Equation (2.1)

is uniformly stable.

(iii) If we have

∫ t

t0

(a(s) − γ3|b(s)|)ds → ∞ as t→ ∞, (2.9)

then the zero solution of Equation (2.1) is asymptotically stable.

(iv) In addition to σ∗ <∞, if we have

∫ t

t0

(a(s) − γ3|b(s)|)ds → ∞ uniformly for t0 ∈ R+as t→ ∞, (2.10)

then the zero solution of Equation (2.1) is uniformly asymptotically stable.

Proof. (i) It is easy to see that the zero solution of Equation (2.6) is stable. Thus,

for any ε ∈ (0, α] and t0 ∈ R+, there is a δ = δ(ε, t0) such that 0 < δ ≤ η, and that for
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any t0 ∈ R+ and q0 with |q0| ≤ δ, we have |q(t, t0, q0)| < ε for all t ≥ t0. For the t0, let

(Ct0 , ‖ · ‖h) be the Banach space of continuous functions φ : [t0 − r0,∞) → R with the

norm ‖ · ‖h. For a continuous function ψ : [−r0, 0] → R with sup−r0≤θ≤0 |ψ(θ)| ≤ δ, let

S be the set of continuous functions φ : [t0 − r0,∞) → R such that φ(t) = ψ(t − t0) for

t0− r0 ≤ t ≤ t0, |φ(t)| ≤ q(t) for t ≥ t0, and |φ(t1)−φ(t2)| ≤ L|t1− t2| for t1, t2 ∈ R+ with

t0 ≤ τ1 ≤ t1, t2 ≤ τ2, where q(t) is defined by (2.7) with η = δ, and where L : R+ ×R+ →
R+ is a function defined by

L(τ1, τ2) := max{2a(t)α + (a(t) + γ3|b(t)|)α3 : τ1 ≤ t ≤ τ2}.

Since we have (2.8), we obtain

|q′(t)| ≤ (a(t) + γ3|b(t)|)α3, t ≥ t0.

Thus the function ξ(t) defined by

ξ(t) :=

{

ψ(t− t0), t0 − r0 ≤ t ≤ t0
ψ(0)q(t)

δ , t ≥ t0

is an element of S, and from Lemma, S is a compact convex nonempty subset of Ct0.

Define a mapping P for φ ∈ S by

(Pφ)(t) :=



















ψ(t − t0), t0 − r0 ≤ t ≤ t0

ψ(0)e
−

∫

t

t0

a(s)ds
+

∫ t

t0
e
−

∫

t

s
a(u)du

a(s)(φ(s) − φ3(s))ds

+
∫ t

t0
e
−

∫

t

s
a(u)du

b(s)φ3(s − r(s))ds, t ≥ t0.

Then we have (Pφ)(t) = ψ(t− t0) for t0 − r0 ≤ t ≤ t0, and from (2.4) and (2.7) with η = δ

we obtain

|(Pφ)(t)| ≤ δe
−

∫

t

t0

a(s)ds
+

∫ t

t0

e
−

∫

t

s
a(u)du

a(s)(q(s) − q3(s))ds

+

∫ t

t0

e
−

∫

t

s
a(u)du|b(s)|q3(s − r(s))ds

≤ δe
−

∫

t

t0

a(s)ds
+

∫ t

t0

e
−

∫

t

s
a(u)du

a(s)(q(s) − q3(s))ds

+ γ3

∫ t

t0

e
−

∫

t

s
a(u)du|b(s)|q3(s)ds

= q(t), t ≥ t0.
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Moreover, it is easy to see that

(Pφ)′(t) = −a(t)(Pφ)(t) + a(t)(φ(t) − φ3(t)) + b(t)φ3(t− r(t)), t > t0,

which implies

|(Pφ)′(t)| ≤ a(t)q(t) + a(t)(q(t) − q3(t)) + |b(t)|q3(t − r(t))

≤ 2a(t)α + (a(t) + γ3|b(t)|)α3, t > t0,

and hence, P maps S into S. Clearly P is continuous. Thus, by Schauder’s first theorem,

P has a fixed point φ in S and that is the solution x(t, t0 , φ) of Equation (2.1) which

satisfies

|x(t, t0, ψ)| ≤ q(t) = q(t, t0, δ) < ε, t ≥ t0,

and hence, the zero solution of Equation (2.1) is stable.

(ii) If σ∗ <∞, then the zero solution of Equation (2.6) is uniformly stable. Since the

uniform stability of the zero solution of Equation (2.1) can be similarly proved as in the

proof of (i), we omit the details.

(iii) Assumption (2.9) implies that q(t) → 0 as t→ ∞, and hence, the zero solution of

Equation (2.6) is asymptotically stable. Since the asymptotic stability of the zero solution

of Equation (2.1) can be similarly proved as in the proof of (i), we omit the details.

(iv) Assumptions σ∗ <∞ and (2.10) imply that the zero solution of Equation (2.6) is

uniformly asymptotically stable. Since the uniform asymptotic stability of the zero solution

of Equation (2.1) can be similarly proved as in the proof of (i), we omit the details.

Now we show two examples.

Example 2.1. Define functions a, b, r : R+ → R+ by a(t) := 2 + |t sin t|, b(t) :=

max(1, 1 + 2t sin t)/27 and r(t) := 1/(t+ 1), and let α = 1/
√

3. Then it is easily seen that

(2.2) with r0 = 1, (2.3) and (2.4) with γ = 3 hold, and σ∗ = ∞. Thus, concerning the

stabilities of the zero solution of the equation

x′(t) = −a(t)x3(t) + b(t)x3(t − r(t)), t ∈ R+,
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Theorem 2.1 does not assure unifrom stability, but assures stability.

Example 2.2. Define a function c : R+ → R+ by

c(t) :=

{

n− n2|t− 2nπ|, |t− 2nπ| ≤ 1
n

0, otherwise,

where n denotes positive integers, and define a function b : R+ → R+ by b(t) :=

max(c(t), 1 + cos t). Let a(t) = 9b(t), r(t) = 1 and α = 1/
√

3. Then it is easily seen

that (2.2) with r0 = 1, (2.3) and (2.4) with γ = 2 hold, and η = 1/
√

3. Moreover, σ∗ <∞
and (2.10) hold. Thus, by Theorem 2.1, the zero solution of the equation

x′(t) = −9b(t)x3(t) + b(t)x3(t − 1), t ∈ R+ (2.11)

is uniformly asymptotically stable.

In Burton [2], under the assumption

a(t) ≥ |b(t + r)| + k for some k > 0, (2.12)

the uniform asymptotic stability of the zero solution of Equation (2.1) with r(t) ≡ r is

discussed by using the Liapunov functional

V (t, φ) = |φ(0)| +
∫ t

t−r

|b(s + r)|φ3(s− t)ds.

But we cannot apply this method since (2.12) does not hold for Equation (2.11). Moreover,

in Burton [2], under the assumption

−a(t) +
1

4
b2(t) + 1 ≤ −k for some k > 0, t ∈ R+, (2.13)

the uniform asymptotic stability of the zero solution of Equation (2.1) with r(t) ≡ r is

discussed by using the Liapunov functional

V (t, φ) =
1

4
φ4(0) +

∫ t

t−r

φ6(s − t)ds.

But we cannot apply this method since (2.13) does not hold for Equation (2.11).
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Next we show another example.

Example 2.3. Let a(t) = 9/(t + 2), b(t) = 1/(t+ 2), r(t) = 1 and α = 1/
√

3. Then

it is easily seen that (2.2) with r0 = 1, (2.3) and (2.4) with γ = 2 hold, and η = 1/
√

3.

Moreover, (2.10) does not hold, but σ∗ <∞ and (2.9) hold. Thus, concerning the stabilities

of the zero solution of the equation

x′(t) = − 9

t+ 2
x3(t) +

1

t+ 2
x3(t − 1), t ∈ R+,

Theorem 2.1 does not assure uniform asymptotic stability, but assures uniform stability

and asymptotic stability.

Next consider the scalar nonlinear integrodifferential equation

x′(t) = −a(t)x3(t) +

∫ t

t−r(t))

b(t, s)x3(s)ds, t ∈ R+, (2.14)

where a, r : R+ → R+ and b : R+ × R → R are continuous. Let α be any fixed number

with 0 < α ≤ 1/
√

3. We assume that (2.2) holds, and that there is a constant γ > 0 so

that

σ = σ(t0) := sup
t≥t0

∫ t

t0

(γ3

∫ s

s−r(s)

|b(s, u)|du− a(s))ds <∞ for any t0 ∈ R+ (2.15)

and

sup
t≥t0≥0

{

sup
τ≤v≤t

( 1
2δ2

+
∫ t

t0
(a(s) − γ3

∫ s

s−r(s)
|b(s, u)|du)ds

1
2δ2 +

∫ v

t0
(a(s) − γ3

∫ s

s−r(s) |b(s, u)|du)ds

)1/2}

≤ γ for any δ ∈ (0, η],

(2.16)

where τ = τ (t) := max(t0, t− r(t)), and η is defined by (2.5).

Corresponding to Equation (2.14), consider the scalar nonlinear equation

q′ = (γ3

∫ t

t−r(t)

|b(t, s)|ds − a(t))q3 , t ∈ R+.

Let q : [t0 − r0,∞) → R+ be a continuous function such that q(t) = η on [t0 − r0, t0], and

that q(t) is the unique solution of the initial value problem

q′ = (γ3

∫ t

t−r(t)

|b(t, s)|ds − a(t))q3 , q(t0) = η, t ≥ t0.
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Then q(t) can be expressed as

q(t) =

(

1

η2
+ 2

∫ t

t0

(a(s) − γ3

∫ s

s−r(s)

|b(s, u)|du)ds

)−1/2

, t ≥ t0,

which together with (2.5) and (2.15), implies (2.8).

Concerning the stabilities of the zero solution of Equation (2.14), we have the following

theorem.

Theorem 2.2. Suppose that (2.2), (2.15) and (2.16) hold. Then we have:

(i) The zero solution of Equation (2.14) is stable.

(ii) If we have σ∗ := sup{σ(t) : t ∈ R+} < ∞, then the zero solution of Equation

(2.14) is uniformly stable.

(iii) If we have

∫ t

t0

(a(s) − γ3

∫ s

s−r(s)

|b(s, u)|du)ds→ ∞ as t→ ∞, (2.17)

then the zero solution of Equation (2.14) is asymptotically stable.

(iv) In addition to σ∗ <∞, if we have

∫ t

t0

(a(s) − γ3

∫ s

s−r(s)

|b(s, u)|du)ds→ ∞ uniformly for t0 ∈ R+ as t→ ∞, (2.18)

then the zero solution of Equation (2.14) is uniformly asymptotically stable.

This theorem can be easily proved by taking the set S in the proof of Theorem 2.1

for the above function q(t) and a function L = L(τ1, τ2) with

2a(t)α + (a(t) + γ3

∫ t

t−r(t)

|b(t, s)|ds)α3 ≤ L for τ1 ≤ t ≤ τ2,

and by defining a mapping P for φ ∈ S by

(Pφ)(t) :=



















ψ(t − t0), t0 − r0 ≤ t ≤ t0

ψ(0)e
−

∫

t

t0

a(u)du
+

∫ t

t0
e
−

∫

t

s
a(u)du

a(s)(φ(s) − φ3(s))ds

+
∫ t

t0
e
−

∫

t

s
a(u)du ∫ s

s−r(s)
b(s, u)φ3(u)duds, t > t0.

So we omit the details of the proof.
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Now we show two examples.

Example 2.4. Let a(t) = 9(1 + sin t), b(t, s) = 1 + sin t, r(t) = 1 and α = 1/
√

3.

Then it is easliy seen that (2.2) with r0 = 1, (2.15) and (2.16) with γ = 2 hold, and

η = 1/
√

3. Moreover, σ∗ < ∞ and (2.18) hold. Thus, by Theorem 2.2, the zero solution

of the equation

x′(t) = −9(1 + sin t)x3(t) + (1 + sin t)

∫ t

t−1

x3(s)ds, t ∈ R+

is uniformly asymptotically stable.

Example 2.5. Let a(t) = 9/(t + 2), b(t, s) = 1/(t + 2), r(t) = 1 and α = 1/
√

3.

Then it is easily seen that (2.2) with r0 = 1, (2.15) and (2.16) with γ = 2 hold, and

η = 1/
√

3. Moreover, (2.18) does not hold, but σ∗ <∞ and (2.17) hold. Thus, concerning

the stabilities of the zero solution of the equation

x′(t) = − 9

t+ 2
x3(t) +

1

t+ 2

∫ t

t−1

x3(s)ds, t ∈ R+,

Theorem 2.2 does not assure uniform asymptotic stability, but assures uniform stability

and asymptotic stability.

Next consider the scalar nonlinear equation

x′(t) = −a(t)x3(t) + b(t)x(t − r(t))x2(t), t ∈ R+, (2.19)

where a, r : R+ → R+ and b : R+ → R are continuous. Let α be any fixed number with

0 < α ≤ 1/
√

3. We assume that (2.2) holds, and that there is a constant γ > 0 so that

σ = σ(t0) := sup
t≥t0

∫ t

t0

(γ|b(s)| − a(s))ds <∞ for any t0 ∈ R+ (2.20)

and

sup
t≥t0≥0

( 1
2δ2 +

∫ t

t0
(a(s) − γ|b(s)|)ds

1
2δ2

+
∫ τ

t0
(a(s) − γ|(b(s)|)ds

)1/2

≤ γ for any δ ∈ (0, η], (2.21)

where τ = τ (t) := max(t0, t− r(t)), and η is define by (2.5).
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Corresponding to Equation (2.19), consider the scalar nonlinear equation

q′ = (γ|b(t)| − a(t))q3 , t ∈ R+.

Let q : [t0 − r0,∞) → R be a continuous function such that q(t) = η on [t0 − r0, t0], and

that q(t) is the unique solution of the initial value problem

q′ = (γ|b(t)| − a(t))q3 , q(t0) = η, t ≥ t0.

Then q(t) can be expressed as

q(t) =

(

1

η2
+ 2

∫ t

t0

(a(s) − γ|b(s)|)ds
)−1/2

, t ≥ t0,

which together with (2.5) and (2.20), implies (2.8).

Concerning the stabilities of the zero solution of Equation (2.19), we have the following

theorem.

Theorem 2.3. Suppose that (2.2), (2.20) and (2.21) hold. Then we have:

(i) The zero solution of Equation (2.19) is stable.

(ii) If we have σ∗ := sup{σ(t) : t ∈ R+} < ∞, then the zero solution of Equation

(2.19) is uniformly stable.

(iii) If we have
∫ t

t0

(a(s) − γ|b(s)|)ds → ∞ as t→ ∞, (2.22)

then the zero solution of Equation (2.19) is asymptotically stable.

(iv) In addition to σ∗ <∞, if we have

∫ t

t0

(a(s) − γ|b(s)|)ds → ∞ uniformly for t0 ∈ R+ as t→ ∞, (2.23)

then the zero solution of Equation (2.19) is uniformly asymptotically stable.

This theorem can be easily proved by taking the set S in the proof of Theorem 2.1

for the above function q(t) and a function L = L(τ1, τ2) with

2a(t)α + (a(t) + γ|b(t)|)α3 ≤ L, τ1 ≤ t ≤ τ2,
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and by defining a mapping P for φ ∈ S by

(Pφ)(t) :=



















ψ(t − t0), t0 − r0 ≤ t ≤ t0,

ψ(0)e
−

∫

t

t0

a(s)ds
+

∫ t

t0
e
−

∫

t

s
a(u)du

a(s)(φ(s) − φ3(s))ds

+
∫ t

t0
e
−

∫

t

s
a(u)du

b(s)φ(s − r(s))φ2(s)ds, t > t0.

So we omit the details of the proof.

Remark 2.1. Theorem 2.3 is deeply related to Theorem 11.1 in Burton-Furumochi

[4; p. 111].

Now we show two examples.

Example 2.6. Let a(t) = 3(1 + sin t), b(t) = 1 + sin t, r(t) = 1 and α = 1/
√

3.

Then it is easily seen that (2.2) with r0 = 1, (2.20) and (2.21) with γ = 2 hold, and

η = 1/
√

3. Moreover, σ∗ < ∞ and (2.23) hold. Thus, by Theorem 2.3, the zero solution

of the equation

x′(t) = −3(1 + sin t)x3(t) + (1 + sin t)x(t − 1)x2(t), t ∈ R+

is uniformly asymptotically stable.

Example 2.7. Let a(t) = 3/(t + 2), b(t) = 1/(t + 2), r(t) = 1 and α = 1/
√

3.

Then it is easily seen that (2.2) with r0 = 1, (2.20) and (2.21) with γ = 2 hold, and

η = 1/
√

3. Moreover, (2.23) does not hold, but σ∗ <∞ and (2.22) hold. Thus, concerning

the stabilities of the zero solution of the equation

x′(t) = − 3

t+ 2
x3(t) +

1

t+ 2
x(t − 1)x2(t), t ∈ R+,

Theorem 2.3 does not assure uniform asymptotic stability, but assures uniform stability

and asymptotic stability.

Finally, for completeness of our discussion of Equation (2.1), consider the scalar non-

linear equation

x′(t) = −a(t)x3(t) + b(t)x2(t− r(t))x(t), t ∈ R+, (2.24)
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where a, r : R+ → R+ and b : R+ → R are continuous. Let α be any fixed number with

0 < α ≤ 1/
√

3. We assume that (2.2) holds, and that there is a constant γ > 0 so that

σ = σ(t0) := sup
t≥t0

∫ t

t0

(γ2|b(s)| − a(s))ds <∞ for any t0 ∈ R+ (2.25)

and

sup
t≥t0≥0

( 1
2δ2 +

∫ t

t0
(a(s) − γ2|b(s)|)ds

1
2δ2

+
∫ τ

t0
(a(s) − γ2|b(s)|)ds

)1/2

≤ γ for any δ ∈ (0, η], (2.26)

where τ = τ (t) := max(t0, t− r(t)), and η is defined by (2.5).

Corresponding to Equation (2.24), consider the scalar nonlinear equation

q′(t) = (γ2|b(t)| − a(t))q3 , t ∈ R+.

Let q : [t0 − r0,∞) → R be a continuous function such that q(t) = η on [t0 − r0, t0], and

that q(t) is the unique solution of the initial value problem

q′ = (γ2|b(t)| − a(t))q3 , q(t0) = η, t ≥ t0.

Then q(t) can be expressed as

q(t) =

(

1

η2
+ 2

∫ t

t0

(a(s) − γ2|b(s)|)ds
)−1/2

, t ≥ t0,

which together with (2.5) and (2.25), implies (2.8).

Concerning the stabilities of the zero solution of Equation (2.24), we have the following

theorem.

Theorem 2.4. Suppose that (2.2), (2.25) and (2.26) hold. Then we have:

(i) The zero solution of Equation (2.24) is stable.

(ii) If we have σ∗ := sup{σ(t) : t ∈ R+} < ∞, then the zero solution of Equation

(2.24) is uniformly stable.

(iii) If we have
∫ t

t0

(a(s) − γ2|b(s)|)ds → ∞ as t→ ∞, (2.27)

then the zero solution of Equation (2.24) is asymptotically stable.
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(iv) In addition to σ∗ <∞, if we have

∫ t

t0

(a(s) − γ2|b(s)|)ds → ∞ uniformly for t0 ∈ R+ as t→ ∞, (2.28)

then the zero solution of Equation (2.24) is uniformly asymptotically stable.

This theorem can be easily proved by taking the set S in the proof of Theorem 2.1

for the above function q(t) and a function L = L(τ1, τ2) with

2a(t)α + (a(t) + γ2|b(t)|)α3 ≤ L, τ1 ≤ t ≤ τ2,

and by defining a mapping P for φ ∈ S by

(Pφ)(t) :=



















ψ(t − t0), t0 − r0 ≤ t ≤ t0,

ψ(0)e
−

∫

t

t0

a(s)ds
+

∫ t

t0
e
−

∫

t

s
a(u)du

a(s)(φ(s) − φ3(s))ds

+
∫ t

t0
e
−

∫

t

s
a(u)du

b(s)φ2(s − r(s))φ(s)ds, t > t0.

So we omit the details of the proof.

Remark 2.2. Theorem 2.4 is deeply related to Theorem 11.2 in Burton-Furumochi

[4; p. 112].

Now we show two examples.

Example 2.8. Let a(t) = 5(1 + sin t), b(t) = 1 + sin t, r(t) = 1 and α = 1/
√

3.

Then it is easily seen that (2.2) with r0 = 1, (2.25) and (2.26) with γ = 2 hold, and

η = 1/
√

3. Moreover, σ∗ < ∞ and (2.28) hold. Thus, by Theorem 2.4, the zero solution

of the equation

x′(t) = −5(1 + sin t)x3(t) + (1 + sin t)x2(t − 1)x(t), t ∈ R+

is uniformly asymptotically stable.

Example 2.9. Let a(t) = 5/(t + 2), b(t) = 1/(t + 2), r(t) = 1 and α = 1/
√

3.

Then it is easily seen that (2.2) with r0 = 1, (2.25) and (2.26) with γ = 2 hold, and
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η = 1/
√

3. Moreover, (2.28) does not hold, but σ∗ <∞ and (2.27) hold. Thus, concerning

the stabilities of the zero solution of the equation

x′(t) = − 5

t+ 2
x3(t) +

1

t+ 2
x2(t− 1)x(t), t ∈ R+,

Theorem 2.4 does not assure uniform asymptotic stability, but assures uniform stability

and asymptotic stability.
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