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Abstract. The scalar equation (1) x′(t) = −
R t

t−r(t)
a(t, s)g(x(s))ds with variable delay r(t) ≥ 0 is investigated,

where t−r(t) is increasing and xg(x) > 0 (x 6= 0) in a neighborhood of x = 0. We find conditions for r, a, and g so
that for a given continuous initial function ψ a mapping P for (1) can be defined on a complete metric space Cψ
and in which P has a unique fixed point. The end result is not only conditions for the existence and uniqueness of
solutions of (1) but also for the stability of the zero solution. We also find conditions ensuring the zero solution is

asymptotically stable by changing to an exponentially weighted metric on a closed subset of Cψ. Finally, we parlay

the methods for (1) into results for (2) x′(t) = −
R t

t−r(t) a(t, s)g(s, x(s))ds and (3) x′(t) = −a(t)g(x(t− r(t))).

1. Introduction

For more than 100 years, Liapunov’s direct method has been the main tool for investigating stability

properties of ordinary, functional, and partial differential equations, often going under other names such as

energy methods. Nevertheless, difficulties have persisted. This is one in a series of recent papers [5, 6, 7]

looking into ways of circumventing those difficulties by means of fixed point theory, the focus of which has

been on specific equations of historical importance and having significant applications. Other investigators

have also studied stability using fixed point theory; for example, see [19] and [20].

Any investigation of the stability of an equation, or system of equations, using Liapunov’s direct method

first requires the construction of a suitable Liapunov function, or functional as the case may be. This can

be an arduous task. But once a viable function(al) has been found, investigators may end up working with

it for decades deriving more and more information about stability. A prime example of that is the Liapunov

function

V (x, y) = y2 + 2

∫ x

0

g(s) ds

for Liénard’s system of equations

(1.1)
x′ = y

y′ = −f(x, y)y − g(x),

a subject of study ever since a special case of (1.1) appeared in [17] in 1928.

In a parallel way, an investigation of the stability of an equation using fixed point theory involves the

construction of a suitable fixed point mapping. That too can be an arduous task. But as has been the case
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with Liapunov function(al)s, once an appropriate mapping has been found, we believe that investigators will

use it for decades in hopes of obtaining many new and interesting stability results.

Certain integral equations with variable delays have long been of keen interest to theoreticians and applied

scientists alike. A prime example is the scalar equation

(1.2) x′(t) = −
∫ t

t−r(t)

a(t, s)g(x(s)) ds,

where r(t) is a variable delay. One of our objectives is to construct a new fixed point mapping for (1.2) in order

to establish sufficient conditions for the existence and uniqueness of solutions and to provide a framework

for investigating stability. The mapping will depend on the initial condition for (1.2), so we presume there

is a given continuous initial function at the outset of the construction. We begin by transforming (1.2) to

a more tractable, but equivalent, equation, which we then invert to obtain an equivalent integral equation

from which to define the mapping. Then we look for a complete metric space, which will be defined in terms

of the initial function, so that the mapping is a contraction. Using Banach’s Contraction Mapping Principle,

we prove that a unique fixed point of the mapping exists, and in so doing, obtain a unique solution of (1.2)

satisfying the given initial condition. A by-product of this procedure is a new stability result. In addition,

by prudently choosing a different complete metric space, we obtain an asymptotic stability result for (1.2).

The fixed point methods that we use to obtain results for (1.2) will also facilitate our investigation of

(1.3) x′(t) = −
∫ t

t−r(t)

a(t, s)g(s, x(s)) ds

in Section 4, where r(t) ≥ 0, t − r(t) is strictly increasing, and xg(t, x) > 0 if x 6= 0 is sufficiently small.

We are particularly interested in overcoming the difficulties presented by (i) a variable delay r(t), (ii) a

nonconvolution type of kernel a(t, s), and (iii) a nonlinear function g that depends directly on t as well as

on x. These aspects of (1.3) have been obstacles for other methods, such as Liapunov’s direct method and

transform methods. However, as we will see in Sections 3 and 4, a fixed point approach enables us to obtain

stability results for (1.2) and (1.3) without assuming r(t) is constant, or that it is bounded above by a

constant, as has been the case in previous investigations of less general forms of (1.2) and related equations,

such as (2.4) and (2.5). See Section 2. Finally, it is worth pointing out that our results allow a(t, s) to change

sign. Even though it is critical that g has the same sign as x near 0, it is a real wonder that some sort of

stricture on the sign of a(t, s) is not required.

2. Some history

Much of the literature has dealt with simpler forms of (1.2). The linear convolution equation

(2.1) x′(t) = −
∫ t

t−r

a(t− s)x(s) ds,

with constant delay r > 0, was studied by Volterra [23] in 1928 with a biological application in mind. He

suggested a way in which it might be possible to construct a Liapunov functional. In 1954, Brownell and
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Ergen [1, 8] modeled the relation between the power generated by a circulating-fuel nuclear reactor and the

reactor’s temperature with a variant of equation (2.1). In 1963, Levin [15, p. 535] took Volterra’s suggestion

and constructed a Liapunov functional for

(2.2) x′(t) = −
∫ t

0

a(t− s)g(x(s)) ds

and revised it (jointly with Nohel [16, p. 35]) to include the nonconvolution equation

(2.3) x′(t) = −
∫ t

t−r

a(t, s)g(x(s)) ds.

Hale [12] studied these problems in terms of limit sets; they were central in the study of positive kernels

initiated by Halanay [11] and MacCamy and Wong [18]. In 1993, Burton [4] presented a model for certain

neural networks involving equations that are variants of (2.2) and (2.3).

Burton [6] recently constructed a fixed point mapping for (2.3) but at the time had not yet discovered

how to handle an equation with variable delay and with g depending on both t and x. In this paper, we

construct a fixed point mapping for (1.2)—and for (1.3) as well. In this regard, our work seems entirely new.

The adjustments that have to made to the mapping for (2.3) to obtain comparable mappings for (1.2) and

(1.3) and the techniques for doing so seem to be significant. Moreover, the stability results that we derive

with fixed point mappings underscore their utility for investigating the stability of functional differential

equations with variable delays.

Our work also paves the way for another mode of investigation. When an equation has no ordinary

differential equation part (non-integral term), it may be very difficult to construct a fixed point mapping or

Liapunov functional. However, by transforming the equation to a neutral form (cf. (3.2) and (3.3) below),

we can make this task easier. Even though the modus operandi in this paper for obtaining stability results

for an equation is through a fixed point mapping, we could also construct a Liapunov functional from the

neutral form of the equation. This approach, which will be explored in a future paper, can lead to essentially

different and complementary stability results.

The results of this paper will also be applied to

(2.4) x′(t) = −a(t)g(x(t − r(t)))

in Section 5. An enormous number of papers have been written about (2.4). The most well-known of them

involve the so-called 3
2
-stability theorems, which are found in recent works by Yoneyama [21], Krisztin [14],

Graef et al. [9], and Gyori and Hartnung [10], just to name a few, but which date back to 1951 (cf. Yorke

[22] and the references therein). One of the most basic of the 3
2 -stability theorems pertains to

(2.5) x′(t) = −a(t)x(t − r(t)).

In a nutshell, it states that if there are positive constants α and q such that 0 ≤ a(t) ≤ α and 0 ≤ r(t) ≤ q

with αq ≤ 3
2 , then the zero solution of (2.5) is uniformly stable. Moreover, the constant 3

2 is the best possible
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upper bound in the sense that there are equations with unbounded solutions when αq > 3
2 . In the Yoneyama

paper, we find the less restrictive condition

(2.6) sup
t≥0

∫ t+q

t

a(s) ds ≤ 3

2
.

This condition motivates the discussions in Sections 5 and 6.

Finally, we point out that the present work requires that t− r(t) be strictly increasing. It is at the heart

of the methods used in this paper; nevertheless, finding a way of relaxing this condition would be of interest.

3. Levin-Nohel’s equation with variable delay

In this section, we provide the details for the procedure outlined in Section 1 for constructing a fixed point

mapping for equation (1.2), which we hereafter refer to as (3.1), and for deriving conditions for existence,

uniqueness, and stability of solutions. Specifically, we investigate the scalar equation

(3.1) x′(t) = −
∫ t

t−r(t)

a(t, s)g(x(s)) ds

for t ≥ 0, where r : [0,∞) → [0,∞), a : [0,∞) × [−r(0),∞) → R, and g : R → R are continuous functions.

We assume:

(A1) r(t) is differentiable;

(A2) the function t− r(t) : [0,∞) → [−r(0),∞) is strictly increasing;

(A3) t− r(t) → ∞ as t→ ∞.

By (A2), t− r(t) ≥ −r(0) for all t ≥ 0. In order that (3.1) have a solution for t ≥ 0, an initial function must

be specified on the interval [−r(0), 0]. By (A2) and (A3), t1 − r(t1) = 0 for a unique t1 ≥ 0 and r(t) < t for

t > t1. Assumption (A3) is crucial in asymptotic arguments. Finally, we note from (A2) that t− r(t) is 1–1;

so it has an inverse which we denote hereafter by f(t). For ease of communication, especially oral, we refer

to f(t) as the “inverse of the delay” even though strictly speaking r(t) is the delay.

The absence of other terms in (3.1) makes it difficult to obtain a fixed point mapping. To make (3.1)

more tractable for this purpose, we transform it into a neutral functional differential equation of the form

(3.2) x′(t) = λ(t)g(x(t)) +
d

dt
h(t, g(·)).

The motivation for this is that (3.2) looks like a linear equation when g(x) = x except for the nonhomogeneous

term. This suggests that the variation of parameters formula might somehow be used, at least for the linear

case, to obtain an integral equation from which we might be able to define a fixed point mapping.

Generally speaking, finding a transformation that does not change the basic structure and properties

of an equation tends to be difficult. Nevertheless, having such a transformation is central to the methods

employed in this paper. The proof of the following theorem shows how to transform (3.1) into the form of

(3.2), the result of which is (3.3) below. Although it is easy to verify that (3.3) reduces to (3.1) by merely

carrying out the differentiation, the proof delineates the method that was used to obtain (3.3) in the first

place. This method has been effectively employed in the past to obtain stability results for (2.3) in [6] and

for Volterra equations in [2, p. 133] and [3, p. 123].
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Theorem 3.1. Let the function f : [−r(0),∞) → [0,∞) denote the inverse of t − r(t). Then (3.1) is

equivalent to

(3.3) x′(t) = −
∫ f(t)

t

a(u, t) du g(x(t)) +
d

dt

∫ t

t−r(t)

∫ f(s)

t

a(u, s) du g(x(s)) ds.

Proof. Since the objective is to make (3.1) look like (3.2), we seek a function G so that (3.1) is equivalent to

(3.4) x′(t) = −G(t, t)g(x(t)) +
d

dt

∫ t

t−r(t)

G(t, s)g(x(s)) ds.

Differentiating the integral, (3.4) becomes

x′(t) = −G(t, t)g(x(t)) +G(t, t)g(x(t))

−G(t, t− r(t))g(x(t − r(t)))(1 − r′(t))

+

∫ t

t−r(t)

∂G(t, s)

∂t
g(x(s)) ds.

It follows that (3.4) is equivalent to (3.1) provided G satisfies the following conditions:

(3.5) G(t, t− r(t)) = 0

and

(3.6)
∂G(t, s)

∂t
= −a(t, s).

Now (3.6) implies that

(3.7) G(t, s) = −
∫ t

0

a(u, s) du+ φ(s),

for some function φ. And for (3.5) to hold, (3.7) must satisfy

(3.8) G(t, t− r(t)) = −
∫ t

0

a(u, t− r(t)) du+ φ(t− r(t)) = 0.

Since f denotes the inverse of t− r(t), we can replace the upper limit t with f(t− r(t)). Then (3.8) becomes

(3.9) φ(t− r(t)) =

∫ f(t−r(t))

0

a(u, t− r(t)) du.

Finally, if (3.9) is to hold for all differentiable functions r : [0,∞) → [0,∞), it must in particular hold for

r(t) ≡ 0. Thus,

(3.10) φ(s) =

∫ f(s)

0

a(u, s) du.

Substituting this into (3.7), we obtain

(3.11) G(t, s) = −
∫ t

0

a(u, s) du+

∫ f(s)

0

a(u, s) du =

∫ f(s)

t

a(u, s) du

for t ≥ 0 and t− r(t) ≤ s ≤ t. (For future reference, we point out that f(s) ≥ t [cf. Remark 3.1 below].)

In short, the function G defined by (3.11) satisfies both (3.5) and (3.6). Consequently, (3.4), which is

(3.3) when written out fully, is equivalent to (3.1). �

Remark 3.1. The function f in (3.11) is strictly increasing since it is the inverse of t− r(t) which is strictly

increasing by (A2). So for t− r(t) ≤ s, f(s) ≥ f(t − r(t)). Thus in (3.11), f(s) ≥ t.
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The linear equation. Theorem 3.1 is a crucial result because the integrated form of (3.3) is the integral

equation from which a fixed point mapping can be defined. The precise details in carrying out the integration

depend on g. First, we tackle the simplest case: g(x) = x. Then (3.4), the abbreviated form of (3.3), simplifies

to

(3.12) x′(t) = −G(t, t)x(t) +
d

dt

∫ t

t−r(t)

G(t, s)x(s) ds,

which is in fact the linear equation

(3.1′) x′(t) = −
∫ t

t−r(t)

a(t, s)x(s) ds.

We begin by inverting (3.12), the result of which is (3.13) in the next theorem. From now on, ψ(t) denotes

any real-valued continuous function with domain [−r(0), 0].

Theorem 3.2. If x(t) is a solution of (3.1′) on an interval [0, T ) and satisfies the initial condition x(t) = ψ(t)

for −r(0) ≤ t ≤ 0, then x(t) is a solution of the integral equation

(3.13) x(t) = e−
R

t

0
G(s,s)dsψ(0) − e−

R

t

0
G(u,u)du

∫ 0

−r(0)

G(0, u)ψ(u) du

+

∫ t

t−r(t)

G(t, u)x(u) du−
∫ t

0

e−
R

t

s
G(u,u)duG(s, s)

∫ s

s−r(s)

G(s, u)x(u) du ds

on [0, T ). Conversely, if a continuous function x(t) is equal to ψ(t) for −r(0) ≤ t ≤ 0 and is a solution of

(3.13) on an interval [0, τ ), then x(t) is a solution of (3.1′) on [0, τ ).

Proof. Applying the variation of parameters formula to (3.12), or multiplying it by the factor e
R

t

0
G(s,s)ds

and integrating from 0 to any t ∈ [0, T ), we obtain

x(t) = e−
R

t

0
G(s,s)dsψ(0) +

∫ t

0

e−
R

t

s
G(u,u)du d

ds

∫ s

s−r(s)

G(s, u)x(u) du ds.

Then an integration by parts yields the integral equation

x(t) = e−
R

t

0
G(s,s)dsψ(0) + e−

R

t

s
G(u,u)du

∫ s

s−r(s)

G(s, u)x(u) du

∣

∣

∣

∣

t

0

−
∫ t

0

e−
R

t

s
G(u,u)duG(s, s)

∫ s

s−r(s)

G(s, u)x(u) du ds,

which simplifies to (3.13). Conversely, suppose that a continuous function x(t) is equal to ψ(t) on [−r(0), 0]

and satisfies (3.13) on an interval [0, τ ). Then it is differentiable on [0, τ ). Differentiating (3.13) with the

aid of Leibniz’s rule, we obtain (3.12). �

In the next theorem, a mapping will be defined directly from (3.13). A fixed point of that map will be

a solution of (3.13) and, hence, of (3.1′) by Theorem 3.2. Because we are seeking stability results, we want

solutions to be bounded, one of which is the desired fixed point. Thus, we need the mapping defined by
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(3.13) to map bounded functions into bounded functions. For that reason, we assume constants k ≥ 0 and

α > 0 exist so that

(3.14) −
∫ t

0

G(s, s) ds ≤ k

and

(3.15)

∫ t

t−r(t)

|G(t, u)| du+

∫ t

0

e−
R

t

s
G(u,u)du |G(s, s)|

∫ s

s−r(s)

|G(s, u)| du ds≤ α

for t ≥ 0. A natural place to look for these fixed point mappings is the Banach space (C, ‖·‖) of real-valued

bounded continuous functions on [−r(0),∞) with the supremum norm ‖·‖; that is, for φ ∈ C,

‖φ‖ := sup{ |φ(t)| : t ∈ [−r(0),∞) }.

In other words, we carry out our investigations in the complete metric space (C, ρ), where ρ denotes the

supremum (uniform) metric: for φ1, φ2 ∈ C, ρ(φ1, φ2) = ‖φ1 − φ2‖. For a given continuous initial function

ψ : [−r(0), 0] → R, define the set Cψ ⊂ C by

Cψ := {φ : [−r(0),∞) → R | φ ∈ C, φ(t) = ψ(t) for −r(0) ≤ t ≤ 0 }.

We will also use ‖·‖ to denote the supremum norm of an initial function—it will be obvious from the function

to which it is applied whether the norm denotes the supremum on [−r(0), 0] or on [−r(0),∞). Finally, note

that (Cψ, ρ) is itself a complete metric space since Cψ is a closed subset of C.

Subject to conditions (3.14) and (3.15), the mapping suggested by (3.13) and explicitly defined in the

next theorem maps Cψ into itself.

Theorem 3.3. Let G be defined by (3.11) where f is the inverse of t − r(t). Let P be a mapping on Cψ

defined as follows: for φ ∈ Cψ,

(Pφ)(t) = ψ(t)

if −r(0) ≤ t ≤ 0, while

(3.16) (Pφ)(t) = e−
R

t

0
G(s,s)dsψ(0) − e−

R

t

0
G(u,u)du

∫ 0

−r(0)

G(0, u)ψ(u) du

+

∫ t

t−r(t)

G(t, u)φ(u) du−
∫ t

0

e−
R

t

s
G(u,u)duG(s, s)

∫ s

s−r(s)

G(s, u)φ(u) du ds

if t > 0. If (3.14) and (3.15) hold, then P : Cψ → Cψ.

Proof. For φ ∈ Cψ, Pφ is continuous and agrees with ψ on [−r(0), 0] by virtue of the definition of P . For

t > 0, it follows from (3.14) and (3.15) that

|(Pφ)(t)| ≤ ek|ψ(0)| + ek
∫ 0

−r(0)

|G(0, u)||ψ(u)| du+ α‖φ‖.
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Consequently,

(3.17) ‖Pφ‖ ≤ ek‖ψ‖
(

1 +

∫ 0

−r(0)

|G(0, u)| du
)

+ α‖φ‖ <∞.

Thus, Pφ ∈ Cψ. �

Theorems 3.2 and 3.3 give us the means to prove an existence and uniqueness result. Under the conditions

stated in the next theorem, we prove that for every continuous initial function ψ : [−r(0), 0] → R there exists

a unique continuous function x that is the solution of (3.1′) on [0,∞) and which satisfies the initial condition

x(t) = ψ(t) on [−r(0), 0]. We also prove every such solution is bounded. Furthermore, we prove the zero

solution of (3.1′) has the property defined by the following statement:

Definition 3.1. The zero solution of (3.1′) is said to be stable at t = 0 if for every ε > 0 there exists a δ > 0

such that ψ : [−r(0), 0] → (−δ, δ) implies |x(t)| < ε for t ≥ −r(0).

Finally, we give a condition that drives all solutions to zero.

Theorem 3.4. Suppose constants k ≥ 0 and α ∈ (0, 1) exist such that (3.14) and (3.15) hold for t ≥ 0. Then

for each continuous function ψ : [−r(0), 0] → R, there is a unique continuous function x : [−r(0),∞) → R

with x(t) = ψ(t) on [−r(0), 0] that satisfies (3.1′) on [0,∞). Moreover, x(t) is bounded on [−r(0),∞).

Furthermore, the zero solution of (3.1′) is stable at t = 0. If, in addition,

(3.18)

∫ t

0

G(s, s) ds→ ∞

as t→ ∞, then x(t) → 0 as t → ∞.

Proof. Let ψ : [−r(0), 0] → R be a continuous function. We first show that there is a unique continuous

function x that satisfies (3.1′) on [0,∞) and the initial condition: x(t) = ψ(t) on [−r(0), 0]. The initial

function ψ defines a space Cψ. The mapping P , defined in Theorem 3.3, has a unique fixed point since it is

a contraction on the complete metric space (Cψ, ρ). To see this, consider any φ, η ∈ Cψ. For t > 0,

(3.19) |(Pφ)(t)− (Pη)(t)| ≤
∫ t

t−r(t)

|G(t, u)| |φ(u)− η(u)| du

+

∫ t

0

e−
R

t

s
G(u,u)du|G(s, s)|

∫ s

s−r(s)

|G(s, u)| |φ(u)− η(u)| du ds

≤
(

∫ t

t−r(t)

|G(t, u)| du+

∫ t

0

e−
R

t

s
G(u,u)du|G(s, s)|

∫ s

s−r(s)

|G(s, u)| du ds
)

‖φ− η‖.

By (3.15), |(Pφ)(t) − (Pη)(t)| ≤ α‖φ − η‖ for all t > 0. Trivially, this inequality also holds on [−r(0), 0];

consequently, ‖Pφ− Pη‖ ≤ α‖φ− η‖. Therefore, the mapping P is a contraction since α < 1. By Banach’s

Contraction Mapping Principle, P has a unique fixed point x. The fixed point x is a bounded continuous

function as x ∈ Cψ. By Theorem 3.2, it is a solution of (3.1′) on [0,∞). It follows that x is the only bounded

continuous function satisfying (3.1′) on [0,∞) and the initial condition.
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Under the stated hypotheses, (3.1′) does not have any unbounded continuous solutions. Suppose to the

contrary that x̃ is such a solution with x̃(t) = ψ(t) on [−r(0), 0] for some continuous function ψ. By the

previous argument, there is also a unique bounded continuous solution x agreeing with ψ on [−r(0), 0]. Then

on any interval [−r(0), b] on which x̃ is defined, it follows from the first inequality of (3.19) and from (3.15)

that

|(Px)(t)− (P x̃)(t)| ≤ α‖x− x̃‖[−r(0),b],

where ‖x− x̃‖[−r(0),b] denotes the supremum of |x(t)− x̃(t)| on [−r(0), b]. Thus,

‖Px− P x̃)‖[−r(0),b] ≤ α‖x− x̃‖[−r(0),b].

By Theorem 3.2, Px = x and P x̃ = x̃; so

(3.20) ‖x− x̃‖[−r(0),b] · (1 − α) ≤ 0.

Therefore, x̃(t) ≡ x(t) on [−r(0), b] since α < 1. This implies, contrary to the supposition, that x̃ is bounded.

The stability assertion is an immediate consequence of (3.17). If x(t) is a solution with the initial function

ψ, then

(1 − α)‖x‖ ≤ ek‖ψ‖
(

1 +

∫ 0

−r(0)

|G(0, u)| du
)

.

Then there clearly exists a δ > 0 for each ε > 0 such that |x(t)| < ε for all t ≥ −r(0) if ‖ψ‖ < δ.

In order to prove that solutions of (3.1′) tend to zero when (3.18) holds, we examine the mapping P when

it is applied to functions φ ∈ Cψ that tend to 0 as t → ∞. Let C0
ψ denote this particular set; that is,

(3.21) C0
ψ := {φ : [−r(0),∞) → R | φ ∈ C, φ(t) = ψ(t) for −r(0) ≤ t ≤ 0, φ(t) → 0 as t → ∞}.

Since C0
ψ is a closed subset of Cψ and (Cψ, ρ) is complete, the metric space (C0

ψ, ρ) is also complete. We

begin by proving that (Pφ)(t) → 0 as t → ∞ when φ ∈ C0
ψ. By (3.15) and (3.16), we have

|(Pφ)(t)| ≤ e−
R

t

0
G(s,s)ds

(

|ψ(0)|+
∫ 0

−r(0)

|G(0, u)||ψ(u)| du
)

+ α‖φ‖[t−r(t),t] + |Ω(t)|

for t > 0, where Ω(t) denotes the last term of (3.16). Now consider the asymptotic behavior of each of the

above terms as t → ∞. The first term tends to 0 by (3.18). Because φ(t) → 0 as t → ∞, the same is true

of the second term since t − r(t) → ∞ by (A3). Now we prove that Ω(t) → 0—much in the same way that

one can prove that the convolution of an L1[0,∞) function with a function tending to 0 as t→ ∞ is itself a

function tending to 0. For any T ∈ (0, t),

|Ω(t)| ≤
∫ T

0

|G(s, s)|e−
R

T

s
G(u,u)du

∫ s

s−r(s)

|G(s, u)| du ds · ‖φ‖ e−
R

t

T
G(u,u)du

+

∫ t

T

|G(s, s)|e−
R

t

s
G(u,u)du

∫ s

s−r(s)

|G(s, u)| du ds · ‖φ‖[T−r(T ),∞)

≤ α‖φ‖e−
R

t

T
G(u,u)du + α‖φ‖[T−r(T ),∞).
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For a given ε > 0, there exists a T > 0 such that ‖φ‖[T−r(T ),∞) < ε/2α by (A3). For this T , there exists

τ ≥ T such that t > τ implies that ‖φ‖e−
R

t

T
G(u,u)du < ε/2α. Thus, for every ε > 0, there exists a τ > 0

such that t > τ implies that |Ω(t)| < ε. Consequently, (Pφ)(t) → 0 as t → ∞. So, P : C0
ψ → C0

ψ. Therefore,

P is a contraction on C0
ψ with a unique fixed point x. By Theorem 3.2, x is a solution of (3.1′) on [0,∞).

With the same kind of reasoning that led to (3.20), we conclude that x(t) is the only continuous solution of

(3.1′) agreeing with the initial function ψ. As x ∈ C0
ψ, x(t) → 0 as t→ ∞. �

Remark 3.2. It is evident from (3.16) and (3.19) that whether or not the mapping P is a contraction on

(Cψ, ρ) depends on the part of Pφ involving

(Iφ)(t) :=

∫ t

t−r(t)

G(t, u)φ(u) du−
∫ t

0

e−
R

t

s
G(u,u)duG(s, s)

∫ s

s−r(s)

G(s, u)φ(u) du ds.

Note that if G(s, s) ≥ 0 for s ≥ 0, then

|(Iφ)(t)| ≤ 2 sup
t≥0

∫ t

t−r(t)

|G(t, u)||φ(u)| du

for t ≥ 0. This inequality is sharp (cf. Section 6) in the sense that it will not hold in general if the factor 2

is replaced by anything smaller. Also note that (3.15) reduces to

(3.22) 2 sup
t≥0

∫ t

t−r(t)

|G(t, u)| du≤ α

when G(s, s) ≥ 0 insofar as (3.22) implies (3.15). Moreover, the “2” can be dropped when G(s, s) ≡ 0

because (3.15) then simplifies to

(3.22′)

∫ t

t−r(t)

|G(t, u)| du≤ α

for t ≥ 0. By (3.19), the mapping P is a contraction if α < 1.

The nonlinear equation. We now turn our attention back to (3.1), or equivalently (3.3). In terms of the

function G defined in (3.11), equation (3.3) is

(3.4) x′(t) = −G(t, t)g(x(t)) +
d

dt

∫ t

t−r(t)

G(t, s)g(x(s)) ds.

A nonlinear g imposes difficulties that do not exist for g(x) = x. However, our investigation above of (3.12)

sheds some light on how to proceed. For instance, observe that the variation of parameters formula can still

be used if (3.4) is rewritten in the form

(3.23) x′(t) = −G(t, t)x(t) +G(t, t)[x(t)− g(x(t))] +
d

dt

∫ t

t−r(t)

G(t, s)g(x(s)) ds.

Of course, this reduces to (3.12) when g(x) = x. As we will see in the proof of Theorem 3.6, it is crucial to

treat x− g(x) as a single quantity; for that will allow us to handle it in the same way as we did g(x).

Since construction of a fixed point mapping for (3.1) is the objective, we invert (3.23) with the variation

of parameters formula. The result is (3.24) below. Aside from an additional term, the details are exactly

like those in the proof of Theorem 3.2.
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Theorem 3.5. Let ψ : [−r(0), 0] → R be a given continuous initial function. If x(t) is a solution of (3.1)

on an interval [0, T ) with x(t) = ψ(t) for −r(0) ≤ t ≤ 0, then x(t) is a solution of the integral equation

(3.24)

x(t) = e−
R

t

0
G(s,s)dsψ(0) − e−

R

t

0
G(u,u)du

∫ 0

−r(0)

G(0, u)g(ψ(u)) du

+

∫ t

t−r(t)

G(t, u)g(x(u)) du−
∫ t

0

e−
R

t

s
G(u,u)duG(s, s)

∫ s

s−r(s)

G(s, u)g(x(u)) du ds

+

∫ t

0

e−
R

t

s
G(u,u)duG(s, s)[x(s) − g(x(s))] ds.

Conversely, if a continuous function x(t) is equal to ψ(t) for −r(0) ≤ t ≤ 0 and is a solution of (3.24) on an

interval [0, τ ), then x(t) is a solution of (3.1) on [0, τ ).

Equation (3.24) specifies how to define a mapping for the nonlinear equation (3.1) paralleling the mapping

(3.16) for the linear equation (3.1′). It is the mapping P defined by (3.26) below. The challenge now is to

find the appropriate space and conditions so that P is a contraction mapping. First, consider the difference

between the images of two points in Cψ mapped by P . For φ, η ∈ Cψ,

|(Pφ)(t)− (Pη)(t)| ≤
∫ t

t−r(t)

|G(t, u)| |g(φ(u))− g(η(u))| du

+

∫ t

0

e−
R

t

s
G(u,u)du|G(s, s)|

∫ s

s−r(s)

|G(s, u)| |g(φ(u))− g(η(u))| du ds

+

∫ t

0

e−
R

t

s
G(u,u)du|G(s, s)| |φ(s) − g(φ(s)) − [η(s) − g(η(s))]| ds.

Suppose we impose a Lipschitz condition on g and let L denote a common Lipschitz constant for it and

x− g(x). If we also add the condition G(t, t) ≥ 0, then the foregoing simplifies to

|(Pφ)(t)− (Pη)(t)| ≤
(

∫ t

t−r(t)

|G(t, u)| du+

∫ t

0

e−
R

t

s
G(u,u)duG(s, s)

∫ s

s−r(s)

|G(s, u)| du ds

+

∫ t

0

e−
R

t

s
G(u,u)duG(s, s) ds

)

L‖φ− η‖.

If g(x) = x, the last integral drops out and L = 1. In that case, we obtain a practical contraction condition,

namely (3.15), which reduces to (3.22) since G(t, t) ≥ 0. But if g is nonlinear, we do not have a viable

contraction condition because of the last integral—generally L will not be sufficiently small to offset that
∫ t

0 e
−

R

t

s
G(u,u)duG(s, s) ds ≈ 1 for relatively large t. We resolve this in Theorem 3.6 by changing from the

supremum norm to one with exponential weight that is defined on a space C lψ defined as follows: for a given

continuous function ψ : [−r(0), 0] → [−l, l], let

(3.25) C lψ := {φ : [−r(0),∞) → R | φ ∈ C, φ(t) = ψ(t) for −r(0) ≤ t ≤ 0, |φ(t)| ≤ l }.

Theorem 3.6. Let a mapping P be defined on a given space C lψ as follows: for φ ∈ C lψ,

(Pφ)(t) = ψ(t) for −r(0) ≤ t ≤ 0;
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while for t > 0,

(3.26)

(Pφ)(t) = e−
R

t

0
G(s,s)dsψ(0) − e−

R

t

0
G(u,u)du

∫ 0

−r(0)

G(0, u)g(ψ(u)) du

+

∫ t

t−r(t)

G(t, u)g(φ(u)) du−
∫ t

0

e−
R

t

s
G(u,u)duG(s, s)

∫ s

s−r(s)

G(s, u)g(φ(u)) du ds

+

∫ t

0

e−
R

t

s
G(u,u)duG(s, s)[φ(s) − g(φ(s))] ds.

Suppose

(i) a constant l > 0 exists such that g satisfies a Lipschitz condition on [−l, l], and

(ii) G(t, t) ≥ 0 for t ≥ 0.

Then there is a metric d for C lψ such that

(iii) the metric space (C lψ, d) is complete, and

(iv) P is a contraction on (C lψ, d) if P maps C lψ into itself.

Proof. We must find a metric d for C lψ so that the space (C lψ, d) is not only complete but also one on which

P is a contraction. For s ∈ [−r(0),∞), let

H(s) :=

∫ f(s)

s

|a(u, s)| du,

where, as in Theorem 3.1, f(s) denotes the inverse of s− r(s). By (A2), s− r(s) is strictly increasing; hence

so is f(s). Consequently, H(s) ≥ 0 since s = f(s− r(s)) ≤ f(s). Let L denote a common Lipschitz constant

for g(x) and x− g(x) on [−l, l]. For t ∈ [0,∞) and a constant κ > 3, define h : [0,∞) → [0,∞) by

h(t) := κL

∫ t

0

[G(u, u) +H(u)] du.

Now let S be the space of all continuous functions φ : [−r(0),∞) → R such that

|φ|h := sup{ |φ(t)|e−h(t) : t ∈ [−r(0),∞) } <∞.

Then (S, | · |h) is a Banach space, which can be verified with Cauchy’s criterion for uniform convergence.

Thus, (S, d) is a complete metric space, where d denotes the induced metric: d(φ, η) = |φ− η|h for φ, η ∈ S.

With this metric, C lψ is a closed subset of S. Therefore, the metric space (C lψ, d) is complete, which concludes

the proof of (iii).

As for (iv), suppose P : C lψ → C lψ. Let φ, η ∈ C lψ. Since g satisfies a Lipschitz condition on [−l, l], it

follows that

(3.27)

|(Pφ)(t)− (Pη)(t)|e−h(t)

≤
∫ t

t−r(t)

|G(t, u)|L|φ(u)− η(u)|e−h(t) du

+

∫ t

0

e−
R

t

s
G(u,u)duG(s, s)

∫ s

s−r(s)

|G(s, u)|L|φ(u)− η(u)|e−h(t) du ds

+

∫ t

0

e−
R

t

s
G(u,u)duG(s, s)L|φ(s) − η(s)|e−h(t) ds
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for t > 0. For u ≤ s ≤ t,

−h(t) = −h(u) + [h(u)− h(t)] = −h(u) − κL

∫ t

u

[G(v, v) +H(v)] dv

≤ −h(u) − κL

∫ t

u

H(v) dv ≤ −h(u) − κL

∫ s

u

H(v) dv.

Using these inequalities in the first two integrals of (3.27) and

−h(t) ≤ −h(s) − κL

∫ t

s

G(v, v) dv

in the third integral, we obtain

|(Pφ)(t)− (Pη)(t)|e−h(t)

≤
∫ t

t−r(t)

e−κL
R

t

u
H(v)dv|G(t, u)|L|φ(u)− η(u)|e−h(u) du

+

∫ t

0

e−
R

t

s
G(u,u)duG(s, s)

∫ s

s−r(s)

e−κL
R

s

u
H(v)dv|G(s, u)|L|φ(u)− η(u)|e−h(u) du ds

+

∫ t

0

e−(1+κL)
R

t

s
G(u,u)duG(s, s)L|φ(s) − η(s)|e−h(s) ds.

In view of Remark 3.1,

|G(t, u)| ≤
∫ f(u)

t

|a(v, u)| dv ≤
∫ f(u)

u

|a(v, u)| dv = H(u)

for t− r(t) ≤ u ≤ t. Consequently,

(3.28)

|(Pφ)(t)− (Pη)(t)|e−h(t)

≤
[
∫ t

t−r(t)

e−κL
R

t

u
H(v)dvH(u) du

+

∫ t

0

e−
R

t

s
G(u,u)duG(s, s)

∫ s

s−r(s)

e−κL
R

s

u
H(v)dvH(u) du ds

+

∫ t

0

e−(1+κL)
R

t

s
G(u,u)duG(s, s) ds

]

L|φ− η|h.

Carrying out the integrations in (3.28), we find

(3.29)

∫ t

t−r(t)

e−κL
R

t

u
H(v)dvH(u) du ≤ 1

κL
and

∫ t

0

e−b
R

t

s
G(u,u)duG(s, s) ds ≤ 1

b

for b = 1 and b = 1 + κL. As a result,

(3.30) |(Pφ)(t)− (Pη)(t)|e−h(t) ≤
[

1

κL
+

1

κL
+

1

κL+ 1

]

L|φ− η|h ≤ 3

κ
|φ− η|h

for all t > 0. In fact, this holds for all t ≥ −r(0) since Pφ and Pη agree on [−r(0), 0]. Therefore,

d(Pφ, Pη) ≤ 3
κ
d(φ, η). As κ > 3, we conclude P is a contraction on (C lψ,d). �

We now establish the existence and uniqueness of solutions by showing that P : C lψ → C lψ if ‖ψ‖ is

sufficiently small.
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Theorem 3.7. Suppose g and G satisfy conditions (i) and (ii) in Theorem 3.6 and further suppose that

(i) g is odd and strictly increasing on [−l, l];
(ii) x− g(x) is nondecreasing on [0, l];

(iii) there is an α ∈ (0, 1) such that 2
∫ t

t−r(t)
|G(t, u)| du≤ α for t ≥ 0.

Then a δ ∈ (0, l) exists such that for each continuous function ψ : [−r(0), 0] → (−δ, δ), there is a unique

continuous function x : [−r(0),∞) → R with x(t) = ψ(t) on [−r(0), 0] that is a solution of (3.1) on [0,∞).

Moreover, x(t) is bounded by l on [−r(0),∞). Furthermore, the zero solution of (3.1) is stable at t = 0.

Proof. Let ψ : [−r(0), 0] → (−δ, δ) be a continuous function, where δ > 0 satisfies the inequality

(3.31) δ + g(δ)

∫ 0

−r(0)

|G(0, u)| du≤ (1 − α)g(l).

Such a δ exists since g(0) = 0 and g is (uniformly) continuous on [−l, l] by the Lipschitz condition. Note that

(3.31) implies δ < l since g(l) ≤ l by (ii). Thus, |ψ(t)| < l for −r(0) ≤ t ≤ 0. For such a ψ, P : C lψ → C lψ.

To see this, consider (3.26) for an arbitrary φ ∈ C lψ. Conditions (i) and (ii) imply

|(Pφ)(t)| ≤ δ + g(δ)

∫ 0

−r(0)

|G(0, u)| du+ g(l)

∫ t

t−r(t)

|G(t, u)| du

+ g(l)

∫ t

0

e−
R

t

s
G(u,u)duG(s, s)

∫ s

s−r(s)

|G(s, u)| du ds

+ (l− g(l))

∫ t

0

e−
R

t

s
G(u,u)duG(s, s) ds

for t > 0. By (iii), (3.29), and (3.31), this reduces to

|(Pφ)(t)| ≤ δ + g(δ)

∫ 0

−r(0)

|G(0, u)| du+ αg(l) + l − g(l)

≤ (1 − α)g(l) + (α− 1)g(l) + l = l.

Hence, |(Pφ)(t)| ≤ l for t ∈ [−r(0),∞) since |(Pφ)(t)| = |ψ(t)| < l for −r(0) ≤ t ≤ 0. Therefore, Pφ ∈ C lψ.

As a result, P is a contraction on the complete metric space (C lψ, d) by Theorem 3.6. Consequently, P

has a unique fixed point x ∈ C lψ. Thus |x(t)| ≤ l for all t ≥ −r(0), and it is a solution of (3.1) on

[0,∞) by Theorem 3.5. From (3.30) we can argue, much as we did in obtaining (3.20), that (3.1) has no

other continuous solution, bounded or unbounded, agreeing with ψ on [−r(0), 0]. In short, x(t) is the only

continuous function satisfying (3.1) for t ≥ 0 and with x(t) = ψ(t) for −r(0) ≤ t ≤ 0.

In order to prove stability at t = 0, let ε > 0 be given. Then choose m > 0 so that m < min{ε, l}.
Replacing l with m beginning with (3.31), we see there is a δ > 0 such that ‖ψ‖ < δ implies that the unique

continuous solution x agreeing with ψ on [−r(0), 0] satisfies |x(t)| ≤m < ε for all t ≥ −r(0). �

Remark 3.3. Observe that both of the last two terms in (3.26) are equal to zero when G(t, t) ≡ 0. In that

case,
∫ t

t−r(t) |G(t, u)| du≤ α implies

|(Pφ)(t)| ≤ δ + g(δ)

∫ 0

−r(0)

|G(0, u)| du+ g(l)

∫ t

t−r(t)

|G(t, u)| du≤ (1 − α)g(l) + g(l)α ≤ l.
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The upshot is that the factor 2 can be dropped from (iii) of Theorem 3.7 if G(t, t) = 0 for t ≥ 0.

It seems that we should also be able to obtain an asymptotic stability result in the framework of (C lψ, d)

by focusing on the subset of functions in C lψ that tend to zero as t → ∞. But there is a problem. This

particular subset with the metric d is not a complete metric space. However, there is a way to get around

this: the set C0
ψ defined by (3.21) with the supremum metric ρ is complete. Supposing that the conditions

in Theorems 3.6 and 3.7 hold for some l > 0, we investigate asymptotic stability by shifting our attention to

the subset of functions in C0
ψ that are bounded by l; namely,

C l,0ψ := {φ : [−r(0),∞) → R | φ ∈ C, φ(t) = ψ(t) for −r(0) ≤ t ≤ 0, |φ(t)| ≤ l, φ(t) → 0 as t → ∞}.

Since C l,0ψ is a closed subset of C0
ψ, the metric space (C l,0ψ , ρ) is complete. Under the conditions of the next

theorem, the zero solution of (3.1) is asymptotically stable in the sense given by Definition 3.2.

Definition 3.2. The zero solution of (3.1) is asymptotically stable if it is stable at t = 0 and a δ > 0 exists

such that for any continuous function ψ : [−r(0), 0] → (−δ, δ), the solution x(t) with x(t) = ψ(t) on [−r(0), 0]

tends to zero as t → ∞.

Theorem 3.8. Suppose all of the conditions in Theorems 3.6 and 3.7 hold. Furthermore, suppose g is

continuously differentiable on [−l, l] and g′(0) 6= 0. If
∫ t

0 G(s, s) ds→ ∞ as t → ∞, then the zero solution of

(3.1) is asymptotically stable.

Proof. For ξ ∈ [0, l], define

q(ξ) := min{g′(x) : |x| ≤ ξ} and Q(ξ) := max{g′(x) : |x| ≤ ξ}.

As we shall see, the mapping P defined by (3.26) will be a contraction on (C l,0ψ , ρ) provided

(3.32) 2βQ(l) < q(l),

where

β := sup
t≥0

∫ t

t−r(t)

|G(t, u)| du.

We may assume (3.32) holds—for if it does not, we merely decrease the value of l > 0 until it does. To see

this, first notice from (iii) in Theorem 3.7 that 2β < 1; thus,

(3.33) 2β = 1 − ε

for some ε ∈ (0, 1). Clearly, limξ→0 q(ξ) = limξ→0Q(ξ) = g′(0). Since g is (strictly) increasing, g′(0) 6= 0, and

g′ is continuous, a neighborhood of x = 0 exists in which g′(x) > 0. Consequently, Q(ξ) > 0 for 0 ≤ ξ ≤ l.

This and limξ→0Q(ξ) 6= 0 imply

lim
ξ→0

q(ξ)

Q(ξ)
=

lim
ξ→0

q(ξ)

lim
ξ→0

Q(ξ)
= 1.
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Hence, there is a γ ∈ (0, l] such that
∣

∣

∣

∣

q(ξ)

Q(ξ)
− 1

∣

∣

∣

∣

< ε

for 0 < ξ < γ. Choosing a value for ξ from (0, γ), we have (1− ε)Q(ξ) < q(ξ). This, along with (3.33), yields

2βQ(ξ) = (1 − ε)Q(ξ) < q(ξ).

Replacing the original value of l with l = ξ, we obtain (3.32). Note that the conditions in Theorems 3.6 and

3.7 will still hold with this smaller l.

Now we argue that P : C l,0ψ → C l,0ψ when l > 0 satisfies (3.32), the conditions of Theorems 3.6 and 3.7

hold, and ‖ψ‖ is sufficiently small. For δ > 0 satisfying (3.31), let ψ : [−r(0), 0] → (−δ, δ) be a continuous

function. Let φ ∈ C l,0ψ . The proof of Theorem 3.7 shows that δ < l and |(Pφ)(t)| ≤ l for t ∈ [−r(0),∞).

Hence, (Pφ)(t) → 0 would imply that P maps C l,0ψ into itself. To show that this is the case, consider

|(Pφ)(t)|. But first note for any φ ∈ C l,0ψ that

|g(φ(t))| ≤ L|φ(t)| and |φ(t)− g(φ(t))| ≤ L|φ(t)|

since g(x) and x − g(x) satisfy a Lipschitz condition on [−l, l] with a common Lipschitz constant L and

g(0) = 0. Because of this and (iii) of Theorem 3.7, it follows from (3.26) that

|(Pφ)(t)| = e−
R

t

0
G(s,s)ds

(

|ψ(0)| +
∫ 0

−r(0)

|G(0, u)| |g(ψ(u))| du
)

+
1

2
Lα‖φ‖[t−r(t),t] + L

∫ t

0

e−
R

t

s
G(u,u)duG(s, s)

∫ s

s−r(s)

|G(s, u)| |φ(u)| duds

+ L

∫ t

0

e−
R

t

s
G(u,u)duG(s, s)|φ(s)| ds.

As t → ∞, the first two terms tend to 0 since
∫ t

0
G(s, s) ds → ∞, φ(t) → 0, and t − r(t) → ∞. The third

term tends to 0 by the argument given after (3.21) for Ω(t). The last term tends to 0 by a similar argument.

Thus, (Pφ)(t) → 0 as t→ ∞.

Finally, we verify that P is a contraction on (C l,0ψ , ρ). In the ensuing argument, bounds on the derivatives

of g(x) and b(x) := x− g(x) on the interval [−l, l] are used. By (i) in Theorem 3.7 and the definition of Q,

0 ≤ g′(x) ≤ Q(l). By (i) and (ii) in Theorem 3.7, b is nondecreasing on [−l, l]. This and g′(x) ≥ q(l) imply

0 ≤ b′(x) ≤ 1 − q(l). Let φ, η ∈ C l,0ψ . By (3.26) and the Mean Value Theorem, we have

|(Pφ)(t)−(Pη)(t)|

≤
∫ t

0

e−
R

t

s
G(u,u)duG(s, s)|b(φ(s)) − b(η(s))|ds+

∫ t

t−r(t)

|G(t, u)(g(φ(u)) − g(η(u))| du

+

∫ t

0

e−
R

t

s
G(u,u)duG(s, s)

∫ s

s−r(s)

|G(s, u)(g(φ(u)) − g(η(u))| du ds

≤
[

(1 − q(l)) + 2 sup
t≥0

∫ t

t−r(t)

|G(t, u)| duQ(l)

]

‖φ− η‖

= [(1 − q(l)) + 2βQ(l)] ‖φ− η‖

= µ ‖φ− η‖,
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for all t > 0, where µ := (1 − q(l)) + 2βQ(l). This implies ‖Pφ − Pη‖ ≤ µ‖φ − η‖. Note µ ∈ (0, 1).

Consequently, for a continuous ψ : [−r(0), 0] → (−δ, δ), P has a unique fixed point x ∈ C l,0ψ . By Theorem 3.5,

x is the unique continuous solution of (3.1) with x(t) = ψ(t) on [−r(0), 0]. By virtue of x ∈ C l,0ψ , x(t) tends

to 0 as t → ∞. By Theorem 3.7, the zero solution is stable at t = 0. �

Example 3.1. Consider (3.1) with the delay r(t) = t/2. Then t − r(t) = t/2 and assumptions (A1)–(A3)

are satisfied. Since the inverse of t− r(t) is f(t) = 2t, the function G defined in (3.11) is

G(t, s) =

∫ 2s

t

a(u, s) du

for t ≥ 0 and t/2 ≤ s ≤ t. Consequently, condition (iii) of Theorem 3.7 holds if

2 sup
t≥0

∫ t

t/2

∣

∣

∣

∣

∫ 2u

t

a(v, u) dv

∣

∣

∣

∣

du < 1.

For example, let a(t, s) := γe−(t−s), where γ is a positive constant. A straightforward calculation shows

the above condition holds if γ < 1/2. Since G(t, t) = γ(1 − e−t), condition (ii) of Theorem 3.6 holds and
∫ t

0
G(s, s) ds → ∞ as t → ∞. Therefore, if the conditions pertaining to g in Theorems 3.6, 3.7, and 3.8 are

satisfied, the zero solution of

x′(t) = −γ
∫ t

t/2

e−(t−s)g(x(s)) ds

is asymptotically stable.

Stability via nonincreasing functions dominating delays. To evaluate the integral in condition (iii) of

Theorem 3.7, we need an explicit formula for the inverse function f . But, unlike Example 3.1, it is frequently

a technical problem, or may not even be possible, to find such a formula. However, if a(t, s) ≥ 0, it may be

possible to surmount this technicality. Suppose the delay r(t) ≥ 0 is dominated by a nonincreasing function.

For such an r, a sketch of an increasing t− r(t) along with its reflection f(t) about the line y = t, suggests:

Lemma 3.1. If r(t) is dominated by a nonincreasing function θ(t) for t ≥ −r(0), then

(3.34) f(t) ≤ t+ θ(t).

Proof. Note that θ(t) ≥ 0 since r(t) ≥ 0. Hence, as θ is nonincreasing,

θ(t + θ(t)) ≤ θ(t).

Since f(t) denotes the inverse of t− r(t), let f−1(t) denote t− r(t) itself. Then

f−1(t+ θ(t)) = (t+ θ(t)) − r(t+ θ(t)) ≥ t+ θ(t + θ(t)) − r(t+ θ(t)) ≥ t.

By (A2), f
−1(t) is strictly increasing; so f is strictly increasing. Therefore,

f(f−1(t+ θ(t))) ≥ f(t),
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which simplifies to (3.34). �

Under these circumstances, the function G is dominated by an integral with an upper limit given by an

explicit formula:

G(t, s) =

∫ f(s)

t

a(v, s) dv ≤
∫ s+θ(s)

t

a(v, s) dv.

As a result, condition (iii) of Theorem 3.7 will be satisfied if

(3.35) 2 sup
t≥0

∫ t

t−r(t)

∫ u+θ(u)

t

a(v, u) dv du < 1.

The following example illustrates the efficacy of (3.35).

Example 3.2. Consider the nonlinear nonconvolution equation

(3.36) x′(t) = −1

3

∫ t

t−cos2 t

te−sx3(s) ds

for t ≥ 0. Since r(t) = cos2 t, assumptions (A1) and (A3) are satisfied. As for (A2), t − r(t) = t − cos2 t is

nondecreasing since its derivative is 1 + sin(2t) ≥ 0. In fact, it follows from the Mean Value Theorem that

t−cos2 t is strictly increasing on [0,∞) since 1+sin(2t) > 0 for t 6= 3π
4

+nπ (n = 0, 1, 2, . . .). In the notation

of (3.1), take a(t, s) = te−s and g(x) = 1
3x

3. In Theorems 3.6 and 3.7, let l = 1. Since |g′(x)| ≤ 1 for |x| ≤ 1,

g satisfies a Lipschitz condition on [−1, 1]. Thus, condition (i) of Theorem 3.6 is satisfied. Clearly, (i) and

(ii) of Theorem 3.7 are also satisfied. Since a(t, s) ≥ 0, condition (ii) of Theorem 3.6 is satisfied. Finally,

condition (iii) of Theorem 3.7 will be satisfied if we can show that (3.35) holds. Since cos2 t ≤ 1, we take

θ(t) ≡ 1. Then

(3.37) 2

∫ t

t−r(t)

∫ u+θ(u)

t

a(v, u) dv du = 2

∫ t

t−cos2 t

∫ u+1

t

ve−u dv du

= e−(t−cos2 t)
(

5 − 4 cos2 t+ cos4 t+ 4t− 2t cos2 t
)

− e−t(5 + 4t).

With the aid of the computer algebra software MapleTM, we find that (3.37) has an absolute maximum value

of 0.6627 . . . at t = 0.4380 . . . on the interval [0,∞). Hence,

(3.38) 2 sup
t≥0

∫ t

t−cos2 t

∫ u+1

t

ve−u dv du ≤ .663 < 1.

Therefore, the zero solution of (3.36) is stable at t = 0.

The convolution case. Equation (3.1) becomes

(3.39) x′(t) = −
∫ t

t−r

a(t− s)g(x(s)) ds

when a(t, s) = a(t − s) and r(t) ≡ r, a positive constant. This equation has been studied widely in

the literature, mainly under the Levin-Nohel [16, p. 35] conditions: a : [0, r] → R is twice continuously

differentiable and

(3.40) a(r) = 0, a(t) ≥ 0, a′(t) ≤ 0, a′′(t) ≥ 0.
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Hale [13, pp. 120–21] used a Liapunov functional to show all solutions of (3.39) are bounded when (3.40)

holds and
∫ x

0
g(s) ds → ∞ as |x| → ∞. Levin and Nohel [16] also studied (3.38) extensively under these

conditions. This raises the question: Are the conditions in (3.40) necessary for boundedness of solutions or

stability? We will show in the next example that they are not. It is to be noted that none of the conditions

in (3.40) hold for equation (3.42) below. And yet we will conclude that its zero solution is stable.

First observe that for any convolution equation (3.39) with constant delay r > 0, the function G defined

in (3.11) simplifies to

(3.41) G(t, s) =

∫ s+r

t

a(u− s) du =

∫ r

t−s

a(v) dv

for t ≥ 0 and t− r ≤ s ≤ t since f(s) = s+ r.

Example 3.3. Consider the equation

(3.42) x′(t) =

∫ t

t−r

cos
π(t− s)

r
g(x(s)) ds,

where g satisfies the three conditions stated in Theorems 3.6 and 3.7. The kernel is a(t) = − cos(πt/r). In

contrast to (3.40), a(r) 6= 0 and both a(t) and a′′(t) change sign on [0, r] while a′(t) > 0 on (0, r). By (3.41),

G(t, s) = −
∫ r

t−s

cos
πv

r
dv = − r

π
sin

πv

r

∣

∣

∣

r

t−s
=
r

π
sin

π(t − s)

r
.

In particular, G(t, t) = 0 for t ≥ 0. So condition (ii) of Theorem 3.6 holds. Also, in view of Remark 3.3,

condition (iii) of Theorem 3.7 holds if α := 2(r/π)2 < 1 since

∫ t

t−r

|G(t, u)| du=
r

π

∫ t

t−r

∣

∣

∣

∣

sin
π(t− u)

r

∣

∣

∣

∣

du =
( r

π

)2
∫ π

0

sin v dv = 2
( r

π

)2

.

It follows that the zero solution of (3.42) is stable at t = 0 if r < π/
√

2. However, as Remark 3.4 shows, it

is not asymptotically stable.

Remark 3.4. A necessary condition that the zero solution of (3.39) be asymptotically stable is that the mean

value of a(t) on [0, r] not be zero. To see this, suppose that it is. By (3.41), G(s, s) =
∫ r

0
a(v) dv = 0. Then

(3.24) simplifies to

x(t) = ψ(0) −
∫ 0

−r

G(0, u)g(ψ(u)) du+

∫ 0

−r

G(0, u)g(x(t+ u)) du.

Note that every function that is constant on [−r,∞) satisfies this equation, thereby making it a solution of

(3.39) on [0,∞). This conclusion is also immediate from (3.39) itself when it is rewritten as

x′(t) = −
∫ r

0

a(u)g(x(t− u)) du.

In sum, if the mean value of a(t) on [0, r] is zero, the zero solution of (3.39) is not asymptotically stable.

Levin and Nohel show that if (3.40) holds and if a′′(t) is not identically zero, then solutions of (3.39) tend

to zero. But, as we show next with Example 3.4, even if none of the conditions in (3.40) hold and a′′(t) ≡ 0,

the zero solution may still be asymptotically stable.
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Example 3.4. Suppose all of the conditions pertaining to g in Theorem 3.8 are satisfied. Let a(t) = b+t− r
2 ,

where r > 0 and b is an arbitrarily small positive number satisfying br2 + r3

6
< 1. By (3.41),

G(t, s) =

∫ r

t−s

(

b+ v − r

2

)

dv = br − b(t− s) − 1

2
(t− s)2 +

r

2
(t − s)

for t ≥ 0 and t − r ≤ s ≤ t. Hence, G(s, s) = br > 0 and
∫ t

0
G(s, s) ds → ∞ as t → ∞. Since t − s ≤ r,

G(t, s) ≥ 0. Consequently,

2

∫ t

t−r

|G(t, s)| ds= 2

∫ t

t−r

[

br − b(t− s) − 1

2
(t − s)2 +

r

2
(t− s)

]

ds

=

∫ r

0

(2br − 2bu− u2 + ru) du = br2 +
r3

6

for t ≥ 0. Thus, if α := br2 + r3

6 < 1, all of the conditions in Theorem 3.8 for asymptotic stability are met.

We can also employ Theorem 3.8 to prove that the zero solution of (3.39) is asymptotically stable when

the Levin-Nohel conditions hold—even if a′′(t) ≡ 0—provided a(0) satisfies a boundedness condition.

Example 3.5. Suppose g satisfies the conditions in Theorem 3.8 and a satisfies those in (3.40). Then, if

0 < a(0) < 3/r2, the zero solution of (3.39) is asymptotically stable.

Proof. Since a′′(t) ≥ 0 for 0 ≤ t ≤ r, a is convex on [0, r]. This implies that the graph of a lies on or below

the chord with endpoints (0, a(0)) and (r, a(r)). Hence, as a(r) = 0, a(t) ≤ −a(0)
r t + a(0) for 0 ≤ t ≤ r.

Since a(t) ≥ 0, we see from (3.41) that G(t, s) ≥ 0. Moreover, as a(0) > 0,

G(s, s) =

∫ r

0

a(v) dv > 0.

Therefore, condition (ii) of Theorem 3.6 holds and
∫ t

0
G(s, s) ds→ ∞ as t → ∞. Furthermore,

2

∫ t

t−r

G(t, s) ds = 2

∫ t

t−r

∫ r

t−s

a(v) dv ds ≤ 2a(0)

∫ t

t−r

∫ r

t−s

(

1 − v

r

)

dv ds = a(0)
r2

3
.

Therefore, condition (iii) of Theorem 3.7 holds with α := a(0)r2/3 < 1. �

Remark 3.5. In both Examples 3.4 and 3.5, if g(x) = x, the zero solution is in fact globally asymptotically

stable. In other words, since g(x) = x satisfies all of the conditions stated in Theorems 3.6, 3.7, and 3.8 for

every l > 0, all solutions of

x′(t) = −
∫ t

t−r

a(t− s)x(s) ds

approach zero as t → ∞ if a satisfies the conditions given in those examples. This conclusion may also be

drawn from Theorem 3.4.
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4. A General Form of the Levin-Nohel Equation

We can obtain existence and stability results comparable to those obtained for (3.1) for

(4.1) x′(t) = −
∫ t

t−r(t)

a(t, s)g(s, x(s)) ds,

by slightly modifying the proofs in Section 3. Assume r : [0,∞) → [0,∞), a : [0,∞)× [−r(0),∞) → R, and

g : [−r(0),∞) × R → R are continuous functions; and, as before, r(t) has properties (A1), (A2), and (A3).

From a perusal of the proofs of Theorems 3.1 and 3.5, it becomes evident that if all occurrences of g(x(t))

are replaced with g(t, x(t)) that both theorems hold for (4.1). Making this replacement in (3.26) as well, we

see that Theorem 3.6 also holds for (4.1) provided the Lipschitz condition (i) is modified by assuming that

g(t, x) satisfy a Lipschitz condition with respect to x. In other words, suppose there are positive constants

l, L such that

(4.2) |g(t, x)− g(t, y)| ≤ L|x− y|

for t ≥ −r(0) and all x, y ∈ [−l, l]. The validity of these theorems for (4.1) permits the following generalization

of Theorem 3.7.

Theorem 4.1. For t ≥ −r(0), suppose

(i) g(t,−x) = −g(t, x);
(ii) an l > 0 exists such that g satisfies a Lipschitz condition with respect to x on [−r(0),∞)× [−l, l];
(iii) there are functions w and W that are continuous, odd, and strictly increasing on [−l, l] such that

w(x) ≤ g(t, x) ≤W (x) for x ∈ [0, l];

(iv) x−w(x) is nondecreasing on [0, l];

(v) |x− g(t, x)| ≤ l− w(l) for x ∈ [−l, l].

Furthermore, for t ≥ 0, suppose

(vi) G(t, t) ≥ 0;

(vii) a positive number α <
w(l)
W(l) exists such that 2

∫ t

t−r(t) |G(t, u)| du≤ α.

Then the conclusions of Theorem 3.7 hold for (4.1).

Proof. By (iii) and (vii), w(l) − αW (l) > 0. Hence, there is a δ > 0 such that

(4.3) δ +W (δ)

∫ 0

−r(0)

|G(0, u)| du≤ w(l) − αW (l).

Let ψ : [−r(0), 0] → (−δ, δ) be a continuous function. For any φ ∈ C lψ, let Pφ be as defined in (3.26) but

with g(u, φ(u)) replacing g(φ(u)). Then Pφ ∈ C lψ. To see this, first observe w(l) ≤ l by (iv). Thus, by (4.3),

|(Pφ)(t)| = |ψ(t)| < l for −r(0) ≤ t ≤ 0. Now consider (Pφ)(t) for t > 0. By (i) and (iii), |g(t, x)| ≤ W (l)
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for x ∈ [−l, l] and t ≥ −r(0). Using this, (iii), and (v), we obtain

|(Pφ)(t)| ≤ δ +W (δ)

∫ 0

−r(0)

|G(0, u)| du+W (l)

∫ t

t−r(t)

|G(t, u)| du

+W (l)

∫ t

0

e−
R

t

s
G(u,u)duG(s, s)

∫ s

s−r(s)

|G(s, u)| du ds

+ (l− w(l))

∫ t

0

e−
R

t

s
G(u,u)duG(s, s) ds.

Consequently,

|(Pφ)(t)| ≤ δ +W (δ)

∫ 0

−r(0)

|G(0, u)| du+ αW (l) + l −w(l)

≤ w(l) − αW (l) + αW (l) + l −w(l) = l

by (vii), (3.29), and (4.3). Thus, |(Pφ)(t)| ≤ l for t ∈ [−r(0),∞). To sum up, Pφ ∈ C lψ for φ ∈ C lψ. It

follows from the version of Theorem 3.6 for equation (4.1) that P is a contraction on the complete space

(C lψ, d). Therefore, P has a unique fixed point. The proof that the zero solution of (4.1) is stable at t = 0 is

exactly like the one given for Theorem 3.7. �

Example 4.1. Consider the equation

(4.4) x′(t) = −
∫ t

t−cos2 t

kte−s
(

1
3 + sin2 t

)

x3(s) ds,

where k > 0. Note its resemblance to (3.36). The difference between the two equations is the presence of k in

the kernel a(t, s) and the replacement of g(x) = 1
3
x3 by g(t, x) =

(

1
3
+sin2 t

)

x3. Condition (i) of Theorem 4.1

clearly holds for this g. Letting w(x) := 1
3x

3 and W (x) := 4
3x

3, we see that (iii) holds for any l > 0. Setting

l = 1, condition (iv) is met. For x ∈ [−1, 1], |x− g(t, x)| ≤ 2
3 . Consequently, (v) holds since 1 − w(1) = 2

3 .

Condition (ii) holds because ∂g/∂x is bounded for t ≥ −r(0) and x ∈ [−1, 1]. Since a(t, s) = kte−s ≥ 0 and

f(t) ≥ t, G(t, t) =
∫ f(t)

t
a(u, t) du ≥ 0. Thus, (vi) holds. Letting θ(u) ≡ 1 in (3.35), (vii) holds if

2 sup
t≥0

∫ t

t−cos2 t

∫ u+1

t

kve−u dv du ≤ .663k <
w(1)

W (1)

by (3.38). Since w(1)/W (1) = 0.25, we conclude the zero solution of (4.4) is stable at t = 0 if .663k < .25.

5. A Differential Equation with Variable Delay

In Section 2, we listed some papers with stability results for the scalar delay equation

(5.1) x′(t) = −a(t)g(x(t − r(t))).

These results were obtained using Liapunov, Razumikhin, and various ad hoc methods. In Theorem 5.1, we

present comparable results based on the fixed point methods of this paper. We assume a : [0,∞) → [0,∞)

and g : R → R are continuous functions. We also assume the delay r : [0,∞) → [0,∞) is continuously

differentiable and satisfies assumptions (A1)–(A3) in Section 3.
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Theorem 5.1. Suppose g is odd, strictly increasing, and satisfies a Lipschitz condition on an interval [−l, l]
and that x− g(x) is nondecreasing on [0, l]. If

(5.2) sup
t≥t1

∫ t

t−r(t)

a(u) du <
1

2
,

where t1 is the unique solution of t− r(t) = 0, and if a continuous function ã : [0,∞) → R exists such that

(5.3) a(t) = ã(t)(1 − r′(t))

on [0,∞), then the zero solution of (5.1) is stable at t = 0. Furthermore, if g is continuously differentiable

on [−l, l] with g′(0) 6= 0 and

(5.4)

∫ t

0

a(u) du→ ∞ as t→ ∞,

then the zero solution of (5.1) is asymptotically stable.

Proof. Once again, let f : [−r(0),∞) → [0,∞) denote the inverse of t−r(t). If there is a continuous function

ã such that (5.3) holds, then we can write (5.1) as

(5.5) x′(t) = −ã(f(t))g(x(t)) +
d

dt

∫ t

t−r(t)

ã(f(s))g(x(s)) ds

since

x′(t) = −ã(f(t))g(x(t)) + ã(f(t))g(x(t)) − ã(f(t − r(t)))g(x(t − r(t)))(1 − r′(t))

= −ã(t)(1 − r′(t))g(x(t − r(t)))

= −a(t)g(x(t − r(t))).

Comparing (5.5) to (3.4), we see ã ◦ f takes on the role of G in Section 3. The conditions for g given before

(5.2) are precisely conditions (i) of Theorem 3.6 and (i), (ii) of Theorem 3.7. By (A2), 1 − r′(t) ≥ 0 on

[0,∞). This and a(t) ≥ 0 imply ã(t) ≥ 0 on [0,∞). It follows that ã(f(t)) ≥ 0 for all t ≥ 0; hence, (ii)

of Theorem 3.6 holds. The integral corresponding to the one in (iii) of Theorem 3.7 is
∫ t

t−r(t) ã(f(s)) ds.

Defining u by s = u− r(u), we have

∫ t

t−r(t)

ã(f(s)) ds =

∫ f(t)

t

ã(f(u − r(u)))(1 − r′(u)) du =

∫ f(t)

t

a(u) du

by (5.3). By (5.2), there is an α ∈ (0, 1) such that 2
∫ t

t−r(t)
a(u) du ≤ α for t ≥ t1. One can show that this is

equivalent to

(5.6) 2

∫ f(t)

t

a(u) du ≤ α

for t ≥ 0. Thus, (iii) of Theorem 3.7 holds. Since all of the conditions in Theorems 3.6 and 3.7 are met, it

follows that the zero solution of (5.1) is stable at t = 0.
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As regards asymptotic stability, suppose g is also continuously differentiable on [−l, l] with g′(0) 6= 0. The

analogue of the integral in Theorem 3.8 is

∫ t

0

ã(f(s)) ds =

∫ f(t)

t1

a(u) du.

If (5.4) is true,
∫ f(t)

t1
a(u) du→ ∞ as t → ∞ since f(t) ≥ t. �

Remark 5.1. By (A2), r
′(t) ≤ 1 on [0,∞). Hence, the function ã in (5.3) exists if r′(t) < 1 on [0,∞) or if

a(t) = 0 whenever r′(t) = 1.

6. Sharpness of the Inequality in Remark 3.2

In this paper (cf. (3.16) and Remark 3.2) and others (cf. [5] and [6]), variants of the mapping

(6.1) (Ix)(t) :=

∫ t

t−r(t)

G(t, u)x(u) du−
∫ t

0

e−
R

t

s
G(u,u)duG(s, s)

∫ s

s−r(s)

G(s, u)x(u) du ds

are encountered, where x, G, r are continuous functions, x is bounded, G(t, t) ≥ 0, and r(t) ≥ 0. The

inequality

(6.2) |(Ix)(t)| ≤ 2 sup
t≥0

∫ t

t−r(t)

|G(t, u)||x(u)| du

brings to mind the 3
2 -stability theorems mentioned in Section 2. In particular, the integral condition (2.6)

suggests that (6.2) could be improved upon: perhaps

(6.3) |(Ix)(t)| ≤ k sup
t≥0

∫ t

t−r(t)

|G(t, u)||x(u)| du

for k = 2/3, or at least for a value of k less than 2. Of course, if more is known about G and r than what is

stated above, then (6.3) may indeed hold for k < 2. For example, if G(t, t) ≡ 0, then (6.3) holds when k = 1.

The purpose of this section is to demonstrate that for any k < 2 it is always possible to find functions

x,G, r having the properties described after (6.1) and a t = τ so that

(6.4) |(Ix)(τ )| > k sup
t≥0

∫ t

t−r(t)

|G(t, u)||x(u)| du.

That is to say, unless more is known about G and r, we show that the smallest possible positive value for k

so that (6.3) is always valid is in fact k = 2. To this end, let r(t) ≡ r, where r is a positive constant, and

G(t, u) = c(u + r), where c : [0,∞) → (0,∞) is continuous. Then (6.1) simplifies to

(6.5) (Ix)(t) :=

∫ t

t−r

c(u+ r)x(u) du−
∫ t

0

e−
R

t

s
c(u+r)duc(s+ r)

∫ s

s−r

c(u+ r)x(u) du ds.
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Lemma 6.1. Let [m,M ] be a closed bounded interval with m > 0. Let c : [0,∞) → [m,M ] be continuous.

For every A ∈ (0, 1), there are positive constants r and τ such that

(6.6) 2e−
R

t

t−r
c(u+r)du − 1 − e−

R

t

0
c(u+r)du > A

for all t ≥ τ .

Proof. For a given A ∈ (0, 1), define γ > 0 by A + 2γ = 1. Since c(t) ≤ M , there is an r > 0 such that

2e−
R

t

t−r
c(u+r)du > 2 − γ for all t ≥ 0. And since c(t) ≥ m, there is a τ ≥ 0, independent of r, such that

e−
R

t

0
c(u+r)du < γ for all t ≥ τ . Thus,

2e−
R

t

t−r
c(u+r) du − 1 − e−

R

t

0
c(u+r) du > 2 − γ − 1 − γ = 1− 2γ = A.

for all t ≥ τ . �

Lemma 6.2. As in Lemma 6.1, let c : [0,∞) → [m,M ] be continuous. For every A ∈ (0, 1), there are

positive constants r, τ and a bounded piecewise continuous function x : [−r,∞) → (−∞,∞) such that

(6.7) |(Ix)(τ )| > (1 +A) sup
t≥0

∫ t

t−r

c(u+ r)|x(u)| du.

Proof. For A ∈ (0, 1), let r, τ be positive constants so that (6.6) holds. Define x : [−r,∞) → (−∞,∞) by

(6.8) x(u)c(u+ r) =

{−1 if −r ≤ u ≤ τ − r

1 if u > τ − r.

Let Ex denote the second term of Ix in (6.5). Then for t = τ , we have

(Ex)(τ ) = −
∫ τ−r

0

e−
R

τ

s
c(u+r)duc(s+ r)

∫ s

s−r

c(u+ r)x(u) du ds

−
∫ τ

τ−r

e−
R

τ

s
c(u+r)duc(s+ r)

∫ s

s−r

c(u+ r)x(u) du ds.

Since
∫ s

s−r c(u+ r)x(u) du = −r and
∣

∣

∫ s

s−r c(u+ r)x(u) du
∣

∣ ≤ r in the first and second terms, respectively, it

follows that

(Ex)(τ ) ≥ re−
R

τ

s
c(u+r) du

∣

∣

∣

∣

τ−r

0

−re−
R

τ

s
c(u+r)du

∣

∣

∣

∣

τ

τ−r

= r
[

e−
R

τ

τ−r
c(u+r) du − e−

R

τ

0
c(u+r)du − 1 + e−

R

τ

τ−r
c(u+r)du

]

= r
[

2e−
R

τ

τ−r
c(u+r)du − 1 − e−

R

τ

0
c(u+r)du

]

.

By (6.6), (Ex)(τ ) > rA. Therefore,

(6.9) (Ix)(τ ) > r + rA = (1 + A)r = (1 +A)

∫ τ

τ−r

c(u+ r)|x(u)| du,

which implies (6.7). �

It follows that the statement for the operator I in (6.4) is true for bounded piecewise continuous functions.

Finally, we show that it is also true for bounded continuous functions.
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Theorem 6.1. Let c : [0,∞) → [m,M ] be a continuous function, where [m,M ] is a closed bounded interval

with m > 0. Then, for every A ∈ (0, 1), there are positive constants r and τ and a bounded continuous

function x̂ : [−r,∞) → (−∞,∞) such that

(6.10) |(Ix̂)(τ )| > (1 +A) sup
t≥0

∫ t

t−r

c(u+ r)|x̂(u)| du.

Proof. For a given continuous function c : [0,∞) → [m,M ] and A ∈ (0, 1), let r, τ be positive constants and

let x(u) be the function given in (6.8) so that (6.7) holds. Observe that by means of the unit step function

1+(u) :=

{

0 if u ≤ 0

1 if u > 0,

we can rewrite (6.8) as

(6.8′) x(u)c(u+ r) = 21+(u− τ + r) − 1

for u ∈ [−r,∞].

For an ε > 0, the function x̂ will be expressed in terms of

λε(t) :=

∫ t

−∞

γε(s) ds,

where γε is defined by

γε(t) :=
ζ(t/ε)

∫ ∞

−∞
ζ(t/ε) dt

and ζ is

ζ(t) :=







0 if |t| ≥ 1

exp
1

t2 − 1
if |t| < 1.

These are well-known functions from the theory of distributions: ζ is infinitely differentiable; γε behaves like

the Dirac delta functional δ for ε sufficiently small; and λε(t) converges to 1+(t) as ε → 0. For details, see

Zemanian [24, pp. 2–13]. Furthermore, (i) λε(t) = 0 for t ≤ −ε; (ii) λε(t) = 1 for t ≥ ε; (iii) 0 < λε(t) ≤ 1
2

for −ε < t ≤ 0; (iv) 1
2 < λε(t) < 1 for 0 < t < ε. It follows that

(6.11) |1+(t) − λε(t)| ≤
1

2

for t ∈ (−∞,∞).

Now define xε : [−r,∞) → (−∞,∞) by

(6.12) xε(u)c(u+ r) = 2λε(u− τ + r) − 1.

For ε > 0 sufficiently small, we will prove

(6.13) (Ixε)(τ ) > (1 +A)r
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by showing that (Ixε)(τ ) converges to (Ix)(τ ) as ε → 0. This then would prove (6.10) as

sup
t≥0

∫ t

t−r

c(u+ r)|xε(u)| du = r.

To this end, consider (Ix)(τ ) − (Ixε)(τ ). Comparing (6.12) and (6.8′), we note that xε(u) = x(u) except for

τ − r − ε < u < τ − r + ε. Hence,

(Ix)(τ ) − (Ixε)(τ ) =

∫ τ−r+ε

τ−r

c(u+ r)(x(u) − xε(u)) du

−
∫ τ−r+ε

τ−r−ε

e−
R

τ

s
c(u+r)duc(s+ r)

∫ s

s−r

c(u+ r)(x(u) − xε(u)) du ds.

By (6.8′), (6.11), and (6.12), we have

|c(u+ r)(x(u) − xε(u))| = 2|1+(u− τ + r) − λε(u − τ + r)| ≤ 1.

Consequently,

|(Ix)(τ ) − (Ixε)(τ )| ≤
∫ τ−r+ε

τ−r

du+ r

∫ τ−r+ε

τ−r−ε

e−
R

τ

s
c(u+r)duc(s+ r) ds

= ε + r
(

e−
R

τ

τ−r+ε
c(u+r) du − e−

R

τ

τ−r−ε
c(u+r) du

)

.

Thus, (Ixε)(τ ) → (Ix)(τ ) as ε → 0. In view of (6.9), define σ > 0 by σ := (Ix)(τ ) − (1 + A)r. Then there

exists an ε > 0 such that |(Ixε)(τ ) − (Ix)(τ )| < σ. This implies

(Ixε)(τ ) > (Ix)(τ ) − σ = (1 + A)r,

which is (6.13). Therefore, (6.10) holds with x̂ = xε. �

Remark 6.1. It follows from (6.12) that if the function c in Theorem 6.1 is differentiable, then so is x̂.
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