
SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS
WITH SMALL KERNELS

T. A. BURTON AND I. K. PURNARAS

Abstract. In 1975 Grimmer and Seifert studied a linear integro-
differential equation with weakly singular kernel, C(t, s), by means
of a Razumikhin technique. They obtained bounded solutions from
bounded forcing functions. Their conditions centered on small in-
tegrals of the kernel with respect to the second coordinate, s. On
the last page of their paper they express the desire to obtain Lp

solutions from Lp forcing functions. A recent result for singular
integral equations makes it possible to answer the question. Here,
we study a variety of integro-differential equations with singular
kernels including linear, nonlinear, scalar, vector, and resolvent
equations by means of Liapunov functionals. We do obtain the
types of Lp solutions from Lp perturbations. The point here is
that there is a loose principle of the following type. Generally,
but not always, Razumikhin techniques integrate the second coor-
dinate and obtain bounded solutions, while Liapunov functionals
integrate the first coordinate of the kernel and obtain Lp solu-
tions. For decades investigators have discussed and debated which
technique was the “best.” In fact, neither is best. They perform
different sets of tasks, with a non-empty intersection.

1. Introduction

We study a scalar integro-differential equation of the form

(1) x′(t) = f(t) − h(t, x(t)) −
∫ t

0

C(t, s)q(s, x(s))ds,

and also a linear vector equation, together with its resolvent. The
objective is to determine qualitative properties of solutions when

(2) there exists a p ∈ [1,∞) with f ∈ Lp[0,∞),

(3) xh(t, x) ≥ 0, xq(t, x) ≥ 0,

and C has a weak singularity at t = s with properties to be described
later.

In 1975 [10] Grimmer and Seifert developed a Razumikhin technique
(which utilizes a Liapunov function instead of a Liapunov functional)
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to deal with a vector equation

(4) x′(t) = Ax(t) +

∫ t

0

B(t, s)x(s)ds + f(t),

where A is a constant matrix which is negative definite, B is a matrix
satisfying

lim
h→0

∫ t

0

|B(t, s) − B(t + h, s)|ds = 0,

and

lim
h→0

∫ t+h

t

|B(t + h, s)|ds = 0, t ≥ 0,

as well as a number of other conditions, some of which are listed below.
Under the central requirement that for a constant matrix K satisfying

AT K + KA = −I then

∫ t

0

|KB(t, s)|ds ≤ M,

where M is related to the eigenvalues of K and, generally, M is small,
they give conditions yielding solutions of (4) that have certain qualita-
tive properties in case f is bounded and continuous while B is allowed
to have weak singularities. On the last page of their paper, Grimmer
and Seifert express the desire to show that the solution of (4) is in
Lp when f is in Lq for some positive integers p and q. To the best
of our knowledge, those desired results have never been obtained for
equations with singular kernels. On the other hand, soon after the
Grimmer-Seifert work was done, Liapunov theory was extended to (4)
when B is continuous and that theory led to a great many Lp results
of the desired kind and these may be seen throughout the books [4],
[5], [3] where a positive definite Liapunov functional is found with a
derivative satisfying V ′(t) ≤ −|x|p + |f |q.

Now, the recent paper [6] makes it possible to supply the desired
results for weakly singular kernels. We construct Liapunov functionals
for (4) which give the desired Lp properties of the solutions of (4). We
also consider linear equations and resolvents.

2. Preliminaries

Though in our subsequent work we will only allow discontinuities
of C at t = s, typified by C(t − s) = (t − s)−1/2 which occurs so
often in the literature, we mention here a more general result (Theorem
2.2) found in [8] which concerns existence of a solution of (1) with
continuous derivative when C has some discontinuities. For the sake of
completeness we give a short proof of Theorem 2.2 and state a lemma
(Lemma 2.3) which gives a simple condition in order that the inequality
assumed in Theorem 2.2 is satisfied. Our terminology (Definition 2.1)
follows that of Becker [2] who studied integral equations, not integro-
differential equations.
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Definition 2.1. Let ΩT := {(t, s) : 0 ≤ s ≤ t ≤ T}. The kernel C of
(1) is weakly singular on the set ΩT if it is unbounded in ΩT : but for
each t ∈ [0, T ], C(t, s) has at most finitely many discrete singularities in
the interval {0 ≤ s ≤ t} and for every continuous function φ : [0, T ] →
<n, ∫ t

0

C(t, s)φ(s)ds,

and ∫ t

0

|C(t, s)|ds,

both exist and are continuous on [0, T ]. If C(t, s) is weakly singular on
ΩT for every T > 0, then it is weakly singular on the set Ω := {(t, s) :
0 ≤ s ≤ t < ∞}.

For (1) we suppose that f : [0,∞) → <n is continuous, h, q :
[0,∞) × <n → <n are both continuous and both satisfy a global Lip-
schitz condition for the same constant L. In the proof below, the map-
ping follows [9] but the details then are precisely those of Becker [2] or
of [8] Theorem 2.2.

Theorem 2.2. In addition to these continuity conditions, let C(t, s)
be weakly singular on Ω. Suppose also that for each T > 0 and each
k ∈ (0, 1), there is a constant γ0 > 0 with

∫ t

0

e−γ0(t−s)|C(t, s)|ds ≤ k,

for t ∈ [0, T ]. Then for every x0 ∈ <n (1) has a unique solution x(t)
with a continuous derivative and satisfying x(0) = x0.

Proof. Let T > 0 and x0 ∈ <n be given and let (Y, ‖ · ‖) be the Banach
space of continuous functions φ : [0, T ] → <n with the supremum norm.
Define P : Y → Y by φ ∈ Y implies that

(Pφ)(t) = f(t)−h(t, x0+

∫ t

0

φ(s)ds)−
∫ t

0

C(t, s)q(s, x0+

∫ s

0

φ(u)du)ds.

By the continuity assumptions and the weak singularity, Pφ ∈ Y .
As the existence of γ0 implies that for any γ > γ0 we also have∫ t

0
e−γ(t−s)|C(t, s)|ds ≤ k (see Lemma 2.3 below), we will define a

weighted norm ‖ · ‖T by φ ∈ Y implies that

‖φ‖T = sup
0≤t≤T

e−γt|φ(t)|,

where γ ≥ γ0 is chosen so large and k is chosen so small so that
(L/γ) + LTk ≤ 1/2. With this mapping and norm, the details are
readily completed as in [8]. �

Lemma 2.3 below states that the inequality in Theorem 2.2 is satis-
fied if condition (5) is satisfied. We omit the routine proof.
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Lemma 2.3. Let C(t, s) be a weakly singular kernel on the set Ω and
fix T > 0. Moreover, suppose that for any k ∈ (0, 1) there exists an
ε := ε(k, T ) > 0 such that

(5)

∫ t

t−ε

|C(t, s)|ds ≤ k for all t ∈ [0, T ],

where we have set C(t, s) = 0, (t, s) ∈ <2−Ω. Then there always exists
a γk,T > 0 such that for any γ ≥ γk,T we have

∫ t

0

e−γ(t−s)|C(t, s)|ds ≤ k for all t ∈ [0, T ].

Though there are many other existence results (Grimmer and Seifert
[10] and Grossman and Miller [11] deal with some far more complicated
ones) we believe that Theorem 2.2 is simple, general, and very instruc-
tive concerning existence ideas. In the following material we will as-
sume that the Liapunov results are being applied to problems in which
existence has been established.

We will also be looking at a resolvent equation

d

dt
z(t, s) = A(t)z(t, s) −

∫ t

s

C(t, u)z(u, s)du,

where A is a continuous n×n matrix and existence theory for it will be
the same. Indeed, in this case q is linear and we automatically have a
global Lipschitz condition. When C is continuous, Becker [1] has shown
that if Z(t, s) is the n × n matrix solution of that equation satisfying
Z(s, s) = I, then the solution of

x′ = Ax −
∫ t

0

C(t, s)x(s)ds + f(t), x(0) = x0,

is given by

x(t) = Z(t, 0)x0 +

∫ t

0

Z(t, s)f(s)ds.

It is not difficult to verify that when C satisfies Definition 2.1 then Z
and Zt are continuous and so all the steps in Becker’s proof are valid
and the same variation of parameters formula holds. This is used in
Section 4.

3. A simple result

To see what is happening in order to get the desired Lp property, note
that all of our integral conditions on C(t, s) are with respect to t, while
all of the Grimmer-Seifert integral conditions yielding boundedness are
with respect to s. Our conclusion will be that q(·, x(·)) ∈ L1[0,∞),
as a result of f ∈ L1[0,∞), a direct solution to the Grimmer-Seifert
question. But we also get x(t) bounded.
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Theorem 3.1. Let (2) hold with p = 1. Suppose there is a γ > 0 with
|h(t, x)| ≥ γ|q(t, x)| on [0,∞) × <. Suppose also that there is a β > 0
so that for each ε > 0 we have

∫ ∞
ε

|C(u + t, t)|du ≤ β for all t ≥ 0,
where γ − β =: µ > 0. Finally, if there is an η < µ and a fixed ε > 0
with

∫ t

s

|C(u + ε, s) − C(u, s)|du ≤ η, for 0 ≤ s ≤ t < ∞,

then any solution x(t) of (1) on [0,∞) satisfies q(·, x(·)) ∈ L1[0,∞).

Proof. For the fixed ε > 0, define a Liapunov functional

V (t, ε) = |x(t)| +
∫ t

0

[∫ ∞

t−s+ε

|C(u + s, s)|du

]
|q(s, x(s))|ds, t ≥ 0,

so that since

−|C(t + ε, s)| ≤ −|C(t, s)| + |C(t + ε, s) − C(t, s)|,

we have

V ′(t, ε) ≤ |f(t)| − |h(t, x(t))| +
∫ t

0

|C(t, s)q(s, x(s))|ds

+

∫ ∞

ε

|C(u + t, t)|du|q(t, x(t))| −
∫ t

0

|C(t + ε, s)||q(s, x(s))|ds

≤ |f(t)| − γ|q(t, x(t))| +
∫ t

0

|C(t, s)q(s, x(s))|ds

+ β|q(t, x(t))| −
∫ t

0

|C(t, s)q(s, x(s))|ds

+

∫ t

0

|C(t + ε, s) − C(t, s)||q(s, x(s))|ds

= |f(t)| − µ|q(t, x(t))| +
∫ t

0

|C(t + ε, s) − C(t, s)||q(s, x(s))|ds.

In preparation for integration of this expression we calculate

∫ t

ε

∫ u

0

|C(u + ε, s) − C(u, s)||q(s, x(s))|dsdu

≤
∫ t

0

∫ t

s

|C(u + ε, s) − C(u, s)|du|q(s, x(s))|ds

≤
∫ t

0

η|q(s, x(s))|ds.
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With this conclusion in hand, we now integrate V ′ obtaining

V (t, ε) ≤ V (ε, ε) +

∫ t

ε

|f(u)|du− µ

∫ t

ε

|q(s, x(s))|ds

+

∫ t

ε

∫ u

0

|C(u + ε, s) − C(u, s)||q(s, x(s))|dsdu

≤ V (ε, ε) +

∫ t

0

|f(u)|du

− (µ − η)

∫ t

ε

|q(s, x(s))|ds + η

∫ ε

0

|q(s, x(s))|ds.

This completes the proof. �

This case with p = 1 is very simple and the proof is very short.
Yet, it contains most of the properties and techniques involved in the
case of an arbitrary even positive number p which is the topic of our
last theorem. That proof makes repeated use of Young’s and Schwarz’
inequalities and, consequently, goes on for several pages. All of this
involves small kernels in which the sign of the kernel is never employed.

4. The resolvent

Let C be an n × n matrix of functions with weak singularities and
consider

(6) x′(t) = Ax(t) −
∫ t

0

C(t, s)x(s)ds + f(t), x(0) = x0,

where A is an n × n constant matrix all of whose characteristic roots
have negative real parts. There is then an n × n symmetric matrix B
with

(7) AT B + BA = −I.

Associated with (6) is the resolvent equation

d

dt
Z(t, s) = AZ(t, s) −

∫ t

s

C(t, u)Z(u, s)du, Z(s, s) = I,

whose columns are the vector equations

(8) z′(t, s) = Az(t, s) −
∫ t

s

C(t, u)z(u, s)du.

There is then the variation of parameters formula

x(t) = Z(t, 0)x0 +

∫ t

0

Z(t, s)f(s)ds.

We focus on three fundamental results.
(i) If we can show that there is an M > 0 with

∫ t

0
|Z(t, s)|ds ≤ M ,

then for f ∈ L∞[0,∞), we see that for x(0) = 0 there is the bounded

solution of (6), x(t) =
∫ t

0
Z(t, s)f(s)ds.
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(ii) If we can show that there is an M > 0 with
∫ t

s
|Z(u, s)|du ≤ M

and if f ∈ L1[0,∞) then for x(0) = 0 we have |x(t)| ≤
∫ t

0
|Z(t, s)f(s)|ds.

Thus, we would have
∫ t

0

|x(s)|ds ≤
∫ t

0

∫ u

0

|Z(u, s)||f(s)|dsdu

=

∫ t

0

∫ t

s

|Z(u, s)|du|f(s)|ds

≤ M

∫ t

0

|f(s)|ds

so that x ∈ L1[0,∞).

(iii) If C is scalar, if there is an M > 0 with
∫ t

s
Z2(u, s)du ≤ M and

if f ∈ L1[0,∞) then for x(0) = 0 we have

|x(t)|2 ≤
( ∫ t

0

|Z(t, s)f(s)|ds

)2

≤
∫ t

0

|f(s)|ds

∫ t

0

Z2(t, s)|f(s)|ds,

and x ∈ L2[0,∞) by the argument in (ii).
There are endless other uses for the resolvent and asking x(0) = 0

is not necessary. But these properties now direct our work. We have
two choices for a Liapunov functional for (8). For the B of (7), for a
positive constant ε to be determined, and for 0 ≤ s ≤ t define
(9)

V1(t, s; ε) = zT (t, s)Bz(t, s) +

∫ t

s

∫ ∞

t−u+ε

|CT (v + u, u)B|dv|z(u, s)|2du.

We will also have occasion to ask for an r > 0 with

r|z| ≤ [zT Bz]1/2,

and then for 0 ≤ s ≤ t define
(10)

V2(t, s; ε) = [zT (t, s)Bz(t, s)]1/2+
1

r

∫ t

s

∫ ∞

t−u+ε

|CT (v+u, u)B|dv|z(u, s)|du.

It should be obvious to the reader that the subscripts on V do not
refer to partial derivatives. It is assumed that there exists an ε > 0
such that C(t, s) is continuous for 0 ≤ s ≤ t − ε. Here, we have
v ≥ t − u + ε ≥ ε so these integrands are continuous. With the V1

we will obtain
∫ t

s
z2(u, s)du bounded. The second functional yields∫ t

s
|z(u, s)|du bounded; it also satisfies a global Lipschitz condition.

Lemma 4.1. The derivative of zT (t, s)Bz(t, s) with respect to t along
a solution of (8) satisfies
(11)

[zT (t, s)Bz(t, s)]′ ≤ −|z(t, s)|2+

∫ t

s

|CT (t, u)B|(|z(u, s)|2+|z(t, s)|2)du.
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Proof. Differentiating by the product rule yields

(zT (t, s))′Bz(t, s) + zT (t, s)Bz′(t, s) = (z′(t, s))T Bz(t, s) + zT (t, s)Bz′(t, s)

= [Az(t, s) −
∫ t

s

C(t, u)z(u, s)du]TBz(t, s)

+ zT (t, s)B[Az(t, s) −
∫ t

s

C(t, u)z(u, s)du]

= zT (t, s)[AT B + BA]z(t, s) − 2

∫ t

s

zT (u, s)CT (t, u)Bz(t, s)du

≤ −zT (t, s)z(t, s) + 2

∫ t

s

|CT (t, u)B||z(u, s)||z(t, s)|du

≤ −zT (t, s)z(t, s) +

∫ t

s

|CT (t, u)B|(|z(u, s)|2 + |z(t, s)|2)du,

as required. �

We will now have two parallel results.

Theorem 4.2. Let V1 be defined in (9) and let z(t, s) be a solution of

(8). Suppose there is a β̂ > 0 with
∫ ∞

ε
|CT (v + t, t)B|dv ≤ β̂. Then the

derivative of V1 along z(t, s) with respect to t satisfies

V ′
1(t, s; ε) ≤ −|z(t, s)|2[1 − β̂ −

∫ t

s

|CT (t, u)B|du]

+

∫ t

s

|[CT (t + ε, u) − CT (t, u)]B||z(u, s)|2du.(12)

Proof. In view of (11), we have for t ≥ 0

V ′
1(t, s; ε) ≤ −|z(t, s)|2 +

∫ t

s

|CT (t, u)B|(|z(u, s)|2 + |z(t, s)|2)du

+

∫ ∞

ε

|CT (v + t, t)B|dv|z(t, s)|2 −
∫ t

s

|CT (t + ε, u)B||z(u, s)|2du

≤ −|z(t, s)|2 + |z(t, s)|2
∫ t

s

|CT (t, u)B|du + β̂|z(t, s)|2

+

∫ t

s

|[CT (t + ε, u) − CT (t, u)]B||z(u, s)|2du,

as required. �

We can now see exactly what is needed to conclude that
∫ t

s
z2(u, s)du

is bounded. If we integrate the last term from s to t and interchange
the order of integration we have

∫ t

s

∫ w

s

[CT (w + ε, u) − CT (w, u)]B||z(u, s)|2dudw
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=

∫ t

s

∫ t

u

|[CT (w + ε, u) − CT (w, u)]|B|dw|z(u, s)|2du.

The required condition is that there exist ε > 0, α > 0, β > 0, β̂ > 0,

α + β + β̂ < 1, with

(13)

∫ t

s

|CT (t, u)B|du ≤ α, 0 ≤ s ≤ t < ∞,

(14)

∫ t

u

|[CT (w + ε, u) − CT (w, u)]B|dw ≤ β, 0 ≤ s ≤ u ≤ t < ∞,

and

(15)

∫ ∞

ε

|CT (v + t, t)B|dv ≤ β̂.

Theorem 4.3. If (13), (14) and (15) hold then for V1 defined in (9)
and z(t, s) a solution of (8) we have

V1(t, s; ε) − V1(s, s; ε) ≤ −(1 − α − β − β̂)

∫ t

s

|z(u, s)|2du,

and there is an M > 0 with
∫ t

s
|z(u, s)|2du ≤ M for 0 ≤ s ≤ t.

Proof. By (12) and (13) upon integration of (12) we have from the
above interchange of order of integration

V1(t, s; ε) − V1(s, s; ε) ≤ −(1 − α − β̂)

∫ t

s

|z(u, s)|2du

+

∫ t

s

∫ t

u

|[CT (w + ε, u) − CT (w, u)]B|dw|z(u, s)|2du

≤ −(1 − α − β − β̂)

∫ t

s

|z(u, s)|2du.

�
Remark. The quantities α and β̂ are of an essentially different

character than β which is a measure of the singularity and in many
significant problems it can be made arbitrarily small by taking ε small

enough. Thus, the essential part of the inequality is that α+ β̂ < 1. In
fractional differential equations there appears the kernel (t − s)q−1 for
0 < q < 1 and the equation is transformed into two integral equations,
one of which has a kernel R(t − s) for which it is easily shown that β
tends to zero as ε → 0. See, for example, [7] Lemma 8.1.

We come now to (10) and prepare V2. When the characteristic roots
of A all have negative real parts then we find the symmetric matrix B
with (7) holding. There are then positive constants r, k, K (not unique)
with

(16) |z| ≥ 2k[zT Bz]1/2, |Bz| ≤ K[zT Bz]1/2, r|z| ≤ [zT Bz]1/2.
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Lemma 4.4. If z(t, s) is a solution of (8) then for z(t, s) 6= 0 and for
W (t, s) = [zT (t, s)Bz(t, s)]1/2 we have

d

dt
W (t, s) ≤ −k|z(t, s)| + 1

r

∫ t

s

|CT (t, u)B||z(u, s)|du.

Proof. By proof of Lemma 4.1 and (7) we have

d

dt
W (t, s) =

−zT (t, s)z(t, s) − 2
∫ t

s
zT (u, s)CT (t, u)Bz(t, s)du

2[zT (t, s)Bz(t, s)]1/2
.

By (16),

zT z

2[zT Bz]1/2
≥ zT z

(|z|/k)
= k|z|,

and
|z|

[zT Bz]1/2
≤ 1

r
,

so the conclusion is verified. �

Theorem 4.5. Let B satisfy (7), z(t, s) satisfy (8), and let V2 be de-

fined by (10). If (15) holds for some β̂ > 0, and k and r satisfy (16),
then the derivative of V2 along z(t, s) with respect to t satisfies

V ′
2(t, s; ε) ≤ −k|z(t, s)| + 1

r

∫ t

s

|CT (t, u)B||z(u, s)|du

+
1

r

∫ ∞

ε

|CT (v + t, t)B|dv|z(t, s)|

− 1

r

∫ t

s

|CT (t + ε, u)B||z(u, s)|du

≤ −k|z(t, s)| + 1

r
β̂|z(t, s)|

+
1

r

∫ t

s

|[CT (t + ε, u) − CT (t, u)]B||z(u, s)|du.

Proof. From (10) and Lemma 4.4 we have

V ′
2(t, s; ε) =

d

dt
W (t, s) +

1

r

∫ ∞

ε

|CT (v + t, t)B|dv|z(t, s)|

− 1

r

∫ t

s

|CT (t + ε, u)B||z(u, s)|du

≤ −k|z(t, s)| + 1

r

∫ ∞

ε

|CT (v + t, t)B|dv|z(t, s)|

+
1

r

∫ t

s

|CT (t, u)B||z(u, s)|du− 1

r

∫ t

s

|CT (t + ε, u)B||z(u, s)|du

− 1

r

∫ t

s

|CT (t, u)B||z(u, s)|du +
1

r

∫ t

s

|CT (t, u)B||z(u, s)|du
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≤ −k|z(t, s)| + 1

r

∫ ∞

ε

|CT (v + t, t)B|dv|z(t, s)|

+
1

r

∫ t

s

|[CT (t + ε, u) − CT (t, u)]B||z(u, s)|du,

as required. �

Theorem 4.6. Let B satisfy (7), z(t, s) satisfy (8), and let V2 be de-
fined in (10). Suppose also that (14) and (15) hold with

−µ := −k +
β

r
+

β̂

r
< 0.

Then

V2(t, s; ε) − V2(s, s; ε) ≤ −µ

∫ t

s

|z(u, s)|du.

Proof. Integration of V ′
2 in Theorem 4.5 and interchange of the order

of integration will yield

V2(t, s; ε) − V2(s, s; ε) ≤ −µ

∫ t

s

|z(u, s)|du,

upon application of (14) and (15), as required. �

5. Scalar equations and arbitrary p

It is possible to take f, h, and g to be vectors and C to be an n × n
matrix. Care must be taken in multiplication, but most of the absolute
values translate easily into norms. For p = 1 there is no real distinction
between the vector and scalar notation.

While the proof of our main theorem here is long, we view this as
our main result. Here, we have great flexibility and are able to treat a
much wider variety of forcing functions.

Theorem 5.1. In (1) and (3) let q(t, x) be independent of t and write
q(t, x) = g(x). Assume that

(17) there exists δ > 0 with |h(t, x)| ≥ δ|g(x)|, (t, x) ∈ [0,∞) ×<.

Suppose that (2) holds for some even integer p and there are positive
numbers α, β with

(18) β + (p − 1)α < pδ,

so that for each ε > 0 and for any t ≥ 0 we have

(19)

∫ ∞

ε

|C(u + t, t)|du ≤ β,

and for t ≥ 0 then

(20)

∫ t

0

|C(t, s)|ds ≤ α.
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Moreover, assume that there exists a µ > 0 with

(21) µ ∈ (0, pδ − β − (p − 1)α),

such that for all sufficiently small ε > 0 we have

(22) sup
s∈[0,∞)

∫ ∞

s

|C(u + ε, s) − C(u, s)|du < µ.

If f ∈ Lp[0,∞) and if x solves (1) on [0,∞) then g(x(·)) ∈ Lp[0,∞).

Proof. For ε > 0 satisfying (22) and for t ≥ 0 define

V (t, ε) = p

∫ x(t)

0

gp−1(s)ds +

∫ t

0

[∫ ∞

t−s+ε

|C(u + s, s)|du

]
gp(x(s))ds,

so that u ≥ t − s + ε ≥ ε since 0 ≤ s ≤ t; that is, the integrand is
continuous.

Notice that by the assumption xg(x) ≥ 0 and that p is an even

integer it follows that
∫ x(t)

0
gp−1(s)ds ≥ 0 for any t ≥ 0 and so

0 ≤ V (t, ε), t ≥ 0 for any ε > 0.

Using

−|C(t + ε, s)| ≤ −|C(t, s)| + |C(t + ε, s) − C(t, s)|,

we find

V ′(t, ε) = pgp−1(x(t))x′(t) +

∫ ∞

ε

|C(u + t, t)|dugp(x(t))

−
∫ t

0

|C(t + ε, s)|gp(x(s))ds

≤ pgp−1(x(t))x′(t) + gp(x(t))

∫ ∞

ε

|C(u + t, t)|du

−
∫ t

0

|C(t, s)|gp(x(s))ds

+

∫ t

0

|C(t + ε, s) − C(t, s)|gp(x(s))ds,

from which, in view of (19), we find

V ′(t, ε) ≤ pgp−1(x(t))x′(t) + βgp(x(t)) −
∫ t

0

|C(t, s)|gp(x(s))ds

+

∫ t

0

|C(t + ε, s) − C(t, s)|gp(x(s))ds.(23)

Since x is a solution of (1), it is true that

H := pgp−1(x(t))

[
f(t) − x′(t) − h(t, x(t)) −

∫ t

0

C(t, s)g(x(s))ds

]
= 0,
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and we have

H =pgp−1(x(t))f(t) − pgp−1(x(t))x′(t) − pgp−1(x(t))h(t, x(t))

− pgp−1(x(t))

∫ t

0

C(t, s)g(x(s))ds.

First, we may note that by (3) it follows that

pgp−1(x(t))h(t, x(t)) ≥ 0,

and so by (17) we have

−pgp−1(x(t))h(t, x(t)) = −p|gp−1(x(t))h(t, x(t))| ≤ −pδgp(x(t)).

Next, note that for p ≥ 2 we have

1
p

p−1

+
1

p
= 1,

for use in Young’s inequality

ab ≤ ap

p
+

bq

q
,

where a ≥ 0, b ≥ 0, and q = p/(p − 1). In view of (21) for

γ ∈
(

0,
pδ − (p − 1)α − β − µ

p − 1

)
,

and for M satisfying

M1/pγ
p−1

p ≥ 1,

we apply the inequality to

M1/p|f(t)| · γ
p−1

p |g(x(t))|p−1

obtaining

|g(x(t))|p−1|f(t)| ≤ M1/p|f(t)| · γ
p−1

p |g(x(t))|p−1

≤ M
f p(t)

p
+ γ

gp(x(t))
p

p−1

.

Then this, along with Young’s inequality also applied to the integrand
below, yields

H ≤ p|g(x(t))|p−1|f(t)| − pgp−1(x(t))x′(t) − pgp−1(x(t))h(t, x(t))

+ p

∫ t

0

|C(t, s)||g(x(s))||g(x(t))|p−1ds

≤ pM
f p(t)

p
+ pγ

gp(x(t))
p

p−1

− pgp−1(x(t))x′(t) − pδgp(x(t))

+ p

∫ t

0

|C(t, s)|
(

gp(x(t))
p

p−1

+
gp(x(s))

p

)
ds

= Mf p(t) + γ(p − 1)gp(x(t)) − pgp−1(x(t))x′(t) − pδgp(x(t))
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+ (p − 1)

∫ t

0

|C(t, s)|dsgp(x(t)) +

∫ t

0

|C(t, s)|gp(x(s))ds,

from which by the use of (20) we take

H ≤ Mf p(t) + γ(p − 1)gp(x(t)) − pgp−1(x(t))x′(t) − pδgp(x(t))

+ (p − 1)αgp(x(t)) +

∫ t

0

|C(t, s)|gp(x(s))ds.(24)

In view of (23) and (24) we have

V ′(t, ε) ≤ pgp−1(x(t))x′(t) + βgp(x(t)) −
∫ t

0

|C(t, s)|gp(x(s))ds

+

∫ t

0

|C(t + ε, s) − C(t, s)|gp(x(s))ds

≤ Mf p(t) + γ(p − 1)gp(x(t)) − pδgp(x(t)) + (p − 1)αgp(x(t))

+

∫ t

0

|C(t, s)|gp(x(s))ds + βgp(x(t)) −
∫ t

0

|C(t, s)|gp(x(s))ds

+

∫ t

0

|C(t + ε, s) − C(t, s)|gp(x(s))ds,

that is,

V ′(t, ε) ≤ Mf p(t) + [β + γ(p − 1) + (p − 1)α − pδ]gp(x(t))

+

∫ t

0

|C(t + ε, s) − C(t, s)|gp(x(s))ds.(25)

If we integrate the last term from 0 to t and interchange the order of
integration, taking into consideration (21) and (22), we obtain

∫ t

0

∫ u

0

|C(u + ε, s) − C(u, s)|gp(x(s))dsdu

=

∫ t

0

∫ t

s

|C(u + ε, s) − C(u, s)|dugp(x(s))ds

≤ µ

∫ t

0

gp(x(s))ds.(26)

Set µ∗ := β+(p−1)α−pδ+γ(p−1)+µ, and note that by the definition
of γ we have µ∗ < 0. Using (25) and (26), we obtain

V (t,ε) − V (0, ε)

≤ M

∫ t

0

f p(s)ds + [β + γ(p − 1) + (p − 1)α − pδ]

∫ t

0

gp(x(s))ds

+

∫ t

0

∫ u

0

|C(u + ε, s) − C(u, s)|gp(x(s))dsdu

≤ M

∫ t

0

f p(s)ds + [β + γ(p − 1) + (p − 1)α − pδ + µ]

∫ t

0

gp(x(s))ds
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= M

∫ t

0

f p(s)ds + µ∗
∫ t

0

gp(x(s))ds,

and so,

0 ≤ V (t, ε) ≤ V (0, ε) + µ∗
∫ t

0

gp(x(s))ds + M

∫ t

0

f p(s)ds.

Since V (0, ε) = p
∫ x(0)

0
gp−1(s)ds < ∞, it follows that

0 ≤
∫ t

0

gp(x(s))ds ≤ 1

−µ∗

[
p

∫ x(0)

0

gp−1(s)ds + M

∫ t

0

f p(s)ds

]
,

as required. �

Notes. Assume that δ > α. Clearly, (18) holds true for any positive
even integer p with p > β−α

δ−α
. In addition to δ > α, if α + β < 2δ then

(18) holds true for all positive even integers p. It is not difficult to see
that for any β > 0 there always exists a positive even integer p0 such
that (18) holds true for all integers p ≥ p0.

6. Acknowledgment

We are very grateful to both referees for their careful reading of the
manuscript and for their corrections.

References

[1] L.C. Becker, Principal Matrix Solutions and Variation of Parame-
ters for a Volterra Integro-differential Equation and its Adjoint, Elec-
tron. J. Qual. Theory Differ. Equ., No. 14 (2006), 1–22 (www.math.u-
szeged.hu/ejqtde/2006/200614.html).

[2] L.C. Becker, Resolvents and solutions of weakly singular linear Volterra inte-
gral equations, Nonlinear Anal. 74 (2011), 1892-1912.

[3] T.A. Burton, Liapunov Functionals for Integral Equations, Trafford Publish-
ing, Victoria, B. C., Canada, 2008 (www.trafford.com/08-1365).

[4] T.A. Burton, Volterra Integral and Differential Equations, Mathematics in
Science and Engineering, Vol. 202, Academic Press, Orlando, 1983 (There is a
second edition by Elsevier, Amsterdam, 2005).

[5] T.A. Burton, Stability and Periodic solutions of Ordinary and Functional Dif-
ferential Equations, Dover, New York, 2005. (This is a reprint of the 1985
edition by Academic Press, Orlando.)

[6] T.A. Burton, A Liapunov functional for a singular integral equation, Nonlinear
Anal., 73 (2010), 3873-3882.

[7] T.A. Burton, Fractional differential equations and Lyapunov functionals, Non-
linear Anal., 74 (2011), 5648-5662.

[8] T.A. Burton and I. K. Purnaras Lp-Solutions of singular integro-differential
equations, J. Math. Anal. Appl., 386 (2012) 830-841.

[9] T.A. Burton and Bo Zhang, Periodicity in delay equations by direct fixed
point mappings, Differential Equations Dynam. Systems 6 (1998), 413-424.

[10] R. Grimmer and G. Seifert, Stability properties of Volterra integrodifferential
equations, J. Differential Equations, 19 (1975), 142-166.



16 T. A. BURTON AND I. K. PURNARAS

[11] S. I. Grossman and R. K. Miller, Perturbation theory for Volterra integrodif-
ferential systems, J. Differential Equations 8 (1970), 457-474.

Northwest Research Institute, 732 Caroline St., Port Angeles, WA
E-mail address : taburton@olypen.com

Department of Mathematics, University of Ioannina, 451 10 Ioan-
nina, Greece

E-mail address : ipurnara@uoi.gr


