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Abstract. We study a variety of scalar integro-differential equa-
tions with singular kernels including linear, nonlinear, and resol-
vent equations. The first result involves a type of existence theorem
which uses a fixed point mapping defined by the integro-differential
equation itself and produces a unique solution with a continuous
derivative in a very simple way. We then construct a Liapunov
functional yielding qualitative properties of solutions. The work
answers questions raised by Volterra in 1928, by Levin in 1963,
and by Grimmer and Seifert in 1975. Previous results had pro-
duced bounded solutions from bounded perturbations. Our results
mainly concern integrable solutions from integrable perturbations.

1. Introduction

We study a scalar nonlinear integro-differential equation of the form

(1) x′(t) = f(t) − h(t, x(t)) −
∫ t

0

C(t, s)q(s, x(s))ds,

together with its resolvent in the linear case. The objective is to de-
termine qualitative properties of solutions when there is a p ∈ [1,∞)
with

(2) f ∈ Lp[0,∞), xh(t, x) ≥ 0, xq(t, x) ≥ 0,

and C has a weak singularity at t = s with properties to be described
later.

Here, C is a convex kernel in the following sense. There is an ε > 0
and for 0 ≤ s ≤ t − ε we have

(3) C(t, s) ≥ 0, C2(t, s) ≥ 0, C2,1(t, s) ≤ 0, C1(t, 0) ≤ 0,

where C1(t, s) = Ct(t, s), C2(t, s) = Cs(t, s) and C2,1(t, s) = Cst(t, s).
This work contributes to the continuing solution of a major problem
found in the work of Volterra [10] in 1928. He noted that many real-
world problems were being modelled by integral and integro-differential
equations with convex kernels. Then he conjectured that a Liapunov
functional might be constructed which would yield some very precise
qualitative properties of the solutions; moreover, he suggested how the
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Liapunov functional might be constructed. In 1963 Levin [9] con-
structed such a functional for an integro-differential equation of the
form

x′(t) = −
∫ t

0

C(t, s)g(x(s))ds

when C is a nonsingular convex kernel with the notable property that
the integral, itself, supplies the stability properties of the solution with-
out relying on a uniformly asymptotically stable ordinary differential
equation, as is found in

x′(t) = −Ax(t) −
∫ t

0

C(t, s)g(x(s))ds, A > 0.

Moreover, no bound was required on C or its integrals. Levin contin-
ued that work for many years. In 1993 [4] we constructed a parallel
Liapunov functional for an integral equation, again with a nonsingular
convex kernel. Very recently [5] we extended that work to integral equa-
tions with convex kernels and weak singularities, typified by a kernel
(t − s)−1/2 found in so many real world problems, such as heat equa-
tions. Our project here is to extend that work to integro-differential
equations with convex kernels and weak singularities.

Unlike Levin, we find that the singularity demands a stable ODE
part and we show why that is to be expected, both by an example and
by analogy with parallel work with Razumikhin functions. In 1975 [7]
Grimmer and Seifert developed a Razumikhin technique to deal with
a vector equation

(4) x′(t) = Ax(t) +

∫ t

0

B(t, s)x(s)ds + f(t)

where A is a constant matrix which is negative definite, B is a matrix
satisfying

lim
h→0

∫ t

0

|B(t, s) − B(t + h, s)|ds = 0

and

lim
h→0

∫ t+h

t

|B(t + h, s)|ds = 0, t ≥ 0,

as well as a number of other conditions, some of which are listed below.
Here is the development of their question. They give conditions

under which solutions of (4) will have certain qualitative properties
in case f is bounded and continuous. All of that work is based on a
Razumikhin technique which utilizes a Liapunov function instead of
a Liapunov functional. Its central requirement is that for a constant
matrix K satisfying

(5) AT K + KA = −I then

∫ t

0

|KB(t, s)|ds ≤ M
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where M is related to the eigenvalues of K and, generally, M is small.
The Grimmer-Seifert results rest on smallness conditions, while ours
rest on convexity.

On the last page of their paper, Grimmer and Seifert express the
desire to show that the solution of (4) is in Lp when f is in Lq for some
positive integers p and q. The conditions of [7] allow for B to have
weak singularities. To the best of our knowledge, those desired results
have never been obtained for equations with singular kernels.

2. Existence: Direct Fixed Point Mappings

The first part of this section concerns the existence of a solution of
(1) with continuous derivative when C has some discontinuities. In our
subsequent work we will only allow discontinuities of C at t = s, typified
by C(t − s) = (t − s)−1/2 which occurs so often in the literature. Our
existence result here will be more general and it will rest on ideas from
Burton and Zhang [6] and later papers. Our terminology follows that
of Becker [2] who studied integral equations, not integro-differential
equations.

Definition 2.1. Let ΩT := {(t, s) : 0 ≤ s ≤ t ≤ T}. The kernel C of
(1) is weakly singular on the set ΩT if it is unbounded in ΩT ; but for
each t ∈ [0, T ], C(t, s) has at most finitely many discrete singularities
in the interval {s : 0 ≤ s ≤ t} and for every continuous function
φ : [0, T ] → �n, ∫ t

0

C(t, s)φ(s)ds

and ∫ t

0

|C(t, s)|ds

both exist and are continuous on [0, T ]. If C(t, s) is weakly singular on
ΩT for every T > 0, then it is weakly singular on the set Ω := {(t, s) :
0 ≤ s ≤ t < ∞}.

For (1) we suppose that f : [0,∞) → �n is continuous, h, q : [0,∞)×
�n → �n are both continuous and both satisfy a global Lipschitz con-
dition for the same constant K.

Theorem 2.2. In addition to these continuity conditions, let C(t, s)
be weakly singular on Ω. Suppose also that for each T > 0 and each
k ∈ (0, 1), there is a constant γ1 > 0 with∫ t

0

e−γ1(t−s)|C(t, s)|ds ≤ k

for t ∈ [0, T ]. Then for every x0 ∈ �n (1) has a unique solution x(t)
with a continuous derivative and satisfying x(0) = x0.
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Proof. Let T > 0 and x0 ∈ �n be given and let (Y, ‖ · ‖) be the Banach
space of continuous functions φ : [0, T ] → �n with the supremum norm.
Define P : Y → Y by φ ∈ Y implies that

(Pφ)(t) = f(t)−h(t, x0+

∫ t

0

φ(s)ds)−
∫ t

0

C(t, s)q(s, x0+

∫ s

0

φ(u)du)ds.

By the continuity assumptions and the weak singularity, Pφ ∈ Y .
As the existence of γ1 implies that for any γ > γ1 we also have∫ t

0
e−γ(t−s)|C(t, s)|ds ≤ k (see Lemma 2.3 below), we will define a

weighted norm ‖ · ‖T by φ ∈ Y implies that

‖φ‖T = sup
0≤t≤T

e−γt|φ(t)|,

where γ ≥ γ1 is yet to be chosen. Note that (Y, ‖ · ‖T ) is a Banach
space.

If φ, η ∈ Y then

|(Pφ)(t) − (Pη)(t)|e−γt ≤ e−γt

[∣∣∣∣h(t, x0 +

∫ t

0

φ(s)ds) − h(t, x0 +

∫ t

0

η(s))ds

∣∣∣∣
+

∫ t

0

|C(t, s)|
∣∣∣∣q(s, x0 +

∫ s

0

φ(u)du) − q(s, x0 +

∫ s

0

η(u)du)

∣∣∣∣ds

]

≤ e−γtK

∫ t

0

|φ(s) − η(s)|ds + e−γtK

∫ t

0

|C(t, s)|
∫ s

0

|φ(u) − η(u)|duds

= K

∫ t

0

e−γ(t−s)e−γs|φ(s) − η(s)|ds

+ K

∫ t

0

|C(t, s)|e−γ(t−s)e−γs

∫ s

0

|φ(u) − η(u)|duds.

Now the last line yields

K

∫ t

0

|C(t, s)|e−γ(t−s)e−γs

∫ s

0

|φ(u) − η(u)|duds

≤ K

∫ t

0

|C(t, s)|e−γ(t−s)

∫ s

0

e−γ(s−u)e−γu|φ(u) − η(u)|duds

≤ K‖φ − η‖T

∫ t

0

T |C(t, s)|e−γ(t−s)ds

= ‖φ − η‖TKT

∫ t

0

|C(t, s)|e−γ(t−s)ds

≤ ‖φ − η‖T KTk.

We then have

|(Pφ)(t) − (Pη)(t)|e−γt ≤ K‖φ − η‖T

∫ t

0

e−γ(t−s)ds + ‖φ − η‖T KTk

≤ ‖φ − η‖T

[
K

e−γ(t−s)

γ

∣∣∣∣
t

0

+ KTk

]
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≤ ‖φ − η‖T

[
(K/γ) + KTk

]
.

Now, take k so small and γ so large that (K/γ) + KTk ≤ 1/2. Thus,
we have a contraction and a unique φ ∈ Y with Pφ = φ and, clearly,[
x0 +

∫ t

0
φ(s)ds

]′
= φ(t). That unique continuous φ is the continuous

derivative of the unique solution x(t) = x0 +
∫ t

0
φ(s)ds of (1). �

Definition 2.1 is far more general than we will be needing here. We
will allow a singularity only at t = s and we will have a corresponding
condition. Our next result offers a simple integral condition to ensure
the existence of the constant γ1 in Theorem 2.2. The proof is routine
and will not be given here.

Lemma 2.3. Let C(t, s) be a weakly singular kernel on the set Ω and
fix T > 0. Moreover, suppose that for any k ∈ (0, 1) there exists an
ε := ε(k, T ) > 0 such that∫ t

t−ε

|C(t, s)|ds ≤ k for all t ∈ [0, T ],

where we have set C(t, s) = 0, (t, s) ∈ �2−Ω. Then there always exists
a γk,T > 0 such that for any γ ≥ γk,T we have∫ t

0

e−γ(t−s)|C(t, s)|ds ≤ k for all t ∈ [0, T ].

There are many other existence results and it would be a distraction
to pursue more of them. Grimmer and Seifert [7] and Grossman and
Miller [8] deal with some far more complicated ones. The result here
is simple, general, and very instructive concerning existence ideas.

In the following material we will assume that the Liapunov results
are being applied to problems in which existence has been established.

3. A simple result

Our next result does not contain a singularity, but it does introduce a
new differential inequality relation and it is used primarily to show that
the singularity causes us to add a term to the equation very much like
the Ax of Grimmer and Seifert and for the same reason. Moreover, we
streamline the proof so that the reader can see with ease exactly what
techniques are involved. The results are extendable to vector equations,
as may be verified by consulting [3] for the nonsingular case. However,
the details are very lengthy.

We begin by showing that with a nonsingular convex kernel (i.e., the
inequalities in (3) hold for all ε ≥ 0) then we can obtain x ∈ L∞ when
f ∈ L1[0,∞) and it allows A = 0. The details of differentiation of V
are not simple, but are parallel to those given in full in the proof of
Theorem 4.1.
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Theorem 3.1. Let

x′(t) = f(t) −
∫ t

0

C(t, s)x(s)ds

with C satisfying

C(t, s) ≥ 0, C2(t, s) ≥ 0, C2,1(t, s) ≤ 0, C1(t, 0) ≤ 0,

on {(s, t) : 0 ≤ s ≤ t} and with f ∈ L1[0,∞). Then x ∈ L∞[0,∞).

Proof. Define

V (t) = x2(t)+

∫ t

0

C2(t, s)

(∫ t

s

x(u)du

)2

ds+C(t, 0)

(∫ t

0

x(s)ds

)2

, t ≥ 0.

Using Leibnitz’ rule and integration by parts we obtain

V ′(t) = 2x(t)f(t) +

∫ t

0

C2,1(t, s)

( ∫ t

s

x(u)du

)2

ds + C1(t, 0)

(∫ t

0

x(s)ds

)2

≤ 2x(t)f(t) ≤ 2
√

V (t)|f(t)|.
(6)

Separation of variables in (6) yields

V −1/2(t)V ′(t) ≤ 2|f(t)|
and so

2|x(t)| ≤ 2V 1/2(t) ≤ 2V 1/2(0) + 2

∫ t

0

|f(s)|ds.

�

4. The singular convex case

There is a pleasant surprise as we proceed from integral equations
to integro-differential equations. In parallel work on integral equations
with weakly singular kernels [5] we required that |q(t, x)| ≤ |x| for
integral equations, and that is not needed here. Our conclusion will be
that q(t, x(t)) ∈ L2[0,∞), as a result of f ∈ L2[0,∞), a direct solution
to the Grimmer-Seifert question.

Theorem 4.1. Let x be a continuous solution of (1) on [0,∞) and let
(2) and (3) be satisfied. If ε > 0 is chosen so that (3) is satisfied and
if V (t, ε) is defined for t ≥ ε by

V (t, ε) = 2

∫ x(t)

0

q(t, s)ds +

∫ t−ε

0

C2(t, s)

( ∫ t

s

q(u, x(u))du

)2

ds

+ C(t, 0)

( ∫ t

0

q(u, x(u))du

)2

(7)

we have

dV (t, ε)

dt
≤ 2

∫ x(t)

0

qt(t, s)ds
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+ 2q(t, x(t))

[
f(t) − h(t, x(t)) + C(t, t − ε)

∫ t

t−ε

q(u, x(u))du

−
∫ t

t−ε

C(t, s)q(s, x(s))ds

]
+ C2(t, t − ε)

( ∫ t

t−ε

q(u, x(u))du

)2

.(8)

Proof. Let x be a continuous solution of (1) on [0,∞). For any t ≥ ε we
have C1(t, 0) ≤ 0 and C2,1(t, s) ≤ 0 when 0 ≤ s ≤ t− ε so by Leibnitz’s
rule and the chain rule we have

V ′(t, ε) ≤ 2

∫ x(t)

0

qt(t, s)ds + C2(t, t − ε)

( ∫ t

t−ε

q(u, x(u))du

)2

+ 2q(t, x(t))

[
f(t) − h(t, x(t)) −

∫ t

0

C(t, s)q(s, x(s))ds

]

+ 2q(t, x(t))

∫ t−ε

0

C2(t, s)

∫ t

s

q(u, x(u))duds

+ 2q(t, x(t))C(t, 0)

∫ t

0

q(u, x(u))du.

Integrating the next-to-last term by parts yields

2q(t, x(t))

∫ t−ε

0

C2(t, s)

∫ t

s

q(u, x(u))duds

= 2q(t, x(t))

[
C(t, s)

∫ t

s

q(u, x(u))du

∣∣∣∣
t−ε

0

+

∫ t−ε

0

C(t, s)q(s, x(s))ds

]

= 2q(t, x(t))

[
C(t, t − ε)

∫ t

t−ε

q(u, x(u))du− C(t, 0)

∫ t

0

q(u, x(u))du

+

∫ t−ε

0

C(t, s)q(s, x(s))ds

]
.

We cancel two terms and obtain

V ′(t, ε) ≤ 2

∫ x(t)

0

qt(t, s)ds + 2q(t, x(t))

[
f(t) − h(t, x(t)) −

∫ t

0

C(t, s)q(s, x(s))ds

]

+ C2(t, t − ε)

( ∫ t

t−ε

q(u, x(u))du

)2

+ 2q(t, x(t))

[
C(t, t − ε)

∫ t

t−ε

q(u, x(u))du +

∫ t−ε

0

C(t, s)q(s, x(s))ds

]
.

Now, write that last integral as∫ t−ε

0

C(t, s)q(s, x(s))ds =

∫ t

0

C(t, s)q(s, x(s))ds−
∫ t

t−ε

C(t, s)q(s, x(s))ds

and cancel two terms. This will yield

V ′(t, ε) ≤ 2

∫ x(t)

0

qt(t, s)ds + C2(t, t − ε)

( ∫ t

t−ε

q(u, x(u))du

)2
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+ 2q(t, x(t))

[
C(t, t − ε)

∫ t

t−ε

q(u, x(u))du−
∫ t

t−ε

C(t, s)q(s, x(s))ds

]

+ 2q(t, x(t))[f(t) − h(t, x(t))],

as required. �

Three relations will be needed for us to parlay this Liapunov func-
tional derivative into a qualitative result for a solution of (1).

In our opening theorem we saw that when the kernel is nonsingular,
then we could take h(t, x) ≡ 0. Thus, we can expect that the larger
the singularity, the more we will need from h(t, x). Our assumption is
that there is a γ > 0 with

(9) |h(t, x)| ≥ γ|q(t, x)|, 0 ≤ t < ∞, x ∈ �.

This condition bears some loose relation to the Grimmer-Seifert con-
dition (5) and Theorem 3.1 shows that it is needed only because of the
singularity. But notice the weakness of (2) in that xq(t, x) ≥ 0 so that
h can be zero for any value of x. We have not lost the essential prop-
erties of Theorem 3.1. Such latitude is missing in the Grimmer-Seifert
result.

We now verify a certain relation which will be needed in the middle
of the proof of the next theorem. The following claims will assist in
the flow of logic of the argument.

Claim 1. If (9) and the sign assumptions in (2) hold, then for
(t, x) ∈ [0,∞) × � we have

2q(t, x(t))[f(t) − h(t, x(t))] ≤ 1

γ
f 2(t) − γq2(t, x(t)).

Proof. From the sign properties in (2) we have

|h(t, x(t))| ≥ γ|q(t, x(t))| =⇒ |h(t, x(t))||q(t, x(t))| ≥ γ|q(t, x(t))||q(t, x(t))|
=⇒ h(t, x(t))q(t, x(t)) ≥ γq2(t, x(t)) =⇒ −h(t, x(t))q(t, x(t)) ≤ −γq2(t, x(t))

and so

2q(t, x(t))[f(t) − h(t, x(t))] = 2q(t, x(t))f(t) − 2q(t, x(t))h(t, x(t))

≤ γq2(t, x(t)) +
1

γ
f 2(t) − 2γq2(t, x(t)) =

1

γ
f 2(t) − γq2(t, x(t)).

�

Next, we ask for positive constants α and β with α + β < γ where γ
is the constant in (9) such that

(10)

∫ s+ε

s

[εC2(u, u − ε) + C(u, u − ε) + |C(u, s)|]du < α
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for 0 ≤ s < ∞ and let

(11) C(t, t − ε)ε +

∫ t

t−ε

|C(t, s)|ds < β

for ε ≤ t < ∞. For technical reasons we ask C(t, s) = 0 for s < 0 and
t ≥ 0. Note in (2) and (3) that we do not specify the sign of C(s, s) so
the absolute value is needed in these relations.

Claim 2. Using (10) and the Hobson-Tonelli test we can verify the
relation∫ t

ε

∫ u

u−ε

[εC2(u, u − ε) + C(u, u − ε) + |C(u, s)|]q2(s, x(s))dsdu

≤
∫ t

0

αq2(s, x(s))ds.

Proof. We have∫ t

ε

∫ u

u−ε

[εC2(u, u − ε) + C(u, u − ε) + |C(u, s)|]q2(s, x(s))dsdu

≤
∫ t

0

∫ s+ε

s

[εC2(u, u − ε) + C(u, u− ε) + |C(u, s)|]q2(s, x(s))duds

≤
∫ t

0

αq2(s, x(s))ds.

�
When we treated the parallel problem for integral equations in [5]

using Liapunov functionals and assumptions very much like the ones
given here the function q(t, x) was allowed to depend on t in a very
natural way and caused no difficulty. However, investigators going
all the way back to Levin [9] have been forced to require that q be
independent of t. That is a definite defect and one which we rectify

here. Several things need to be said about the term
∫ x(t)

0
q(t, s)ds in

the Liapunov functional V (t, ε) and, in order to not break the flow of
ideas here, we will discuss this in Section 6. This will include a very
instructive example of q.

Note. In this result, if q(t, x) is independent of t and if
∫ x

0
q(t, s)ds →

∞ as |x| → ∞ then it does yield a bounded solution, just as was the
case in Levin’s original theorem. This requires explanation and the
reader is referred to Section 6.

Theorem 4.2. Let x be a continuous solution of (1) on [0,∞) and let
(2), (3), (9)-(11) hold. Moreover, assume that

(12) xqt(t, x) ≤ 0 for t ∈ [0,∞), x ∈ �,

(13)

∣∣∣∣
∫ ±∞

0

qt(t, s)ds

∣∣∣∣ < ∞ for each fixed t ∈ [0,∞) ,
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and that for the function

(14) Q(t) = max

{∣∣∣∣
∫ ±∞

0

qt(t, s)ds

∣∣∣∣
}

, t ∈ [0,∞)

we have Q ∈ L1(0,∞). If, in addition, f ∈ L2[0,∞) so are q(t, x(t))
and q(t, x(t)) − f(t).

Proof. We begin by organizing the terms of the derivative of V which
we applied to (8). First, by the Schwarz inequality we have

C2(t, t − ε)

( ∫ t

t−ε

q(u, x(u))du

)2

≤ εC2(t, t − ε)

∫ t

t−ε

q2(u, x(u))du.

Next,

|2q(t, x(t))C(t, t−ε)

∫ t

t−ε

q(u, x(u))du| ≤ C(t, t−ε)

∫ t

t−ε

[q2(t, x(t))+q2(u, x(u))]du

and

|2q(t, x(t))

∫ t

t−ε

C(t, s)q(s, x(s))ds| ≤
∫ t

t−ε

|C(t, s)|[q2(t, x(t))+q2(s, x(s))]ds.

These three relations along with the result of Claim 1 in (8) yield

V ′(t, ε) ≤ 2

∣∣∣∣
∫ x(t)

0

qt(t, s)ds

∣∣∣∣ + C2(t, t − ε)

( ∫ t

t−ε

q(u, x(u))du

)2

+ 2q(t, x(t))

[
C(t, t − ε)

( ∫ t

t−ε

q(u, x(u))du

)
−

∫ t

t−ε

C(t, s)q(s, x(s))ds

]

+ 2q(t, x(t))[f(t) − h(t, x(t))]

≤ 2Q(t) + εC2(t, t − ε)

( ∫ t

t−ε

q2(u, x(u))du

)

+ C(t, t − ε)

∫ t

t−ε

[q2(t, x(t)) + q2(s, x(s))]ds

+

∫ t

t−ε

|C(t, s)|[q2(t, x(t)) + q2(s, x(s))]ds +
1

γ
f 2(t) − γq2(t, x(t))

= 2Q(t) + q2(t, x(t))

∫ t

t−ε

[C(t, t − ε) + |C(t, s)|]ds

+

∫ t

t−ε

[εC2(t, t − ε) + C(t, t − ε) + |C(t, s)|]q2(s, x(s))ds

+
1

γ
f 2(t) − γq2(t, x(t)).

That is,

V ′(t, ε) ≤ 2Q(t) + q2(t, x(t))β +
1

γ
f 2(t) − γq2(t, x(t))
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+

∫ t

t−ε

[εC2(t, t − ε) + C(t, t − ε) + |C(t, s)|]q2(s, x(s))ds.

Integrating from ε to t and invoking Claim 2 yields

V (t, ε) − V (ε, ε) ≤ 2

∫ t

ε

Q(s)ds +
1

γ

∫ t

ε

f 2(s)ds

− [γ − β]

∫ t

ε

q2(s, x(s))ds +

∫ t

0

αq2(s, x(s))ds

= 2

∫ t

ε

Q(s)ds +
1

γ

∫ t

ε

f 2(s)ds − [γ − β − α]

∫ t

ε

q2(s, x(s))ds

+ α

∫ ε

0

q2(s, x(s))ds,

from which we have

V (t, ε) + [γ − β − α]

∫ t

ε

q2(s, x(s))ds ≤ V (ε, ε) + 2

∫ t

ε

Q(s)ds +
1

γ

∫ t

ε

f 2(s)ds

+ α

∫ ε

0

q2(s, x(s))ds.

As x is continuous and ε is a positive number, it follows that x(ε)

is finite so by the continuity of q(t, s) we see that
∫ x(ε)

0
q(ε, s)ds < ∞,

thus

V (ε, ε) = 2

∫ x(ε)

0

q(ε, s)ds + C(ε, 0)

( ∫ ε

0

q(u, x(u))du

)2

< ∞.

Hence, for any t ≥ ε we have∫ t

ε

q2(s, x(s))ds ≤ 1

γ − β − α

[
V (ε, ε) + 2

∫ t

ε

Q(s)ds +
1

γ

∫ ∞

0

f 2(s)ds

+ α

∫ ε

0

q2(s, x(s))ds

]
.

which proves our assertion. �

5. The resolvent

Let C be a scalar function with weak singularities and consider

(15) x′(t) = Ax(t) −
∫ t

0

C(t, s)x(s)ds + f(t), x(0) = x0,

where A is a negative constant.
Associated with (15) is the resolvent equation

d

dt
Z(t, s) = AZ(t, s) −

∫ t

s

C(t, u)Z(u, s)du, Z(s, s) = 1,
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the principal solution of

(16) z′(t, s) = Az(t, s) −
∫ t

s

C(t, u)z(u, s)du.

Becker [1] obtained the following variation of parameters formula for
continuous kernels, but the proof extends to this case:

x(t) = Z(t, 0)x0 +

∫ t

0

Z(t, s)f(s)ds.

Theorem 5.1. Let (15) be a scalar equation, A be a negative constant,
and C have a singularity at t = s. We assume that there exists an
ε > 0 such that for 0 ≤ s ≤ t − ε then (3) holds. Suppose there exist
α∗ > 0 and β∗ > 0 with

(17)

∫ s+ε

s

[εC2(u, u−ε)+|C(u, u−ε)−C(u, s)|]du < α∗, 0 ≤ s < ∞,

(18)

∫ t

t−ε

|C(t, t − ε) − C(t, s)|ds < β∗, ε ≤ t < ∞,

and

(19) A < −α∗ + β∗

2
.

If V (t, ε) is defined by

V (t, ε) = z2(t, s)+

∫ t−ε

s

C2(t, u)

(∫ t

u

z(v, s)dv

)2

du+C(t, s)

(∫ t

s

z(v, s)dv

)2

for t ≥ ε and s ≤ t − ε and if z(t, s) solves (16), then

z2(t, s) + µ

∫ t

0

z2(u, s)du ≤ V (s + ε, ε) + |2A + β∗|
∫ s

0

z2(u, s)du,

where µ = −(2A+β∗ +α∗) > 0. That is, z(t, s) ∈ L2
t [0,∞)∩L∞

t [0,∞)
(where the subscript t denotes the variable of integration).

Proof. We have

V ′(t, ε) = 2z(t, s)

[
Az(t, s) −

∫ t

s

C(t, u)z(u, s)du

]
+ C2(t, t − ε)

( ∫ t

t−ε

z(v, s)dv

)2

+

∫ t−ε

s

C2,1(t, u)

( ∫ t

u

z(v, s)dv

)2

du + C1(t, s)

( ∫ t

s

z(v, s)dv

)2

+ 2z(t, s)C(t, s)

∫ t

s

z(v, s)dv + 2z(t, s)

∫ t−ε

s

C2(t, u)

∫ t

u

z(v, s)dvdu.

Integration of the last term by parts yields

2z(t, s)

[
C(t, u)

∫ t

u

z(v, s)dv

∣∣∣∣
t−ε

s

+

∫ t−ε

s

C(t, u)z(u, s)du

]
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= 2z(t, s)

[
C(t, t − ε)

∫ t

t−ε

z(v, s)dv − C(t, s)

∫ t

s

z(v, s)dv

+

∫ t−ε

s

C(t, u)z(u, s)du

]
.

Thus,

V ′(t, ε) ≤ C2(t, t − ε)ε

∫ t

t−ε

z2(v, s)dv + 2z(t, s)

[
Az(t, s) −

∫ t

s

C(t, u)z(u, s)du

]

+ 2z(t, s)

[
C(t, t − ε)

∫ t

t−ε

z(v, s)dv +

∫ t

s

C(t, u)z(u, s)du

−
∫ t

t−ε

C(t, u)z(u, s)du

]

= 2z(t, s)

[
Az(t, s) + C(t, t − ε)

∫ t

t−ε

z(v, s)dv −
∫ t

t−ε

C(t, u)z(u, s)du

]

+ C2(t, t − ε)ε

∫ t

t−ε

z2(v, s)dv

≤ C2(t, t − ε)ε

∫ t

t−ε

z2(v, s)dv + 2Az2(t, s)

+

∫ t

t−ε

[|C(t, u) − C(t, t − ε)|][z2(t, s) + z2(u, s)]du

=

[
2A +

∫ t

t−ε

|C(t, u) − C(t, t − ε)|du

]
z2(t, s)

+

∫ t

t−ε

[|C(t, t − ε) − C(t, u)| + C2(t, t − ε)ε]z2(u, s)du.

Integrating the last term on the interval [s + ε, t], where 0 ≤ s ≤ t− ε,
changing the order of integration, and taking (17) into consideration,
we obtain∫ t

s+ε

∫ v

v−ε

[|C(v, u) − C(v, v − ε)| + C2(v, v − ε)ε]z2(u, s)dudv

≤
∫ t

s

∫ u+ε

u

[|C(v, u)− C(v, v − ε)| + C2(v, v − ε)ε]dvz2(u, s)du

≤
∫ t

0

∫ u+ε

u

[|C(v, u)− C(v, v − ε)| + C2(v, v − ε)ε]dvz2(u, s)du

≤
∫ t

0

α∗z2(u, s)du.

Using the above and taking into account (18), we have for s + ε ≤ t

V (t, ε) − V (s + ε, ε)
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≤
∫ t

s+ε

[2A +

∫ v

v−ε

[|C(v, u)− C(v, v − ε)|du]z2(v, s)dv

+

∫ t

s+ε

[∫ v

v−ε

[|C(v, v − ε) − C(v, u)|+ C2(v, v − ε)ε]z2(u, s)du

]
dv

≤
∫ t

s+ε

(2A + β∗)z2(v, s)dv +

∫ t

0

α∗z2(u, s)du

and so

V (t, ε) − V (s + ε, ε)

≤
∫ t

0

(2A + β∗ + α∗)z2(v, s)dv −
∫ s+ε

0

(2A + β∗)z2(u, s)du.

Hence for t ≥ s + ε we obtain

z2(t, s) − (2A + β∗ + α∗)
∫ t

0

z2(u, s)du

≤ V (s + ε, ε) − (2A + β∗)
∫ s

0

z2(u, s)du.

By (19) we have 2A + β∗ + α∗ < 0 and 2A + β∗ < 0.
Since for any fixed s the right-hand-side of the above inequality is a

positive constant which does not depend on t, taking into consideration
the fact that the solution z(u, s) is continuous on [0, s+ ε]×{s} for all
s ≥ 0, it follows that for any s ≥ 0 there exists an Mz(s) > 0 with

z2(t, s) ≤ Mz(s), t ≥ 0

and ∫ t

0

z2(u, s)du ≤ Mz(s), for all t ≥ 0,

as required. �

6. Discussion

Allowing q(t, x) to depend on t raises two important issues. Under
the convexity conditions of Levin [9], a Liapunov functional parallel to
(7) was employed and singularities were not allowed; thus, h(t, x) was
not required, as considered in Theorem 3.1 (see, also, the discussion
before Claim 2). But Levin only allowed q to be independent of t and
he required that

∫ x

0
q(s)ds → ∞ as |x| → ∞. That is, his qualitative

results depended on the Liapunov functional being radially unbounded
and V ′(t) ≤ 0.

When we examine (13) in Theorem 4.2 and note that when qt does
not vanish, then we can not even allow the Liapunov functional to be
radially unbounded. An example will clarify this. Suppose that

q(t, x) = sgn(x)r(x)m(t)
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where m : [0,∞) → � and r : � → [0,∞) with

r(x) ≥ 0, m(t) ≥ 0, m′(t) < 0, m′(t) ∈ L1[0,∞),

∫ ∞

0

r(x)dx < ∞.

This will satisfy (12), (13), and (14). Note that
∫ ∞

0
r(x)dx < ∞ is

not compatible with the Levin condition that when q(t, x) = q(x) then∫ x

0
q(s)ds → ∞ as |x| → ∞. Our result goes beyond the Levin result

in that we consider q(t, x) instead of q(x) and treat the case where
V is not radially unbounded. On the other hand, if qt(t, x) ≡ 0 then
(12), (13), and (14) of Theorem 4.2 are trivially satisfied and we allow∫ x

0
q(s)ds → ∞ so that the Levin case is also covered. An example is

q(t, x) =
(t + 2)x2n+1

(t + 1)(|x| + 1)(|x| + 2)(|x|2n+1 + 1)
, t ≥ 0, x ∈ �.

Thus, this paper deals with three issues not allowed in the Levin
work: singularities, q(t, x) instead of q(x), and V not radially un-
bounded. The work of Grimmer-Seifert also requires q(x), not q(t, x).
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