ON THE REDUCTION OF KRASNOSELSKII’'S
THEOREM TO SCHAUDER’S THEOREM

T. A. BURTON AND BO ZHANG

ABSTRACT. Krasnoselskii noted that many problems in analysis
can be formulated as a mapping which is the sum of a contraction
and compact map. He proved a theorem covering such cases which
is the union of the contraction mapping principle and Schauder’s
second fixed point theorem. In putting the two results together
he found it necessary to add a condition which has been difficult
to fulfill, although a great many problems have been solved using
his result and there have been many generalizations and simpli-
fications of his result. In this paper we point out that when the
mapping is defined by an integral plus a contraction term, the in-
tegral can generate an equicontinuous map which is independent
of the smoothness of the functions. Because of that, it is possible
to set up that mapping, not as a sum of contraction and com-
pact map, but as a continuous map on a compact convex subset
of a normed space. An application of Schauder’s first fixed point
theorem will then yield a fixed point without any reference to that
difficult condition of Krasnoselskii. Finite and infinite intervals are
handled separately. For the class of problems considered, applica-
tion is parallel to the much simpler Brouwer fixed point theorem.

1. INTRODUCTION

Throughout applied mathematics we see real world problems mod-
eled by various differential equations which are often inverted as inte-
gral equations defining natural mappings of certain sets in a Banach
space into themselves. In order to get a fixed point solving the differen-
tial equation we are frequently faced with severe compactness problems,
particularly when we need a solution on an entire interval [0, 00). In-
deed, there is a myriad of real world problems modeled by fractional
differential equations which naturally invert as integral equations with
singular kernels. These integral equations define a natural mapping
which invites either Schauder’s or Krasnoselskii’s fixed point theorem.
Frequently the mapping is continuous and we can locate a convex set
mapped into itself. Our task is only beginning as we consider compact-
ness questions and the mixing of contraction and compact maps.
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Here we arrive at the objective of this project. We show that if the
kernel and its coefficient function satisfy reasonable conditions, then
there is a natural equicontinuity condition on the part of the mapping
generated by the integral. We then restrict our mapping to a convex
set in the Banach space for which that equicontinuity holds even for
the contraction part of the mapping. This allows us to use Schauder’s
first fixed point theorem to get a fixed point.

Here is the advantage. In Krasnoselskii’s theorem there is a compli-
cated condition (item (i) in the theorem below) which ties the contrac-
tion mapping to the compact mapping. By the above process we avoid
that complication and get the fixed point directly from Schauder’s the-
orem. We now look at the details.

Krasnoselskii studied an old paper of Schauder on elliptic partial dif-
ferential equations and deduced a working principle which we formalize
as follows: The inversion of a perturbed differential operator yields the
sum of a contraction and compact map. Accordingly, he offered the
following result to facilitate treatment of that sum.

Theorem 1.1 (Krasnoselskii). Let (S, || - ||) be a Banach space, M a
closed, convex, nonempty subset of S. Suppose that A, B : M — S
such that

(i) r,y € M = Ax + By € M,
A is continuous and

(ii) AM resides in a compact set,

(iii) B is a contraction

with constant o < 1.
Then 4y € M with Ay + By = y.

It is clear from (ii) and (iii) that it is intended to be a combination
of Schauder’s second fixed point theorem and the contraction mapping
principle. As such it would seem to be exactly what is needed in so
many problems in differential and integral equations. But the mar-
riage of the two principles takes place in (i) and that has been very
challenging in so many standard problems from applied mathematics.
We addressed item (i) in [3]. A very nice summary of selected results
on Krasnoselskii’s theorem up through 2007 is found in [16]. Other
recent results are found in [1], [10], [11], and [5]. It is very convenient
to find Krasnoselskii’s result and proof in [17], as well as two forms of
Schauder’s fixed point theorem used here.

To focus on the need for such a result we consider a neutral functional
differential equation

Example. Consider the scalar equation

() = —x(t) + a%a:(t —h) +u(t,z(t))
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with a continuous initial function ¢ : [—h,0] — R in which, for sim-
plicity in this presentation, we ask that ¢(0) = a®)(—h). By grouping
terms and integrating we obtain

x(t) =ax(t —h) + /0 e~ [—ax(s — h) + u(s, z(s))]ds.

A full treatment using Krasnoselskii’s fixed point theorem is found in
[2, pp.180-184).

The first term, az(t — h), does not smooth but the integral smooths
in a most remarkable way. When z is restricted to any given bounded
set in BC' with a bound of a fixed number K, then the integral maps
that set into an equicontinuous set where the equicontinuity is com-
pletely independent of the behavior of x. This allows us to place an
equicontinuity condition on the mapping set so that the integral equa-
tion maps that set into itself. The fact that the contraction term does
not smooth causes no trouble at all. We then apply Schauder’s first
fixed point theorem and obtain a bounded and continuous solution on
any interval [0, T]. The victory is that in applying the result condition
(i) of Krasnoselskii’s theorem is completely avoided. If the mapping set
is essentially a ball then the work holds for 0 < t < oo in a weighted
space.

An integral equation with a mild singularity has a natural induced
equicontinuity which can be of prime importance in fixed point theory.
We will consider two essentially different forms:

(1a) x(t) =V (t,x(t)) —I—/O R(t — s)u(t, s, z(s))ds

and

(1b) x(t) = f(t,x(-)) —I—/O R(t — s)u(t, s, z(-))ds

where V' and f are of a nature to generate a contraction while R will
generate a compact map. For example, we may find a closed convex
nonempty set M in the Banach space (BC, ||-||) of bounded continuous
functions ¢ : [0,00) — R with the supremum norm with the property
that ¢ € M and for P defined by either

(2a) (Pe)(t) = V(¢ o(t)) +/0 R(t — s)u(t, s, d(s))ds

(2b) (Po)(t) = f(t ¢(-)) +/0 R(t = s)u(t, s, ¢(:))ds

with a given initial function ¢ : [—h,0] — R, we have P : M — M.
Immediately we think of Krasnoselskii’s fixed point theorem with all

its benefits, together with real challenges. But there is a more direct

way if R has mild singularities of the following form. Assume that for
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the fixed set M there is a positive constant, ¢, with 0 < ¢ < 1 so that
for ¢ € M then
(3) 0<R(t—s)<(t—s)? "

There are many sources for such problems. We can then show (see [6]
and Theorem 6.1) that, independently of the particular ¢ € M, the
integral

(4) (L) (t) := / R(t — s)ult, s, 6(s))ds
satisfies
(5) ILé(t) — Lo(s)| < H(0)[t — 5|

where H (t) is an increasing function. That is, LM is an equicontinuous
set. In fact, let ¢ > 0 be fixed. For a given € >0, we find 6 >0 corre-
sponding to the € and ¢ in the definition of equicontinuity by H(¢)d? < e
or

(6) 0 < (e/H(#))".

Next, suppose there is a § < 1 so that x,y € R implies that

(7a) V(t,z) = V(t,y)| < Ble—yl.

Or, suppose there is an « < 1 and h > 0 so that for ¢t > h,

(7b) £t 0() = F(t 0 ()] < algr — ] T

for ¢,1) € M, where |y — 1|7 = sup_j,cp<0 |6(t + ) — ¥ (t + 0)].

The process is now clear. We ask that we add to M the property that
all functions satisfy the equicontinuity condition (6) in a certain way
so that ¢ € M implies Pp € M.

2. THE INTEGRAL EQUATION WITHOUT A DELAY

We are going to continue to use the kernel in the stated form so that
the reader can see clearly the exactness of the equicontinuity on which
the entire process depends. However, with care one can do the same
for a more general equation. For example, Garcia-Falset [10, p. 1746,
Item 4] considers the integral equation

x(t) = g(t,x) + /0 F(t—s,s,u(s))ds

and obtains a bounded mapping set M in which there is a contraction
condition on ¢ and a relation

||F(t> S>I) - F(h> S>I)H < SG(|t - h|)

where G is a continuous function with G(0) = 0 and S a constant
depending on a bound on the functions in M. The reader is then left
to carry out computations parallel to those which we provide below as
a template for such work.
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Let T' > 0 and (BC, ||-]|) be the Banach space of bounded continuous
functions ¢ : [0,7] — R with the supremum norm. We consider an
integral equation of the form (1a)

x(t) =V (t,xz(t)) + /0 R(t — s)u(t, s, z(s))ds.

The following assumptions will be used.

(i) R :(0,00) — [0,00) is continuous, decreasing, and R(t — s) <
(t—s5)7t 0<qg<]l.

(ii)) w:[0,7] x[0,T] x R — R is continuous.

(iii)  There is a closed, bounded, convex, nonempty set M C BC
with the following properties:

(a) There are positive J, S such that ¢ € M and0 < s <t < T

implies that |u(t, s, ¢(s))| < S and

u(t, 7, 9(7)) — uls, 7, ¢(7))| < J|t — s|.
(b)  V :]0,T] x R — R is continuous and there is a positive 3
with 8 < 1 such that ¢ € M and t,s € [0,7] implies that

[Vt (1) = V(¢ ¢(s))| < Blo(t) — o(s)].

We will proceed with a view of constructing a nonempty compact
convex subset M* of M which is mapped into itself by P defined in
(2a) in such a way that Schauder’s first fixed point theorem can be
applied to the restriction mapping P : M* — M*. The resulting fixed
point is then trivially a fixed point of the original mapping P : M — M.

Theorem 2.1. Let (i) - (i1i) hold. Suppose that the mapping P defined
by ¢ € M implies that

(PO = Vt0(0) + [ it~ o)utts,006))ds, 0 <t <T
0
maps M — M. Then P has a fixed point.

Proof. Since M is nonempty, we choose a fixed ¢* € M and define
M*={¢ € M:|p(t) — o(s)| S w(t,s), Vi s €[0,T]}

where

w@ﬁzt%HW@—W@HJWW—W+VWﬁﬂ

with V*(t, s) =supj,<p |V (t, 2) =V (s, x)|, H(t Jfo s)ds+(25/q)
and D the bound of M. We now see that M *is nonempty since ¢* €
M*. We shall show that M* is a compact convex subset of M.

First, we note that M is convex so if ¢,n € M and 0 < k < 1 then
ko + (1 —k)n € M. Thus, if ¢,n € M* then

Elo(t1) — o(t2)] + (1 = F)[n(t) — n(t2)]] < w(t, t2)
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so M* is also convex. In fact, M* is a compact subset of M. To see
this, let {¢,} denote a sequence in M*. As the sequence is uniformly
bounded and equicontinuous on [0, 7], by the Ascoli-Arzela theorem
there is a subsequence {¢,, } with a limit ¢ residing in the closed set
M. If t1,12 € [0, T] then

|6(t1) = P(t2)| < [(E1) = Py (E1)[ + |Pny (11) = by (B2)] + | Dy (2) — D(E2)]-

The first and last terms on the right-hand-side tend to zero as k — oo,
while the middle term is less than w(t,t2) so that for large k the left-
hand term is less than w(ty,t2). Thus, ¢ € M*, and so M* is a compact
subset of M.

Next, we show that ¢ € M* implies that Py € M~*. Certainly,
P¢ € M. By Theorem 6.1, we see (5) holds on [0,7]. Now, for
t,s € [0, 7], by (iii) and Theorem 6.1 we obtain

[(P)(t) — (Po)(s)]
< V(o) = Vs, ()| + [Lo(t) — Lé(s)]
< V(o) = VIt o(s))| + [V(E, d(s)) — V(s o(s))|
+ [Lo(t) — Lo(s)]
< Blo@t) — o(s)| + V7 (L, s) + H(@D)[t — |
< ﬁw(t> S) + (1 - ﬁ)w(t> S) = (.U(t, S)
so P: M*— M*.

It is rather routine to show that P is continuous. Let € > 0 be given.

First, for €/2, find p > 0 so that

,u/OT R(s)ds < €/2.

Now M is bounded by a number D and u(t,s,z) is uniformly con-
tinuous for 0 < s < ¢t < T and |z|] < D so for the p > 0 there is
the 9; > 0 of uniform continuity so that ||[¢ — n|| < J; implies that
lu(t, s, d(s)) — u(t,s,n(s)| < p. Also, since V (¢, x) is uniformly con-
tinuous for 0 < t < T and |z| < D, there exists d2 > 0 such that
| — n|| < 2 implies that

V(t,o(t)) — V(t,n(t))| <e/2 forall t €|0,T].
Take 6 = min[dy, d2). Then ||¢ — n|| < ¢ implies that

[(Pg) — (P)[| < [IV(¢) = V(n)l| +u/0 R(s)ds < (¢/2) + (¢/2),

where V(¢)(t) = V(t, ¢(t)), as required.

Thus, P is a continuous map of a compact convex nonempty set M*
into itself so, by Schauder’s first fixed point theorem, P has a fixed
point in M* C M. 0]
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2.1. The case for T = oco. For the case of 0 < t < T just covered
we allowed M to be any closed bounded convex nonempty set in BC'.
When we pass to [0, c0) there is a large change since M* may no longer
be a compact subset of M in BC' even if it satisfies the equicontinuity
condition. In this case M must be essentially a ball in order for M to
be closed and M* compact in a weighted space being considered here.

Theorem 2.2. Let (i) - (iii) hold with T = oo. Suppose there are
continuous functions v,w : [0,00) — R with v(t) < w(t) fort > 0. Let

M ={¢e BC|v(t) < ¢(t) <w(t)}.

If the mapping P of Theorem 2.1 maps M into M, then P has a fixed
point.

Proof. Let g : [0,00) — [1,00) be continuous with ¢ €] oo. Then
(W,]|-|,) is the Banach space of continuous functions ¢ : [0,00) — R
for which
|plg =t sup ()] < 00.
o<t<co 9(t)
Since g is an arbitrary continuous strictly increasing function with
g(t) — oo as t — oo, we may choose g so that

(8) I v(t) w(t)

m ——- =0 and lim — =0.
t—o0 g(t) t—o0 g(t)

We see that v and w may be unbounded, but the functions in M

restricted to any compact interval [0, 7] are uniformly bounded.

We define M* as in Theorem 2.1 with
1 * * *
w(t,s) = -5 [o"(t) — @™ (s)| + H(t)[t — s|? + V(¢ 5)]

for t,s > 0.

Note that M* is a closed convex nonempty subset of (W, |-|,) and the
work in the proof of Theorem 2.1 shows that P : M* — M*. Let {¢,}
be a sequence in M* and use Ascoli’s theorem and the diagonalization
process to show that there is a subsequence {¢,, } converging to some
¢ € BC uniformly on compact subsets of [0, 00) and ¢ € M. Moreover,
|, — g — 0 as k — oo since (8) holds.

The proof of Theorem 2.1 shows that ¢ satisfies the equicontinuity
property so ¢ € M*. Therefore M* is a compact subset of (W, |-],). An
argument similar to that in [5] shows that P is continuous in the g-norm
on M. Applying Schauder’s first fixed point theorem to P : M* — M*
in (W,]|-|,), we obtain that there exists a point ¢ € M* with P¢ = ¢.
This completes the proof. O

Remark 1. If § = 1 in (iii)-(b), then the argument in the proof of
theorems above fails. However, we may still be able to establish the
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existence of a fixed point for P under additional assumptions on V.
The process goes as follows. We first prove the existence of an e-fixed
point of P; that is, for each € > 0, there exists z. € M such that

|Px. — z.|| < e.

Next, we apply the approximation method to obtain a fixed point of P.
This will be demonstrated in Theorem 2.3. Let I denote the identity
map and (I —P)(M) denote the range of [ —P on M.

Theorem 2.3. Let (i) - (i1i) hold with 3 =1 and T = oo, and let M
be defined in Theorem 2.2. Suppose that
(iv)  the set (I — P)(M) is closed in BC.

If the mapping P of Theorem 2.1 maps M into M, then P has a fixed
point.

Proof. Since M is nonempty, we choose a fixed ¢ € M and define, for
any positive integer n, a mapping P, by ¢ € M implies

(Pd)1) = (1 = ) (PO)E) + 000

= (1—%)V(t, gb(t))—l—%gz;(t)} + (1—l)/0 R(t—s)u(t, s, (s))ds.

n

Since P¢ € M and M is convex, we have P,¢ € M and thus, P,(M) C
see for ¢ € M that

[Valt, ¢(1)) = Va(t, ¢(s))] = (1 = %)IV(t, ¢(t)) = V(, ¢(s))]

< (1= )16(t) ~ 6(5)]
= 516(1) — o(5)

for t,s > 0. Thus, conditions (i)-(iii) are satisfied with V (¢, x), u(t, s, =)
replaced by V,,(t,z), (1—1/n)u(t, s, ), respectively. By Theorem 2.2,
there is a point ¢, € M such that P,¢, = ¢,; that is,

00(0) = Valt.0u(0) + (1= 3) [ Rt = 9ult. s, 00(5)ds

n

We also see from

(P3.)(0)=0,(6) = L [V(00u0) + [ RO=9)ult,s.00(5))ds] = 20

n
that P has an e-fixed point in M for each € > 0 since

I
[Pén — ¢nll < =
n
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where p = sup{||Py|| : ¢ € M} +||¢||. Let G = I — P. Then
IG(@u)ll = |1Pdn — ¢ull = 0 as n— oo

and so 0 € G(M) = G(M) since G(M) is closed in BC'. Thus, 3¢ € M
such that P¢ — ¢ = 0. This completes the proof. O

We now define a mapping V : M — BC by V(¢)(t) = V(t, ¢(t)) for
allt > 0and ¢ € M.
Corollary 1. Let (i) - (iii) hold with 8 =1 and T' = oo, and let

M={¢eBC:|[¢| <K}

for a constant K > 0. Suppose that

(V) supp [Vt 2) = V()| < |z —yl
for all z,y € [-K, K] with « # y. If the mapping P of Theorem 2.1
maps M into M, then P has a fixed point.

Proof. We only need to show that (iv) holds. To this end, let %, €
(I — P)(M) with ||¢, —¢|| — 0 as n — oo for some ¢ € BC. We
shall show that ¢ € (I — P)(M). Let ¢, € M with ¢,, = (I — P)¢, for
n=12"---. We write (I — P)p,(t) = ¥,(t) as

(9) Pn(t) = V(t, ¢u(t)) = yn(t) + Pn(t)

where
yn(t) = /0 R(t — $)ult, s, du(s))ds.

Since V' is continuous on [0,00) x [-K, K] and P(M) C M, we see
that the sequence {y,} is uniformly bounded and equicontinuous on
any compact subset of [0, 00) by (iii)-(a) and Theorem 6.1. Thus, by
the Ascoli-Arzela theorem, there is a subsequence {y,, } converging to
some y € BC uniformly on any closed bounded interval [0,7]. Since

(v) holds, we have by Theorem 6.2 that (I — V)™! is continuous on
(I —V)(M). It now follows from (9) that

(10) G (t) = (T = V)™ [y + ] (8).
This implies that {¢n, } converges to a function ¢ € M uniformly on

[0, T]. Since (I —V)~! is continuous on (I — V)(M), by letting k — oo
in (10) we obtain

(11) o(t) = (I =V) My +¢](t) for ¢ €0,T]
Taking the limit in

Y (1) = / Rt — s)ut, 5, 6y (5))ds
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we also obtain
(12) y(t) = / R(t — s)ult, s, 6(s))ds

Combining (11) and (12), we see that ¢(t) = (I — P)¢(t) for all t > 0.
Thus, ¥ € (I — P)(M), and the proof is complete. O

Example 1. Consider the fractional differential equation of Caputo
type

(13) ‘DUz—k(z)) = —a(t)x*(t) + G(t,z(t), 2(0) =1z, 0<qg<]1,
with a:[0,00) =R, k: R — R, G:[0,00) x R — R continuous. See
6] for background and definitions. Suppose that

(i) a(t) is bounded on [0, c0),

(i) |G(t,z)| < b(t)|z]? for |z] < 1 and t > 0,

(iti) a(t) — b(t) > & for all ¢ > 0 and a constant & > 0.

(1:7) 3~ > 0 such that s : [—7v,7] — R is nondecreasing, odd with

3

x — k(x) — x° increasing on [0,7] ,

Then the zero solution of (13) is stable.
Proof. Choose a constant 1 > 0 with sup,.qa(t) <n and define

awzﬁ%ﬂi

Then the resolvent R satisfies
t
R@:O@—/fw—@m@@
0

This resolvent R is completely monotone on (0, 00). Moreover,
Ogﬂng@JMOﬁO%tem%wd/ R(s)ds = 1.
0

If we write (13) as

‘Di(x—r(z)) = —a(t)z®(t) + G(t, (1))
= —nlw — K(@)] +nlr — K(z) — 27
+ [n— a(t)]2® + G(t, (1))
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then the solution x(t) satisfies

x(t) = 2(t) + k(z) + /0 R(t — s)[z(s) — K(x) — 2°(s)]ds

! a(s)\ s ! 1
+/0 R(t — s) (1 - T) x°(s)ds —I—/O R(t — s);G(s,z(s))dS
= k(x) + 2(t) + /0 R(t — s)u(s,z(s))ds
=: (Pz)(t)
where z(t) = (zg — k(x0))(1 — fot R(s)ds).

Let 0 < € < 7. We may assume that v < v/3/3,7 > 1,and 0 < 0 < 1
so that de3/n < e. Now let |zg| < de®/n and define

M ={¢ € BC:|¢| <e}.

For the mapping defined above, we can show that P : M — M. To
see this, we observe that r — k(r) — 7% is odd and increasing on [0, £]

by (iv). Apply (ii) and (iii) to obtain
(P)(t)] < [2(8)] + 5(e) + (e — Kile) — %)

+53/0tR(t—s) (1—$+|b(n—s)|)ds

<lagl+ (- +e1-6/n) <e

if |£L’0| < 583/77.

Since x — k(z) — 23 is increasing on [0, 7], we see that z — k(x) is

strictly increasing on [—v, 7] with

k() = w(y)] <[z =yl

for all z,y € [—v,7] with x # y. We now readily verify that all
conditions of Corollary 1 are satisfied with V(t,z) = x(x) + 2(t), and
so, P has a fixed point x € M which is the solution of (13). Since e > 0
is arbitrary, this proves that the solution x = 0 of (13) is stable. O

Critique

Notice that conditions (i)-(iii) are simply defining the sets and func-
tions. Theorem 2.1 asks only that the investigator show that P : M —
M and P is continuous. Krasnoselskii’s theorem has been replaced by
Schauder’s theorem for certain Banach spaces.
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3. THE INTEGRAL EQUATION WITH A DELAY

Let T' > 0 and (BC, ||-]|) be the Banach space of bounded continuous
functions ¢ : [0,7] — R with the supremum norm. We consider an

integral equation with a given continuous initial function ¢ : [—h, 0] —
R of the form

(14) z(t) = f(xz(t—h)) +/0 R(t—s)u(s,z(s),z(s—h))ds+ F(t), t >0

with z(t) = ¥(t) for —h <t <0.
The following assumptions will be used.
(i) R :(0,00) — [0,00) is continuous, decreasing, and R(t — s) <
(t—s5)7t 0<qg<]l.
(i) w:[0,T] xR? — R and F :[0,7] — R are continuous.
(iii)  There is a closed, bounded, convex, nonempty set M C BC
with the following properties:
(a) ¢ € M implies that ¢(0) = 1(0).
(b)  There is a positive S such that ¢ € M and 0 < ¢t < T
implies that |u(t, ¢(t), o(t — h))| < S.
(¢) f:R — Ris continuous and there is an o < 1 such that
¢ € M and t,s € [0,T] implies

[F(6(1)) = f(0(s))] < alo(t) — o(s)].

It is understood that ¢(7) = ¥ (7),V 71 € [—h, 0], for all ¢ € M. We also
extend the domain of any function 7 : [a,b] — R to R by assigning
n(t) = n(a) for 7 < a and n(7) = n(b) for 7 > b. For a real-valued
function ¢ : R — R, we set

1 — sl = sup,e o [0(t + 7) — (s + 7)|

for all t, s € R. Finally, we point out that functions f, F' in (14) may
depend on v so that ¥(0) = f((—=h)) + F(0).

Theorem 3.1. Let (i) - (iii) hold. Suppose that the mapping P defined
by ¢ € M implies that

(Po)(t) =f(¢(t—h))+/0tR(t—S)U(s, ¢(s), d(s—h))ds+F(t), 0<t <T
maps M — M. Then P has a fized point.
Proof. Let ¢* € M be fixed and define

M ={g¢eM:[p(t)—d(s)| <O(ts), Vt,s€Q}

where
Q={(ts): t,se€[0,h] or t,se[h,T]|}
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and

1 28
0t 5) = 7 | |6f — &3 701+ — |t — 5|+ |F — F,| 70
—a .
+Sglg|f(w(t+7)) — f(W(s+ 7))l
for all t,s € [0,T].

It is clear that 6(t,s) — 0 as |t — s| — 0. This implies that M* is
uniformly bounded and equicontinuous on [0,7]. Since ¢* € M*, we
see that M™* is a compact convex nonempty subset of M.

We now claim that 6(t — h,s —h) < 0(t,s) for all t,s € [h,T]. In
fact, we have

O(t —h,s—h)
~1_a {|¢t—h—¢s_h|( ’0]+?|t—s|q+|Ft_h_Fs_h|( ,0]}

+sup [f(Y(t = h+ 7)) = f((s —h+7))|

7<0
1 29
el LR R S R O]
11—« q

+ sup |f(Y(t+0)) = f(d(s +0))|

o<—h
1 25
——@@—@H“w—w—w+m—awﬂ
11—« q

+sup [f((t+ 7)) = fF(¥(s+7))|

7<0

=0(t, s).

Next, we show that ¢ € M* implies that Py € M~*. Certainly,
P¢ € M. We may assume h < T and still denote the integral term in
(14) by Le(t) so that (5) holds with H(t) = 25/q. Now, for ¢, s € [h,T],
we have

((Pe)(t) — (Po)(s)]
< [f(d(t = h)) = f(o(s = W) + |Lo(t) — Lo(s)| + |F (1) — F(s)|

< alg(t —h) — (s — h)| + %It—SI‘“r [F(t) = F(s)]

25
<ab(t —h,s —h)+ —|t — s|? + |F, — F,|(7>0]
q

<ab(t,s)+ (1 —a)b(t,s) =0(t,s).
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For t, s € [0, h], we observe that
|f(o(t = h)) = f(é(s = h))[ = [f(&(t =) — f(ib(s = h))]

and so
[(P9)(t) — (Po)(s)]
< [f@—=h)) = f(@(s = h)| + |Lo(t) — Lo(s)| + [ F'(t) — F(s)]

< [f@(t=h)) = flib(s = b)) + %It = |t [F(t) = F(s)]

< (t, s).

This implies that P : M* — M*. The rest of the proof is exactly as in
the proof of Theorem 2.1. O

The extension to the interval [0, 00) is exactly as before.

4. A FRACTIONAL INTEGRAL EQUATION

There is an interesting and important paper [9] dealing with the
scalar integral equation

(15)  a(t) = g(t,x(t)) +

f(t,z(t)) /t v(t, S’I(S))ds, 0<g<l,

I'(q) (t—s)te
which is studied by means of measures of noncompactness and a fixed
point theorem of Darbo. It is important because it models a number of
real-world problems with a view to showing that at least one solution
exists and that any other solution converges to it at infinity. All of the
conditions are introduced in Lipschitz form and from these are obtained
rapid decay of the functions involved. It is interesting from our point
of view because there are no sign conditions on any of the functions.
Everything is controlled by the Lipschitz conditions and the decay of
functions.

We wish to show that we can avoid the measures of noncompactness
and one of the Lipschitz conditions (but not the implied decay), and use
Theorem 2.2 to obtain some elementary solutions. Indeed, the point
of our results is that they are elementary and, in fact, fairly close to
Brouwer’s theorem.

The idea is to state the conditions in [9], denoted by (h;), and then
state the consequences which we will use and denote these as (¢;).
(h1) g : RT xR — R is continuous, ¢(¢,0) is bounded, and ¢g* =
sup;sg |9(t,0)]. Also, there is a continuous function £(¢) with

lg(t,x) — g(t,y)| < U(t)|z -y

for x,y € Rand t > 0.
(c1)  We will use (hy), but will not ask for g* (see (cs)).
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(h2) f:RT xR — R is continuous and there is a continuous function
m: T — R such that

[f(t,2) = f(t,y)| < m(t)]x -yl

for x,y € Rand t > 0.
(c2)  We will use (hs), but will not ask for m(t)n(t)t? — 0 as t — oo.

(h3) v:RT xRT x R — R is continuous. There exists a continuous
functions n : ®T — RN and a continuous nondecreasing function P :
Rt — R with &(0) = 0 so that for all t,s € R with ¢t > s we have

o(t,s,2) —v(t,s,y)| < n(t)®(lz - yl).

Also, there is a function v*(t) = max{|v(¢,s,0)|: 0 < s < t}.
(c3)  We will use

v(t, s, 2)] < 0 (t) + n(t)D(|z]).
Now, everything is gathered.

(hy) The functions ¢, v, &, n: BT — R defined by

o(t) = m(t)n(t)t?

U(t) = m(t)v(t)t

&(t) = n(t)|f(£,0)[t

n(t) = v ()] f(£,0)]t

are all bounded on R and limy . ¢(t) = lim;_, £(¢) = 0.
(c4)  We will use the notation of (hy), but will not ask boundedness
or limit conditions of these functions.

(hs) There exists a positive solution 7y of the inequality
(Cr+g ) (g+1) +[¢r®(r) + " r + £O(r) + 7] < rI(g +1)

and T (qg+ 1)+ ¢*P(rg) +¢* < I['(¢+1), where £* = sup{/(t) : t > 0},
o = sup{6(t) : t > O}, " = sup{(t) : ¢ > 0}, & = sup{&(¢) : £ > 0}
and n* = sup{n(t) : t > 0}.

(c5) We will improve (hs) by asking that there exists a continuous
function r : [0,00) — (0,00) and a 3 < 1 such that for all ¢t > 0

() + [(@) + o(t)2(r"(1))] <p

I(g+1)

and

<r

(0) + L)+ [+ GE)r) + EOP)] gy <

where 7 = 7(t), r"(t) = supy<,<, 7(s), 7(t) = [9(t, 0)[ +n(t)/T'(q + 1).

Under the assumptions (hy) - (hs) it is shown in [9, p. 77] that there
is at least one solution of the integral equation; moreover, if there
are other solutions, then they converge to the given solution. This is
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proved using the full conditions (hy) — (hs) and methods of measures
of noncompactness.

Our purpose here is to show that with our theorems there is an
elementary proof using only (c1) — (¢5) to show that there is a solution
x of (15) with |z ()| < r(t) without the Lipschitz condition on v or the
limit conditions in (h4).

Theorem 4.1. Let (¢1), (c2), (c3), (c4) and (¢5) hold. Then the integral
equation (15) has a solution x with |x(t)| < r(t) for all t > 0.

Proof. Asin [9, p. 79], the stated conditions are sufficient to show that
if

M ={¢ e BC:|o(t)] <r(t)}
then the natural mapping defined by the integral equation maps M into
itself. The proof of Theorem 2.1 and Theorem 2.2 will establish conti-

nuity of the map. The appendix will show the required equicontinuity
and other technical details. 0J

5. A NEUTRAL DELAY EQUATION

5.1. Neutral equations. A large body of literature can be found con-
cerning applications of neutral differential equations by simply putting
“epidemics and neutral differential equations” into a search engine.
The basic and heuristic idea of a neutral equation is that the rate of
change, 2'(t), is influenced not only by a ”position” of x in space and
time, together with forces acting on = as we would deduce from New-
ton’s Second Law of Motion, but it is also influenced by the recent
rate of change of . Epidemics and other problems in mathematical
biology are widely studied by neutral differential equations. See, for
example, Gopalsamy [7], Gopalsamy and Zhang [8], Kuang [13], [14],
[15]. Investigators have given heuristic arguments to support their use
in describing biological phenomena and much of this is formalized in
the final chapter of each of the books by Gopalsamy [7] and Kuang
[13].

There are many other problems treated by neutral differential equa-
tions and our main contribution here is a quick sketch of the way to
express a problem of the form

'(t) = %f(:v(t—h))—U(t,x(t)w(t—h)), x(t) = (), —h<t<0,

as a problem readily attacked by the extension of Theorem 3.1 to
[0,00). Here, h is a positive constant, u is continuous and bounded
for x bounded, and f satisfies a contraction condition. The function
1 is a given continuous initial function and we want a solution for
0 <t < oo. If we were to simply integrate that equation to obtain an
integral equation defining a mapping, then almost everything in our
theory would fail. Instead we employ a form of a “linearization trick”.
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Let J be a positive constant to be determined, subtract and add Jx(t)
to obtain

2'(t) = —Jz(t) + Jx(t) + %f(:v(t —h)) —u(t,z(t), z(t — h)).

Take all the terms except 2'(t) = —Jz(t) as an inhomogeneous term
and use the variation of parameters formula to write

t
d
x(t) = w(O)e_Jt—l—/ €_J(t_s)[JI(S)—I-%f(ZE(S—h))—u(S,JT(S),ZE(S—h))]dS
0
Integration by parts of the derivative term in the integral yields

w(t) = Y(0)e™ + f(z(t — h)) — 7" f(¥ (=)
+ /0 e Ja(s) — Jf(x(s — h)) — u(s, z(s), x(s — h)]ds.

The positive constant, J, can be chosen at will to facilitate the con-
struction of a self-mapping set M of the type required for our theory.
This equation defines a mapping which is well-suited to Theorem 3.1
and its extension to [0, 00). We do not need to satisfy the difficult con-
dition (i) of Krasnoselskii’s theorem. Details for a self-mapping set can
be found in [4]. The details are quite lengthy and will not be repeated
here.

6. APPENDIX

Theorem 6.1. Let u : [0,00) x [0,00) X R — R be continuous, and let
R : (0,00)—[0,00) be continuous, decreasing, and R(t—s) < D(t—s)7!
with 0<q<1 and D>0. Then there is a continuous increasing function
H so that if t,s >0, if x € BC with |u(t, s, z(s))| < K and
(16) u(t, 7,2(7)) = u(s, 7, 2(7))| < J|t — s/
then

‘/ (t —1)ult, 7, z(T ))dT—/ R(s — m)u(s, 7, z(1))dr

@)t — s

where H(t) = 2KD/q + J [} R(T)dr.
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Proof. Note that since R(t) is decreasing and there is a constant D
with 0 < R(t) < Dt?! we have, for 0 < s < ¢, that

L</ R(t —7) — R(s — 7)|[ult, 7, () |dr
; / IRt = 7)lut, 7. (7)) |dr
v IR(s = ) lu(t, 7, 2(7) — uls, 7, 2(7))\ds
§/OSK[R(s—T)—R(t—7‘)]d7‘+K/stR(t—7')d7
+ [ 1R = lar Jle = s

:K/OSR(S—T)dT—K/OSR(t—T)dT+K/StR(t—T)dT

+/ R(7)dr JJt — s
0

_ / dT—K/ dT—I—K/ (t — 7)dr

—I—/ R(r)dr J|t — s|?

:K/ d’T—K/ d7‘+2K/ (t —7)dr

—I—/ R(r)dr J|t — s|?
0
the sum of the first two terms is negative

t s
< 2DK/ (t — 7)1 dr + / R(r)dr J|t — s|?
s 0

=—-2(KD/q)(t — 1)1 + /OS R(r)dr J|t — s|?

=[2KD/q+ J/OS R(7)dr]|t — s|*

<[2KD/q+ J/Ot R(7)dr]|t — s|*

— H(t)|t — s|”.
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The same equality holds if 0 <t < s. This completes the proof. OJ

Theorem 6.2. Let (i) - (iii) hold with f =1 and T = oo, and let
M={¢ecBC:|¢| <K}
for a constant K > 0. Suppose that
(V) sup V(5 2) = V(Ey)| <[z -y

for all x,y € —K, Kl with x # y. Then (I —V)™! is continuous on
(L = V)(M), where (Vo)(t) =V (t, ¢(t)) for ¢ € M.

Proof. Since (v) holds, we see that (I — V) is one to one, and hence the
inverse (I — V)~! exists. We now show that (I —V)~! is continuous on
(I — V)(M). To this end, let {y,,} be a sequence in (I — V)(M) with
[y — y*|| — 0 as n — oo for a function y* € (I — V)(M). We need to
show that

(I — V)_lyn — (I — V)_ly* as n — 00.
Set 2, = (I — V) 'y, and z* = (I — V)"Ly*. Then (I — V)z, = yn
and (I — V)z* = y*. Suppose that z,, /4 x*. Then there exists an
g0 > 0 and a subsequence {z,, } of {z,} such that ||z, — z*|| > &¢ for

all k=1,2,---. Now choose t;, € [0,00) with
|y (k) — 27 (tk)] = €0/2.
Observe that the function sup,. |V (¢, ) =V (t,)| is continuous on the
compact set Q = [—-K, K| x [-K, K|. By (v), we have
{SUPQO |V(t,x) - V(t,y)| )
sup :
|z =y

z,y € [-K, K] } — <1

lz—y|=>e0/2
and therefore
V(s @y (8)) = V(27 ()] < 0lan, (k) — 27 (k).
We now have
(Y (t8) = 5" (80)| = (0 = Vi) (8) = (@ = Vi) ()|
> [, (tr) = 2" (t)| = |(Vaw,) (t) = (V') (t)]
> [y (1) — ()] — Oy (1) — 2 (1)
= (1 =9)|zn, (tx) — 2" (tx)| > (1 — 6)eo/2 > 0.
This yields
(1 =0)e0/2 < |yn, (te) =y (t)| < llym, — y"ll = 0 as n — oo,

a contradiction. So we obtain z, — x* as n — oo, and thus (I — V)~!
is continuous on (I — V')(M). This completes the proof. O
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Proof of Theorem 4.1. Let BC' be the Banach space of bounded
continuous functions ¢ : [0, c0) — R with the supremum norm || - ||. To
simplify notations, we set

g (t,s) = sup |g(t,y) —g(s,y)l,

[y|<r(s)
fr(t,s) = sup |f(t,y)— f(s,9)l-
[y|<r(s)
and
1 t
I(t,2(-) = F(q)/o U((tt’_s’;;(fz)ds.
We define

M ={x € BC : |z(t)| < r(t), Vt > 0}
where r(t) is given in (cj).
Now let P be the natural mapping defined by the integral equation

(15). We will show that P maps M into itself. To see this, letting
x € M, we have

((Px)(t)| = 1g(t, 2 () + (£, x(t)) I (L, x(-))]
< lg(t,2(t)) = g(t,0)| + |g(¢,0)|
+1f () = FE O 2 ()] + [0, 2())]
< L(@)|=(t)] + 1g(2, 0)]

(
(t)
+m(8)|x @)1t () + [ 0L, 2(-)l
(use (16) below)
< (t)r(t) +1g(t, 0)]
1
I'(g+1)
1
I'(g+1)

+m(t)r(t)[v*(t) + n(t)®(r*(t))]t?

+ 1@ 0)[[v"(8) + ()@ (1))
= () + £(t)r(t)
+ [ @)r(t) + o)r@)@(r (1)) + £()2(r (1))

< r(t)

1
I(g+1)

by applying (c1) — (c3) and (c3).
Next, we define M* by
M*={x e M:|z(t)—z(s)| < v(ts), Vt,s >0}
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where v(t, s) is a continuous function to be defined below with v (¢, s) —
0 as |t — s| — 0. We want to show that |(Px)(t) — (Px)(s)| < v(t,s)
for ¢ € M. To this end, we proceed to estimate the terms on the
right-hand side of (15) for x € M. By (c3), we have

(16) |Utt_sSI1 —q
L) + ()@ ((s)
Sr<q>/o S
. 1/ 1
<)+ 000 O [ s
q 1 — *

= [ (0) ) () gy = )
and
(a7 £t ()] < £t 2(0) — F(0)] + (2,0

< m(t)|z(t)| + | f(t,0))
<m(t)r(t) + | f(t,0)] = f(t).

From (c;), we have
(18) |g(t, (1)) — g(s, z(s))|
<g(t, z(t)) — g(t, z(s))| + [g(t, 2(s)) — (s, 2(s))]

<L) ](t) —x(s)[ + g7 (¢, ).
Apply (cz) and the estimate in (16) to obtain

(19)  [f(t,2(t) = f(s, x()(E, z(-))]
< () = f& w()[[ 1, ()]
+ 1St x(s)) = fs, 2(s)[L(E 2())]
< m(t)|(t) — x(s)[J(t) + f*(t,5)J"(t)
= [v(t) + ¢(t)®(r*(t))]ﬁlﬂf(t) —x(s)|+ f7(t,5) 7 (D).

An argument similar to that in the proof of Theorem 6.1 yields, for
0 <s<t, that

(Lt x(-)) = I(s, ()|

< 0% (1) + ()0 ()] 5

—Z jt—sli+
(¢+1)

Tt 1)tqv*(t, s)=:I*(t,s)

where v*(t, s) = supj, <, [V(t, 7, y) —v(s,7,y)| for 0 <7 < s <t
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Taking into account (17), we get

(20) |1(t,2(-)) = I(s,2())||f (s, 2(s))] < I*(t,8) f(s).
Combine (18)-(20) to obtain

|(Pz)(t) = (Pz)(s)]

< (60D (q + 1) + 0(0) + (B0 (1)) e

q+1)

)

( assigning the last three terms as (1 — B)v(t,s) )
< Bla(t) — x(s)] + (1 = B)v(t, s)

< Bu(t,s)+ (1 = B)v(t,s) =v(t,s)

where (3 is given in (c5). Thus, P : M* — M*. The rest of the proof
follows that of Theorem 2.2 so P has a fixed point in M which is a
solution of (15). The proof is complete.

i [z(t) — x(s)]
+ g (t,8) + f5(t, 8)T*(t) + I*(t, s) f(s
(
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