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Abstract. We study fractional differential equations of Caputo
type cDqx(t) = u(t, x(t)), 0 < q < 1, of both linear and nonlinear
type. That equation is inverted as an integral equation with kernel
C(t − s) := (1/Γ(q))(t − s)q−1. We then transform the integral
equation into one with kernel R(t−s) so that 0 < R(t) ≤ C(t) and∫∞
0

R(s)ds = 1. A variety of techniques are introduced by which
we are able to show that solutions are in Lp[0,∞) for appropriate
p ≥ 1.

1. Introduction

The object of this paper is to present basic techniques for showing
that the solutions of common fractional differential equations are in
Lp[0,∞) for some positive integer p. Here is a loose description of how
we will proceed. Invert the fractional differential equation of Caputo
type

cDqx(t) = u(t, x(t)), 0 < q < 1, x(0) ∈ <
as the standard integral equation

x(t) = x(0) +
1

Γ(q)

∫ t

0

(t− s)q−1u(s, x(s))ds

where Γ is the gamma function. Because of the large and singular kernel
it can be very difficult to study. Moreover, the x(0) is a constant source
of difficulty. There are at least two reasonable ways to avoid those
problems. We use both.

Stability theory assumes that we have an object in equilibrium,
x(0) = 0, and we disturb the equilibrium with x(0) 6= 0, causing no
further disturbance. We then study the subsequent position of the
object.

An equally important study assumes that x(0) = 0, but we con-
stantly perturb the object by an external force, say f(t), and study the
resulting position of the object. Three very common forms of f(t) are:

(i) f(t)→ 0 as t→∞.
(ii) f ∈ Lp[0,∞).
(iii) f is periodic.

1991 Mathematics Subject Classification. Primary: 34A08, 47G05, 34D20.
Key words and phrases. Lp-solutions, fractional differential equations, integral

equations.
1



2 T. A. BURTON AND BO ZHANG

Our choice here is (ii) and we study both x(0) = 0 and x(0) 6= 0.
Moreover, the reader may consult Podlubny [7, p. 224] to see that the
assumption of x(0) = 0 is of general use and not simply contrived to
meet our requirements. For that case we study

cDqx(t) = u(t, x(t)) + f(t), 0 < q < 1, f ∈ Lp[0,∞), x(0) = 0.

The inversion is then

x(t) =
1

Γ(q)

∫ t

0

(t− s)q−1[u(s, x(s)) + f(s)]ds

and we are thwarted because f ∈ L1[0,∞) yields
∫ t

0
(t−s)q−1f(s)ds→ 0

as t→∞, but generally not in Lp[0,∞).
Fortunately, the kernel is a completely monotone function and that

means that the resolvent kernel, R(t), is positive,
∫∞

0
R(t)dt = 1, and

completely monotone. But to really utilize this wonderful resolvent
we need one assumption: u(t, x) must contain a linear term “ − x”,
Much of the point here is that we can successfully render this true by
a variety of techniques, not the least of which is the elementary device
of writing u(t, x) = −x+ x+ u(t, x).

With this assumption in hand we decompose our equation into a
pair:

z(t) = x(0)−
∫ t

0

R(t− s)x(0)ds

and

x(t) = z(t) +

∫ t

0

R(t− s)[x(s) + u(s, x(s)) + f(s)]ds.

Here, z(t) → 0 as t → ∞; or z(t) = 0 if x(0) = 0. Moreover,
∫ t

0
R(t−

s)f(s)ds ∈ L1[0,∞) if f ∈ L1[0,∞). This gives us a real chance of
proving x ∈ Lp[0,∞), a chance that was essentially zero in the original
form.

In the next pages we offer a set of examples showing how this can
be done. We will introduce a positive constant, J , which preserves
the complete monotonicity of the kernel and makes a number of things
possible. Not the least of these is that mappings which were only
Lipschitz become contractions.

2. Basic theory

Here are the details of the decomposition described in Section 1.
The inversion of the Caputo equation into an integral equation when
u(t, x) is continuous is verified in ([4, p. 54], [3, pp. 78, 86, 103]). This
equation has a unique solution as seen in [1] or [8]). We begin with

(1) cDqx(t) = u(t, x), 0 < q < 1, x(0) ∈ <
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where u : [0,∞) × < → < is continuous. At this point a positive
constant J is introduced and we invert (1) as

x(t) = x(0) +
J

Γ(q)

∫ t

0

(t− s)q−1u(s, x(s))

J
ds.

In our subsequent work, the function “ − x” is introduced in a well-
motivated way. But here we simply add and subtract to obtain

(2) x(t) = x(0) +
J

Γ(q)

∫ t

0

(t− s)q−1

[
− x(s) + x(s) +

u(s, x(s))

J

]
ds

Denote the kernel by

(3) C(t) =
J

Γ(q)
tq−1

so that for any T > 0 we have the critical property that∫ T

0

|C(u)|du <∞.

Following Miller [6, pp. 193-22] we note that C(t) is completely
monotone on (0,∞) in the sense that (−1)kC(k)(t) ≥ 0 for k = 0, 1, 2, ...
and t ∈ (0,∞). Moreover C(t) satisfies the conditions of Miller’s The-
orem 6.2 on p. 212. That theorem states that if the resolvent equation
for the completely monotone kernel C is

(4) R(t) = C(t)−
∫ t

0

C(t− s)R(s)ds

then that resolvent kernel, R, satisfies

(5) 0 ≤ R(t) ≤ C(t) for all t > 0 so that as t→∞ then R(t)→ 0

and that

(6) C /∈ L1[0,∞) =⇒
∫ ∞

0

R(s)ds = 1.

Continuing on to [6, pp. 221-224 (Theorem 7.2)] we see that R is also
completely monotone.

Next, under the conditions here, it is shown in Miller [6, pp. 191-207]
that (2) can be decomposed into

(7) z(t) = x(0)−
∫ t

0

C(t− s)z(s)ds

with

z(t) = x(0)−
∫ t

0

R(t− s)x(0)ds = x(0)[1−
∫ t

0

R(s)ds]

and, having found z(t), then the solution x(t) of (2) solves

(8) x(t) = z(t) +

∫ t

0

R(t− s)
[
x(s) +

u(s, x(s))

J

]
ds.
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Notice that z(t)→ 0 as t→∞.
The kernel in (2) is not integrable on [0,∞), but in (8) it is replaced,

not only by an integrable kernel, but the value of the integral is one
and the new kernel is also completely monotone.

3. f ∈ L1[0,∞): Elementary arguments

Our first theorem, together with the preparation for it, can be viewed
as an introduction to and a simple and transparent example of several
of our subsequent results. It shows the basic selection of the constant
J which is one of the most essential parts of the study. The linear
equation

(9) cDqx = f(t)− a(t)x(t), 0 < q < 1, x(0) = 0,

is inverted as

(10) x(t) = x(0)− 1

Γ(q)

∫ t

0

(t− s)q−1[a(s)x(s)− f(s)]ds

where a, f : [0,∞)→ < are continuous and there are positive numbers
ε and M with

(11) 0 < ε ≤ a(t) ≤M.

We will exchange the kernel in (10) for R(t−s), but first we will reduce
a(t) to a function bounded by α < 1. Define J = ε + (1/2)(M − ε).
Then there is an α with

(12) J > 0, 0 < α < 1, |a(t)− J | < αJ.

Note that we may choose α = (M − ε)/(M + ε). In fact, if we write
J = (M + ε)/2, then by (11) we have

ε− J ≤ a(t)− J ≤M − J.
This implies that

−1

2
(M − ε) ≤ a(t)− J ≤ 1

2
(M − ε)

and so

|a(t)− J | ≤ 1

2
(M − ε) =

M − ε
M + ε

J =: αJ.

Since x(0) = 0, we write (10) as

x(t) = − 1

Γ(q)

∫ t

0

(t− s)q−1[Jx(s) + (a(s)− J)x(s)− f(s)]ds

= − 1

Γ(q)

∫ t

0

J(t− s)q−1[x(s) +
(a(s)− J)

J
x(s)− f(s)

J
]ds

=: − 1

Γ(q)

∫ t

0

J(t− s)q−1[x(s) + β(s)x(s)− f(s)

J
]ds

where |β(t)| ≤ α < 1.
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The kernel is still completely monotone so the resolvent has exactly
the same properties as the R we discussed before, so we retain the name
of R. Next, decompose this equation into z(t) = 0 and

(13) x(t) = F (t)−
∫ t

0

R(t− s)[β(s)x(s)]ds

with

F (t) =
1

J

∫ t

0

R(t− s)f(s)ds, β(s) =
a(s)− J

J
.

Notice that f ∈ L1 implies F ∈ L1.
Condition (11) will be critical in Section 4 for general p, but we will

see in two steps that it can be changed to −∞ ≤ a(t) ≤ ∞.

Theorem 3.1. If (11) holds and if f ∈ L1[0,∞), then the solution of
(9) is in L1[0,∞).

Proof. We have∫ t

0

|x(s)|ds ≤
∫ t

0

|F (s)|ds+

∫ t

0

∫ u

0

R(u− s)α|x(s)|dsdu

=

∫ t

0

|F (s)|ds+

∫ t

0

∫ t

s

R(u− s)duα|x(s)|ds

≤
∫ t

0

|F (s)|ds+

∫ t

0

α|x(s)|ds

so that

(1− α)

∫ t

0

|x(s)|ds ≤
∫ t

0

|F (s)|ds,

as required. �

In many problems we find that β(t) in the above proof can be ar-
bitrarily large for small values of t, but eventually it is dominated by
α < 1. This can happen in two simple ways. First, it may be that a(t)
is asymptotically periodic in the sense that a(t) = b(t) + c(t) where
b(t) is a positive periodic function, while c(t) → 0 as t → ∞. In a
more complicated way, it may happen that b(t) is again a positive peri-

odic function, but c ∈ L1[0,∞). In this case,
∫ t

0
R(t− s)c(s)ds→ 0 as

t→∞ and some algebraic work must be done to bring us to the desired
conclusion. The following lemma allows us to avoid those difficulties.

Lemma 3.2. If G(t) is continuous on [0,∞), then for
∫ t/2

0
R(v)dv >

1/2 it follows that

(1/2)

∫ t/2

0

|G(s)|ds ≤
∫ t

0

∫ u

0

R(u− s)|G(s)|dsdu.
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Proof. We have

(1/2)

∫ t/2

0

|G(s)|ds ≤
∫ t/2

0

∫ t/2

0

R(v)dv|G(s)|ds

≤
∫ t/2

0

∫ t−s

0

R(v)dv|G(s)|ds

=

∫ t/2

0

∫ t

s

R(u− s)du|G(s)|ds

≤
∫ t

0

∫ t

s

R(u− s)du|G(s)|ds

=

∫ t

0

∫ u

0

R(u− s)|G(s)|dsdu.

�

In the next result, if K = 0 then it is essentially Theorem 3.1 and
the lemma is not used.

Theorem 3.3. Suppose that there is a number K > 0 and (11) holds
for t ≥ K and that f ∈ L1[0,∞). Then the solution of (9) is in
L1[0,∞).

Proof. Define J, α, β(t) as in (12) and (13). Let β∗ : [0,∞) → < be
a continuous function with 0 ≤ β∗(t) ≤ 1 − α if 0 ≤ t ≤ K and
β∗(t) = 1− α if t > K. We have from (13) that∫ t

0

|x(s)|ds ≤
∫ t

0

|F (s)|ds+

∫ t

0

∫ u

0

R(u− s)|β(s)||x(s)|dsdu

≤
∫ t

0

|F (s)|ds+

∫ K

0

∫ u

0

R(u− s)|β(s)||x(s)|dsdu

+

∫ t

K

∫ u

0

R(u− s)|x(s)− (1− α)x(s)|dsdu

=: µ(t) +

∫ t

K

∫ u

0

R(u− s)[|x(s)| − (1− α)|x(s)|]dsdu

≤ µ(t) +

∫ t

0

∫ u

0

R(u− s)|x(s)|dsdu−
∫ t

0

∫ u

0

R(u− s)β∗(s)|x(s)|dsdu.

Interchange the order of integration in the next-to-last integral and
then cancel it against the term on the left-hand-side of the display.
This yields ∫ t

0

∫ u

0

R(u− s)β∗(s)|x(s)|dsdu ≤ µ(t).

By Lemma 3.2 if t is so large that
∫ t

0
R(u)du > 1/2 and t > 2K then

(1/2)

∫ t/2

K

(1− α)|x(s)|ds ≤ (1/2)

∫ t/2

0

β∗(s)|x(s)|ds ≤ µ(t),
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as required. �

Using the lemma we can now let ε = 0 in (11). Here, M will take
the place of J .

Theorem 3.4. Let
cDqx = −a(t)h(t, x) + f(t), x(0) = 0,

with f ∈ L1[0,∞), 0 ≤ a(t) ≤M , and |h(t, x)| ≤ |x| for all (t, x), t ≥ 0.
If, in addition, xh(t, x) ≥ 0, then any solution satisfies∫ t/2

0

|(a(s)/M)h(s, x(s))|ds ≤ 2

∫ t

0

|F̃ (s)|ds

where t is large enough that
∫ t

0
R(s)ds > 1/2 and

F̃ (t) =
1

M

∫ t

0

R(t− s)f(s)ds.

Proof. Invert the equation as

x(t) = − 1

Γ(q)

∫ t

0

(t− s)q−1[a(s)h(s, x(s))− f(s)]ds

= − M

Γ(q)

∫ t

0

(t− s)q−1[(a(s)/M)h(s, x(s))− (f(s)/M)]ds.

Then we add and subtract x(s) in the integrand and decompose in the
usual way. As x(0) = 0 we have z(t) = 0 and our equation is

x(t) =

∫ t

0

R(t− s)[x(s)− a(s)

M
h(s, x(s)) +

f(s)

M
]ds.

Here we again retain the name of R(t). Notice that

|x(s)− a(s)

M
h(s, x(s))| = |x(s)| − |a(s)

M
h(s, x(s))|.

Now, take absolute values of both sides so that we have (for F̃ (t) defined
above)

|x(t)| ≤ |F̃ (t)|+
∫ t

0

R(t− s)[|x(s)− |(a(s)/M)h(s, x(s))|]ds.

Integrate both sides from 0 to t. Interchange the order of integration
in the first integral and cancel it with the left-hand-side. Apply the
result in the previous proof to obtain∫ t/2

0

|(a(s)/M)h(s, x(s))|ds ≤ 2

∫ t

0

|F̃ (s)|ds,

as required. �

We can relate the next theorem to Theorem 3.1 by noting that A = ε

and B = M ; ∂G(t,x)
∂x

= a(t).
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Theorem 3.5. Suppose there are positive constants A and B so that
for

cDqx = u(t, x) =: −G(t, x) + f(t), x(0) ∈ <
we have f ∈ L1[0,∞), G(t, x)→ 0 as x→ 0, f,G continuous,

A ≤ ∂G(t, x)

∂x
≤ B, 0 ≤ t <∞.

Then there is a unique solution tending to zero. If, in addition, x(0) =
0 and for |x| sufficiently small there is a β < 1 with∣∣∣∣x− G(t, x)

J

∣∣∣∣ ≤ β|x|

for some J > 0, then that unique solution is in L1[0,∞).

Proof. The equation is inverted as

x(t) = x(0) +
J

Γ(q)

∫ t

0

(t− s)q−1

[
− G(s, x(s))

J
+
f(s)

J

]
ds

=
J

Γ(q)

∫ t

0

(t− s)q−1

[
− x(s) + x(s)− G(s, x(s))

J
+
f(s)

J

]
ds

so that z(t) = x(0)[1−
∫ t

0
R(s)ds] and

x(t) = z(t) + F (t) +

∫ t

0

R(t− s)
[
x(s)− G(s, x(s))

J

]
ds

with

F (t) = (1/J)

∫ t

0

R(t− s)f(s)ds.

It follows that F ∈ L1[0,∞) and F (t)→ 0 as t→∞. Now

∂

∂x

[
x− G(t, x)

J

]
= 1− ∂G(t, x))

J∂x

and

0 < A ≤ ∂G(t, x))

∂x
≤ B

so take J so large that

0 < 1− (B/J) =: α1 < 1

and
0 < 1− (A/J) =: α2 < 1.

In the second part of the theorem we may want J even larger.
Let (X0, ‖ · ‖) be the Banach space of bounded continuous functions

φ : [0,∞) → < such that φ(t) → 0 as t → ∞. For fixed x(0), define
P : X0 → X0 by φ ∈ X0 implies that

(Pφ)(t) = z(t) + F (t) +

∫ t

0

R(t− s)
[
x(s)− G(s, x(s))

J

]
ds
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and note that (Pφ)(t)→ 0 as t→∞. Moreover, if φ, η ∈ X0 then

|(Pφ)(t)−(Pη)(t)| ≤
∫ t

0

R(t−s)
∣∣∣∣φ(s)−G(s, φ(s))

J
−η(s)+

G(s, η(s))

J

∣∣∣∣ds.
This is a contraction with constant α = max[α1, α2] = α2 so P has a
unique fixed point φ ∈ X0. That proves the first part of the theorem.

For the second part, z(t) = 0. Consider the aforementioned unique
solution φ and find T > 0 so that s ≥ T implies that∣∣∣∣φ(s)− G(s, φ(s))

J

∣∣∣∣ ≤ β|φ(s)|.

Then interchanging the order of integration below, we obtain∫ t

0

|φ(s)|ds ≤
∫ t

0

|F (s)|ds+

∫ t

0

∫ t

s

R(u− s)du|φ(s)−G(s, φ(s)|ds

≤
∫ t

0

|F (s)|ds+

∫ T

0

|φ(s)−G(s, φ(s))|ds+

∫ t

T

β|φ(s)|ds.

Hence,

(1− β)

∫ t

T

|φ(s)|ds ≤
∫ t

0

|F (s)|ds+

∫ T

0

|φ(s)−G(s, φ(s))|ds,

completing the proof. �

There is a simple result which the reader should have in mind when
viewing the nonlinear problems.

Proposition 3.6. Let G(t) ≥ 0. Then

L(t) :=

∫ t

0

R(t− s)G(s)ds ∈ L1[0,∞) ⇐⇒ G ∈ L1[0,∞).

Proof. If G ∈ L1, clearly L(t) ∈ L1. If L(t) ∈ L1, then for large t∫ t

0

∫ u

0

R(u− s)G(s)dsdu ≥ (1/2)

∫ t/2

0

G(s)ds

so G ∈ L1. �

The proposition reverses the classical theorem that the convolution
of two L1 functions is an L1 function.

4. f ∈ Lp[0,∞)

This section is divided into two parts depending on the initial con-
dition.
Case I: x(0) = 0.

Return to (9)

cDqx = f(t)− a(t)x(t), 0 < q < 1, x(0) = 0
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and (13)

x(t) = F (t)−
∫ t

0

R(t− s)[β(s)x(s)]ds

where

F (t) :=
1

J

∫ t

0

R(t− s)f(s)ds

and R(t) satisfies (4)

R(t) = C(t)−
∫ t

0

C(t− s)R(s)ds

with C defined in (3) as

C(t) =
1

Γ(q)
Jtq−1 for t > 0.

We need the following lemma.

Lemma 4.1. If f ∈ Lp then F ∈ Lp for any p ≥ 1 with ‖F‖p ≤ ‖f‖p/J
and F (t)→ 0 as t→∞.

Proof. By Hölder’s inequality, we have∫ t

0

R(t− s)|f(s)|ds ≤
(∫ t

0

R(t− s)ds
) p−1

p
(∫ t

0

R(t− s)|f(s)|pds
) 1

p

≤
(∫ t

0

R(t− s)|f(s)|pds
) 1

p

since
∫ t

0
R(s)ds ≤ 1. This implies that∫ t

0

|F (u)|pdu ≤ J−p
∫ t

0

∫ u

0

R(u− s)|f(s)|pdsdu

≤ J−p
∫ t

0

∫ t

s

R(u− s)du|f(s)|pds

= J−p
∫ t

0

∫ t−s

0

R(u)du|f(s)|pds

≤ J−p
∫ ∞

0

|f(s)|pds <∞

and thus, F ∈ Lp for any p ≥ 1 and ‖F‖p ≤ ‖f‖p/J . The fact that
F (t)→ 0 as t→∞ follows from the inequality

|F (t)|p ≤ J−p
∫ t

0

R(t− s)|f(s)|pds,

the convolution of an L1 function with a function tending to zero. �
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Corollary 4.2. For any p ≥ 1,∫ t

0

R(t− s)|f(s)|ds ≤
(∫ t

0

R(t− s)|f(s)|pds
)1/p

.

Theorem 4.3. If (11) holds and if f ∈ Lp[0,∞) for p ≥ 1, then the
solution of (9) is in Lp[0,∞) with

‖x‖p ≤ ‖f‖p/[J(1− α)].

Proof. We integrate (13) on [0, t] and use the triangle inequality of the
Lp-norm (or Minkowski inequality) to obtain(∫ t

0

|x(u)|pdu
)1/p

≤
(∫ t

0

|F (u)|pdu
)1/p

+

[∫ t

0

(∫ u

0

R(u− s)|β(s)x(s)|ds
)p

du

]1/p

≤
(∫ t

0

|F (u)|pdu
)1/p

+ α

(∫ t

0

∫ u

0

R(u− s)||x(s)|pdsdu
)1/p

.

Interchange the order of integration and use (6), the property for R(t),
leaving us with

(1− α)

(∫ t

0

|x(s)|pds
)1/p

≤
(∫ t

0

|F (s)|pds
)1/p

or

‖x‖p ≤ ‖f‖p/[J(1− α)].

This completes the proof. �

Case II: x(0) 6= 0.

Let R̃(t) = 1 −
∫ t

0
R(s)ds and z(t) = x(0)R̃(t). For x(0) 6= 0, we

write the counterpart of (9) as

(9∗) cDqx = f(t)− a(t)x(t), 0 < q < 1, x(0) = x0.

With β(s) defined in (13), this can be inverted as

x(t) = x(0)− 1

Γ(q)

∫ t

0

J(t− s)q−1[x(s) + β(s)x(s)− f(s)

J
]ds.
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Then x(t) solves

(14) x(t) = z(t) + F (t)−
∫ t

0

R(t− s)[β(s)x(s)]ds.

Lemma 4.4. Let R(t) be defined in (4). If R̃(t) = 1−
∫ t

0
R(u)du, then

(15) R̃(t) = 1−
∫ t

0

C(t− s)R̃(s)ds.

Proof. We integrate (4) from 0 to t to obtain∫ t

0

R(u)du =

∫ t

0

C(u)du−
∫ t

0

∫ u

0

C(u− s)R(s)dsdu

=

∫ t

0

C(u)du−
∫ t

0

∫ t−s

0

C(u)duR(s)ds.

This is equivalent to

1−
∫ t

0

R(u)du = 1−
∫ t

0

C(u)du+

∫ t

0

∫ t−s

0

C(u)duR(s)ds.

Taking into account that R̃′(t) = −R(t), we arrive at

R̃(t) = 1−
∫ t

0

C(u)du−
∫ t

0

∫ t−s

0

C(u)duR̃′(s)ds

(integrate the last term by parts)

= 1−
∫ t

0

C(u)du−
[∫ t−s

0

C(u)duR̃(s)
∣∣∣s=t
s=0

+

∫ t

0

C(t− s)R̃(s)ds

]
= 1−

∫ t

0

C(u)du−
[
−
∫ t

0

C(u)du+

∫ t

0

C(t− s)R̃(s)ds

]
as required. �

Lemma 4.5. Let R(t) be defined in (4) and R̃ be defined in (15). Then

R̃(t) ∈ Lk[0,∞) for k ≥ 1 if and only if k > 1/q.

Proof. We take Laplace transform of (15) to obtain

L(R̃) = L(1)− L(C)L(R̃)

and so

L(R̃)(s) =
1

s[1 + L(C)(s)]
.

We recall that L(tν)(s) = Γ(ν+1)s−ν−1 for ν > −1 and <e(s) > 0 (see
[7, p. 28]). Thus,

L(C)(s) =
J

Γ(q)
L(tq−1)(s) =

J

Γ(q)
Γ(q)s−q = Js−q.
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Substitute this equation into the right-hand side of L(R̃)(s) above to
obtain

L(R̃)(s) =
1

s(1 + Js−q)
=

sq−1

sq + J

and hence,

R̃(t) = L−1

[
sq−1

sq + J

]
= Eq,1(−Jtq)

(see [7, p. 21]), where Eq,1 is a member of the two parameter family of
Mittag-Leffler functions (generalized exponential functions) defined as

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α, β > 0

with the property, in particular, that

|Eq,1(−Jtq)| ≤ µ

1 + Jtq

for some constant µ and all t ≥ 0 (see [7, p. 35]). Let k > 1/q be fixed.
Then

|R̃(t)|k ≤ (µ/J)k
/
tkq for t ≥ 1

and thus, R̃(t) ∈ Lk[0,∞) for all k > 1/q.

Conversely, suppose that 1 ≤ k ≤ 1/q. We show that R̃(t) 6∈
Lk[0,∞). In fact, it follows from an asymptotic expansion formula
for Eα,β(z) (see [7, p. 33-34]) that

Eα,β(z) = −
p∑

k=1

z−k

Γ(β − αk)
+O(|z|−1−p) as |z| → ∞

where 0 < α < 2, β > 0, p ≥ 1 is an arbitrary integer, and µ ≤
| arg(z)| ≤ π with πα/2 < µ < min{π, πα}. Now for p = 1, we have

Eq,1(−Jtq) = − 1

Γ(1− q)
(−Jtq)−1 +O(t−2q) as t→∞.

Thus, there exists η > 0 and T > 0 such that

R̃(t) = Eq,1(−Jtq) ≥ ηt−q for t ≥ T

and hence,

|R̃(t)|k ≥ ηkt−kq for t ≥ T.

Since 0 < kq ≤ 1, we see that R̃ 6∈ Lk[0,∞). This completes the
proof. �

Theorem 4.6. Suppose that (11) holds and f ∈ Lp[0,∞) for p ≥ 1.
Then the solution x(t) of (9∗) with x(0) 6= 0 is in Lp[0,∞) if and only
if p > 1/q. Moreover, if p > 1/q, then

(16) ‖x‖p ≤ L
[
|x(0)|‖R̃‖p + ‖f‖p

]
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for some constant L > 0.

Proof. If p > 1/q, we have R̃ ∈ Lp[0,∞) by Lemma 4.5. It then follows
from (14) that

‖x‖p ≤ ‖z‖p + ‖F‖p + α‖x‖p

≤ |x(0)|‖R̃‖p + ‖f‖p/J + α‖x‖p.

This implies that x ∈ Lp[0,∞) and (16) holds.

Conversely, suppose that 1 ≤ p ≤ 1/q. Then R̃ 6∈ Lp[0,∞) by
Lemma 4.5. We write (14) as

R̃(t)x(0) = x(t)− F (t) +

∫ t

0

R(t− s)[β(s)x(s)]ds.

If x ∈ Lp[0,∞), then

‖R̃‖p ≤ [‖x‖p + ‖f‖p/J + α‖x‖p] /|x(0)| <∞,

which yields R̃ ∈ Lp[0,∞), a contradiction. �

Remark: If f ≡ 0, then by (16), the zero solution of (9∗) is Lp-
asymptotically stable. We also observe from (16) that solutions of (9∗)
are uniformly bounded and uniformly ultimately bounded in Lp[0,∞)
for p > 1/q at t = 0.

We consider the nonlinear equation

(17) cDqx = −a(t)x3(t) + f(t), 0 < q < 1

where a, f : [0,∞)→ < are continuous and there are positive numbers
ε and M such that (11) holds. We then find J > 0, α < 1 with
|J − a(t)| ≤ αJ . We invert (17) as

x(t) = x(0)− 1

Γ(q)

∫ t

0

(t− s)q−1[a(s)x3(s)− f(s)]ds

which we write

x(t) = x(0)− 1

Γ(q)

∫ t

0

(t− s)q−1[Jx(t)− Jx(t) + a(s)x3(s)− f(s)]ds.

We now decompose it into

z(t) = x(0)− J

Γ(q)

∫ t

0

(t− s)q−1z(s)ds

with solution z(t) = x(0)R̃(t) and

(18) x(t) = z(t)+

∫ t

0

R(t−s)[x(s)−x3(s)+
(J − a(s))

J
x3(s)]ds+F (t)
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where R(t) is defined in (4) and

F (t) :=
1

J

∫ t

0

R(t− s)f(s)ds.

Note that F ∈ Lp if f ∈ Lp for p ≥ 1 and F (t)→ 0 as t→ 0.

Theorem 4.7. Suppose (11) holds. If f ∈ Lp[0,∞) for p ≥ 1 and
|F (t)| < (1− α)η3 with 0 < η <

√
3/3 and (1− η2)3(p−1) > α, then the

solution of (17) with x(0) = 0 is in L3p[0,∞) with ‖x‖3p ≤ L‖f‖1/3
p for

some constant L > 0.

Proof. For x(0) = 0, we see that z(t) = 0 and (18) becomes

(19) x(t) =

∫ t

0

R(t− s)[x(s)− x3(s) +
(J−a(s))

J
x3(s)]ds+ F (t).

First, we claim that |x(t)| < η for all t ≥ 0. If there is a t̄ > 0 such
that |x(t̄)| = η and |x(s)| < |x(t̄)| for all 0 ≤ s < t̄, then

|x(t̄)| ≤
∫ t̄

0

R(t̄− s)[(|x(s)| − |x(s)|3) + α|x(s)|3]ds+ |F (t̄)|

≤ [|x(t̄)| − |x(t̄)|3 + α|x(t̄)|3]

∫ t̄

0

R(t̄− s)ds+ |F (t̄)|.

Since η − (1− α)η3 > 0, this yields

(1− α)η3 ≤ |F (t̄)|

which contradicts the condition on F . Thus, |x(t)| < η for all t ≥ 0.

Next, we set γ = 3(p− 1) and multiply (19) by (|x(t)| − |x(t)|3)
γ

to
obtain (

|x(t)| − |x(t)|3
)γ+1

+ |x(t)|3
(
|x(t)| − |x(t)|3

)γ
(20)

≤
∫ t

0

R(t− s)[|x(s)| − |x(s)|3]ds
(
|x(t)| − |x(t)|3

)γ
+ α

∫ t

0

R(t− s)|x(s)|3ds
(
|x(t)| − |x(t)|3

)γ
+ |F (t)|

(
|x(t)| − |x(t)|3

)γ
.

Use Young’s inequality to write

(
|x(s)| − |x(s)|3

) (
|x(t)| − |x(t)|3

)γ
≤ 1

γ + 1

(
|x(s)| − |x(s)|3

)γ+1
+

γ

γ + 1

(
|x(t)| − |x(t)|3

)γ+1
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and

|x(s)|3
(
|x(t)| − |x(t)|3

)γ
≤ 3

γ + 3
|x(s)|γ+3 +

γ

γ + 3

(
|x(t)| − |x(t)|3

)γ+3

so that

|F (t)|
(
|x(t)| − |x(t)|3

)γ ≤ K|F (t)|p + δ
(
|x(t)| − |x(t)|3

)γ+3

where 0 < δ < (1− η2)γ − α and K = K(δ) is a constant.

Substitute these inequalities into (20) and integrate on [0, t] to obtain

∫ t

0

(
|x(u)| − |x(u)|3

)γ+1
du+

∫ t

0

|x(u)|3
(
|x(u)| − |x(u)|3

)γ
du

≤ 1

γ + 1

∫ t

0

∫ u

0

R(u− s)
(
|x(s)| − |x(s)|3

)γ+1
dsdu

+
γ

γ + 1

∫ t

0

∫ u

0

R(u− s)
(
|x(u)| − |x(u)|3

)γ+1
dsdu

+
3α

γ + 3

∫ t

0

∫ u

0

R(u− s)|x(s)|γ+3dsdu

+
γα

γ + 3

∫ t

0

∫ u

0

R(u− s)
(
|x(u)| − |x(u)|3

)γ+3
dsdu

+K

∫ t

0

|F (u)|pdu+ δ

∫ t

0

(
|x(u)| − |x(u)|3

)γ+3
du.

Interchange the order of integration, use the property
∫ t

0
R(u)du ≤ 1,

and cancel terms, leaving us with∫ t

0

|x(u)|3
(
|x(u)| − |x(u)|3

)γ
du(21)

≤ 3α

γ + 3

∫ t

0

|x(s)|γ+3ds+
γα

γ + 3

∫ t

0

(
|x(u)| − |x(u)|3

)γ+3
du

+K

∫ t

0

|F (u)|pdu+ δ

∫ t

0

(
|x(u)| − |x(u)|3

)γ+3
du

≤ (α + δ)

∫ t

0

|x(s)|γ+3ds+K

∫ t

0

|F (u)|pdu
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The last line was obtained by noting that |x(t)| > |x(t)|3. Since |x(t)| <
η for all t ≥ 0, we have

(1− η2)γ
∫ t

0

|x(s)|γ+3ds

≤
∫ t

0

|x(u)|γ+3
(
1− |x(u)|2

)γ
du

=

∫ t

0

|x(u)|3
(
|x(u)| − |x(u)|3

)γ
du

≤ (α + δ)

∫ t

0

|x(s)|γ+3ds+K

∫ t

0

|F (u)|pdu

Note that γ + 3 = 3p and (1 − η2)γ > α + δ. Moving the next-to-last
integral to the left-hand-side of the display, we see that x ∈ L3p[0,∞)

and ‖x‖3p ≤ L‖f‖1/3
p for some constant L > 0. This completes the

proof. �

Corollary 4.8. Suppose (11) holds. If f ∈ Lp[0,∞) for p ≥ 1, and if
f is bounded on [0,∞), then the solution of (17) with x(0) = 0 is in

L3p[0,∞) with ‖x‖3p ≤ L‖f‖1/3
p for some constant L > 0.

Proof. Since f is bounded on [0,∞), there exists a constant H > 0
such that |f(t)| ≤ H for all t ≥ 0. For the fixed 0 < α < 1 and p ≥ 1,
we choose η > 0 so that 0 < η <

√
3/3 and (1− η2)3(p−1) > α. We see

from the proof of Lemma 4.1 that

|F (t)|p ≤ J−p
∫ t

0

R(t− s)|f(s)|pds

≤ J−pHp

∫ t

0

R(t− s)ds ≤ (H/J)p ≤ (2H/M)p

by the definition of J , where M is defined in (11). This yields

|F (t)| ≤ 2H/M.

We may choose M sufficiently large so that 2H/M < (1 − α)η3, and
thus

|F (t)| ≤ (1− α)η3.

Therefore, all conditions of Theorem 4.7 are satisfied, and the assertion
of Corollary 4.8 follows. �

We now consider the case x(0) 6= 0.
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Theorem 4.9. Suppose (11) holds. If f ∈ Lp[0,∞) for p > 1/q and
|F (t)| < (1− α)η3 with 0 < η <

√
3/3 and (1− η2)3(p−1) > α, then the

solution of (17) is in L3p[0,∞) with

(22) ‖x‖3p ≤ L
[
|x(0)|‖R̃‖p + ‖f‖p

]1/3

for some constant L > 0.

Proof. The proof is similar to that of Theorem 4.7 (with an additional
term) by working with (18). Since F (t) → 0 as t → ∞, we see that
‖F‖ < (1− α)η3 and |x(t)| < η for all t ≥ 0 if

|x(0)|+ ‖F‖ < (1− α)η3.

We now set γ = 3(p − 1), multiply (18) by (|x(t)| − |x(t)|3)
γ
, and

follow through the calculations in (20) and (21) to obtain

∫ t

0

|x(u)|3
(
|x(u)| − |x(u)|3

)γ
du

≤ (α + δ)

∫ t

0

|x(s)|γ+3ds+K

∫ t

0

|F (u)|pdu

+ |x(0)|
∫ t

0

R̃(u)
(
|x(u)| − |x(u)|3

)γ
du.

Next, find 0 < δ1 < (1− η2)γ − (α + δ) and K1 > 0 such that

|x(0)|
∫ t

0

R̃(u)
(
|x(u)| − |x(u)|3

)γ
du

≤ |x(0)|pK1

∫ t

0

|R̃(u)|pdu+ δ1

∫ t

0

(
|x(u)| − |x(u)|3

)γ+3
du.
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Since |x(t)| < η for all t ≥ 0, we have

(1− η2)γ
∫ t

0

|x(s)|γ+3ds

≤
∫ t

0

|x(u)|γ+3
(
1− |x(u)|2

)γ
du

=

∫ t

0

|x(u)|3
(
|x(u)| − |x(u)|3

)γ
du

≤ (α + δ + δ1)

∫ t

0

|x(s)|γ+3ds

+ |x(0)|pK1

∫ t

0

|R̃(u)|pdu+K

∫ t

0

|F (u)|pdu.

This implies that there exists a constant K2 > 0 such that

(23)

∫ t

0

|x(s)|γ+3ds ≤ K2

[
|x(0)|p

∫ t

0

|R̃(u)|pdu+

∫ t

0

|F (u)|pdu
]

for all t ≥ 0. Raising both sides of (23) to the power 1/(γ + 3) and

taking into account that γ + 3 = 3p and R̃ ∈ Lp, we see

‖x‖3p ≤ K
1
3p

2

[
|x(0)|p‖R̃‖pp + ‖F‖pp

] 1
3p

≤ K
1
3p

2 2
1
3p

[
|x(0)|‖R̃‖p + ‖f‖p/J

] 1
3

≤ K
1
3p

2 2
1
3p (1 + 1/J)

1
3

[
|x(0)|‖R̃‖p + ‖f‖p

] 1
3

=: L
[
|x(0)|‖R̃‖p + ‖f‖p

] 1
3

This completes the proof. �

Corollary 4.10. Suppose (11) holds. If f ∈ Lp[0,∞) for p > 1/q, and
if f is bounded on [0,∞), then the solution of (17) is in L3p[0,∞), and
it satisfies (22).

Remark: If f ≡ 0, then by (22), the zero solution of (17) is L3p-
asymptotically stable. One may also note that Theorem 4.7 and The-
orem 4.9 are general results. Everything would work for

cDqx = −a(t)x2n+1(t) + f(t), 0 < q < 1

for a positive integer n.
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