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Abstract. This is a paper in a series of investigations into the use of fixed point theorems

to prove stability. Here, we use a modification of a fixed point theorem of Krasnoselskii.

The work concerns a scalar functional differential equation x′ = −a(t)x3 + b(t)x3(t − r(t))

where r(t) need be neither bounded nor differentiable, while a and b can be unbounded.
Such problems have proved very challenging in the theory of Liapunov’s direct method. We

show that it fits very nicely into the framework of the modified Krasnoselskii theorem so that

asymptotic stability is readily concluded.

1. The equation and the fixed point theorem.

This paper addresses two problems. First, in the application of Liapunov’s direct

method to problems of stability in delay differential equations, serious difficulties occur

if the functions in the equations are unbounded with time (see Hatvani [8]), if the delay

is unbounded (see Seifert [12] which also is pertinent for problems with Razumikhin tech-

niques), or if the derivative of the delay is not small (see [2,9,14]). Here, we demonstrate

by means of a fully nonlinear example how all of those problems can be avoided by means

of fixed point theory. A modern look at construction of Liapunov functionals for linear

equations, with applications to nonlinear problems, is found in Zhang [15].

Next, this is a continuation of a series of papers in which we have addressed some of

those problems by means of fixed point theory. To effectively use fixed point theory it is

usually necessary to invert the differential equation, obtaining a mapping equation whose
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fixed points solve the original problem. In [4] we presented many examples when there

was a nontrivial linear term so that the variation of parameters could be used to obtain an

effective mapping equation. The present problem is totally nonlinear and we resort to a

very old idea of adding and subtracting a linear term for the mapping. The interesting part

is that the added term does two things. First, it destroys a contraction already present in

part of the equation. But it replaces it with what we have called a large contraction that

is fully effective in the fixed point theory.

When a function is written without its argument, that argument is t.

The following concise equation exhibits all of those problems. The solution offers a

general guide as to how they may be met. We consider the equation

(1) x′ = −a(t)x3 + b(t)x3(t− r(t))

in which r(t) ≥ 0, a, b, r are continuous, 0 ≤ r(t) ≤ t. In order to motivate our conditions

and to put the problem in some context, we will look at some results in the greatly simplified

case of r being a positive constant.

I. The simplest case occurs when both a and b are bounded, as may be seen in Hale [7;

p. 117]. Thus, we start our motivation one step beyond by letting a(t) be unbounded and

asking that

b(t) is bounded , r(t) = r a constant, and a(t) ≥ |b(t+ r)| + k

for some k > 0. Define a Liapunov functional by

V (t, xt) = |x(t)| +
∫ t

t−r

|b(s + r)|x3(s)|ds

which has a derivative along solutions of (1) satisfying

V ′(t, xt) ≤ −a(t)|x3(t)| + |b(t)||x3(t− r)| + |b(t + r)||x3(t)| − |b(t)|x3(t − r)| ≤ −k|x3|.

Then the argument in a result of Burton [1] yields uniform asymptotic stability of the zero

solution.
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II. We can let b(t) be unbounded and retain the conclusion if we increase the conditions

on a(t); and this will lead to a very important compactness condition in our main result.

We suppose that r(t) = r is a positive constant and that there is a k > 0 with

−a(t) + (1/4)|b(t)|2 + 1 ≤ −k

for all t ≥ 0. Then

V (t, xt) = (1/4)x4(t) +

∫ t

t−r

x6(s)ds

yields

V ′(t, xt) ≤ −a(t)x6 + (|b(t)|/
√

2)|x|3
√

2|x3(t− r)| + x6 − x6(t− r)

≤ −a(t)x6 + (1/4)|b(t)|2x6 + x6(t− r) + x6 − x6(t− r)

≤ [−a(t) + (1/4)|b(t)|2 + 1]x6

≤ −kx6.

Again uniform asymptotic stability follows from the proof given in Burton [1].

In our problem we will allow both a and b to be unbounded and, consistent with II above,

ask that b(t)/a(t) → 0 as t → ∞. In the next section we present a far more compelling

reason for this assumption.

A few years ago we began investigating the possibility of circumventing such difficulties

by fixed point theory. The problems in [4] depended, for the most part, on the differen-

tial equation having a nontrivial linear term so that the variation of parameters formula

could be employed to construct a mapping equation suitable for the contraction mapping

theorem.

But our equation (1) has no such linear term and here we resort to adding and sub-

tracting a linear term. In principle one believes that this should not work because the

extraneous linear term would strongly dominate these nonlinear terms near zero, effec-

tively destroying the original stability properties. In fact, that does not happen and the

problem seems made to order for the fixed point theorem.
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According to Smart [13; p. 31], Krasnoselskii studied a 1932 paper of Schauder [11] on

partial differential equations and formulated the working hypothesis: The inversion of

a perturbed differential operator yields the sum of a contraction and compact

map. Accordingly, he formulated the following theorem (cf. [10] or [13; p. 31]).

Theorem 1. Let M be a closed convex non-empty subset of a Banach space (S, ‖ · ‖).

Suppose that A and B map M into S such that

(i) Ax+By ∈M(∀x, y ∈M),

(ii) A is continuous and AM is contained in a compact set,

(iii) B is a contraction with constant α < 1.

Then there is a y ∈M with Ay +By = y.

It turns out that the theorem can be more useful with certain changes. First, it seems

that it is too much to ask that B be a contraction. Next, it is too much to ask that the

work takes place in the full Banach space. We studied the problem in [3]. Here are the

critical results from that paper.

Definition. Let (M,ρ) be a metric space and B : M → M . B is said to be a large

contraction if ϕ, ψ ∈M , with ϕ 6= ψ then ρ(Bϕ,Bψ) < ρ(ϕ,ψ) and if ∀ε > 0 ∃δ < 1 such

that [ϕ,ψ ∈M , ρ(ϕ,ψ) ≥ ε] ⇒ ρ(Bϕ,Bψ) ≤ δρ(ϕ,ψ).

Theorem 2. Let (M,ρ) be a complete metric space and B be a large contraction.

Suppose there is an x ∈M and an L > 0, such that ρ(x,Bnx) ≤ L for all n ≥ 1. Then B

has a unique fixed point in M .

Theorem 3. Let (S, ‖ · ‖) be a Banach space, M a bounded, convex nonempty subset of

S. Suppose that A, B : M →M and that

(i) x, y ∈M ⇒ Ax+By ∈M,

(ii) A is continuous and AM is contained in a compact subset of M,
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(iii) B is a large contraction.

Then ∃ y ∈M with Ay +By = y.

We will use this theorem to obtain a stability result. In an earlier paper [5] we obtained

stability by means of a different modification of Krasnoselskii’s theorem. In that paper

we integrated the equation directly, without adding a linear term, producing an entirely

different technique.

The following example illustrates the definition and also provides the details of work

taking place in an integrand in the proof of Lemma 2.

Example. If ‖ · ‖ is the supremum norm, if M = {φ : [0,∞) → R|φ ∈ C, ‖φ‖ ≤
√

3/3},

and if (Hϕ)(t) = ϕ(t) − ϕ3(t), then H is a large contraction of the set M .

Proof. In the following computation, ϕ,ψ are evaluated at each t. We have D :=
∣

∣Hϕ−

Hψ
∣

∣ =
∣

∣ϕ− ϕ3 − ψ + ψ3
∣

∣ =
∣

∣ϕ− ψ
∣

∣

∣

∣1 − (ϕ2 + ϕψ + ψ2)
∣

∣. Then for

|ϕ− ψ|2 = ϕ2 − 2ϕψ + ψ2 ≤ 2(ϕ2 + ψ2)

and for ϕ2 + ψ2 < 1 we have

D ≤
∣

∣ϕ− ψ
∣

∣

[

1 + |ϕψ| − (ϕ2 + ψ2)

]

≤
∣

∣ϕ− ψ
∣

∣

[

1 +
ϕ2 + ψ2

2
−

(

ϕ2 + ψ2
)

]

=
∣

∣ϕ− ψ
∣

∣

[

1 − ϕ2 + ψ2

2

]

.

What we have shown is that pointwise we have a large contraction. It is easy to see

that this implies a large contraction in the supremum norm.

For a given ε ∈ (0, 1), let φ, ψ ∈M with ‖φ− ψ‖ ≥ ε.

a) Suppose that for some t we have

ε/2 ≤ |φ(t) − ψ(t)|
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so that

(ε/2)2 ≤ |φ(t) − ψ(t)|2 ≤ 2(φ2(t) + ψ2(t))

or

φ2(t) + ψ2(t) ≥ ε2/8.

For all such t we have

|(Bφ)(t) − (Bψ)(t)| ≤ |φ(t) − ψ(t)|[1 − ε2

8
]

≤ ‖φ− ψ‖[1− ε2

8
].

b) Suppose that for some t we have |φ(t) − ψ(t)| ≤ ε/2. Then

|(Bφ)(t) − (Bψ)(t)| ≤ |φ(t) − ψ(t)| ≤ (1/2)‖φ − ψ‖.

Thus, for all t we have

|(Bφ)(t) − (Bψ)(t)| ≤ min[1/2, 1 − ε2

8
]‖φ− ψ‖.

2. Convergence of solutions to zero

Consider again

(1) x′ = −a(t)x3 + b(t)x3(t− r(t))

in which r(t) ≥ 0, the functions a, b, r are continuous, and there is a J > 1 with

(2) J |b(t)| ≤ a(t) and

∫ ∞

0

a(s)ds = ∞.

In order to show that solutions of (1) with small initial functions tend to zero using

Theorem 3, we define a mapping equation by first writing

(3) x′ + a(t)x = a(t)x − a(t)x3(t) + b(t)x3(t− r(t))
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and then using the variation of parameters formula to write

(4)

x(t) = x0e
−

R

t

0
a(s)ds+

∫ t

0

e−
R

t

s
a(u)dua(s)[x(s)−x3(s)]ds+

∫ t

0

e−
R

t

s
a(u)dub(s)x3(s−r(s))ds,

where we take the first two terms on the right as Bx and the last as Ax, so that (4) is

expressed as

(5) x = Bx+Ax.

We will define B and A more precisely in a moment. There is an assumed continuous

initial function ψ on some initial interval [−R, 0] with ψ(0) = x0. Here, [−R, 0] = {u ≤

0|u = t− r(t), t ≥ 0}. A solution is then denoted by x(t, 0, ψ) which is continuous, agrees

with ψ on the initial interval, satisfies (1) for t ≥ 0, and which may have a discontinuity

in its derivative whenever t− r(t) = 0, as discussed later.

Definitions of S, M, A, and B

We will do the work in two steps. First, we show that solutions starting in a certain set

tend to zero. That work will use the supremum norm and will assume that b(t)/a(t) → 0

as t → ∞ which allows us to show that a certain set is compact. Then we will work in a

space with weighted norm and prove a Liapunov stability result without that condition on

b(t)/a(t) since compactness will rest on the equi-continuity.

With Theorem 3 in mind we let S be the Banach space of bounded continuous functions

φ : [0,∞) → R with the supremum norm ‖ · ‖ and define the set

(6) M = {φ ∈ S||φ(t)| ≤ L, |φ(t)| → 0 as t→ ∞}

where L =
√

3/3. Denote the initial function by ψ and its maximum on [−R, 0] by ‖ψ‖,

which should not cause confusion with the same symbol denoting the norm in S. Then we

require that ψ be chosen so that

(8) ‖ψ‖ + (2
√

3/9) + (
√

3/[9J ]) ≤
√

3/3.
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We will use this relation in Lemma 2 and define a δ > 0 so that if ε =
√

3/3 and if

‖ψ‖ < δ, then the solution satisfies |x(t, 0, ψ)| < ε. We treat the more general ε−δ stability

relation in the next section.

Now, with M defined, if φ ∈ M and if x0 = ψ(0) then

(Bφ)(t) = x0e
−

R

t

0
a(s)ds +

∫ t

0

e−
R

t

s
a(u)dua(s)(φ(s) − φ3(s))ds.

Note that B would have been a contraction for small φ had a(t)φ(t) not been present. But

we will show that B is a large contraction for small φ. The reader should take careful

note of the changes in contraction properties; this is exactly the typical occurrence when

a linear term is added to both sides of an equation which had a ”stable” local contraction

before the addition.

Next, for φ ∈M , extend φ to [−R,∞) by defining φ(t) = ψ(t) on [−R, 0) so that

(9) (Aφ)(t) =

∫ t

0

e−
R

t

s
a(u)dub(s)φ3(s − r(s))ds

is defined for t ≥ 0.

If there is a fixed point φ for the mapping Pφ = Aφ+Bφ, then x(t, 0, ψ) = φ(t) for t ≥ 0,

x(t, 0, ψ) = ψ(t) on [−R, 0], and x(t, 0, ψ) satisfies (1) for t > 0, whenever its derivative

exists.

NOTE. For functional differential equations we always expect a discontinuity in the

derivative of the continuous solution at t = t0; but here we would expect a possible

discontinuity in the derivative of the solution at each point where

(10) t− r(t) = 0.

We say ”possible discontinuity” because r(t) = t for all t, for example, would not yield

discontinuities for t > 0.

Fulfillment of (i), (ii), (iii) in Theorem 3
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Here is our main result. It will require the additional assumption that

(11) b(t)/a(t) → 0 as t→ ∞.

We had discussed this central requirement in the introduction and we now add some

substance to it. In [12] Seifert studies asymptotic stability of functional differential equa-

tions by means of Razumikhin techniques which can be very fruitful in proving Liapunov

stability for problems in the general class of (1). But he warns of the difficulties in proving

asymptotic stability when t − r(t) fails to tend to infinity; and his main result on asymp-

totic stability asks that along each solution the main action of the delay be on [t− r, t] for

r constant. He has an example of great difficulties encountered when r(t) = t. If we look

at a linear problem parallel to (1) with r(t) = t we would have

x′ = −a(t)x+ b(t)x(0)

with solution

x(t) = x(0)e−
R

t

0
a(s)ds +

∫ t

0

e−
R

t

s
a(u)dub(s)x(0)ds

= x(0)e−
R

t

0
a(s)ds + x(0)

∫ t

0

e−
R

t

s
a(u)dua(s)(b(s)/a(s))ds.

It is readily shown that x(t) → 0 as t→ ∞ in case b(t)/a(t) → 0 as t→ ∞. On the other

hand, if a(t)/b(t) is bounded away from zero, then x(t) does not tend to zero. Hence, (11)

is critical to our proof and it is critical to the validity of the theorem. There are cases in

between: we might get by with lim inft→∞ b(t)/a(t) = 0.

This is more than simply a justification of the condition. All of this work was motivated

by the difficulties encountered in studying this problem via Liapunov’s direct method. In

that method the real difficulties occur because of unboundedness of the delay and the

properties of the derivative of r(t); those difficulties with the derivative are not seen at all

in our work here.
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Theorem 4. Let (2) and (11) hold. If L =
√

3/3 and if ψ is the initial function

satisfying (8), ψ ∈ C, then there is a solution x(t, 0, ψ) of (1) with |x(t, 0, ψ)| < L for

t ≥ 0 and x(t, 0, ψ) → 0 as t→ ∞.

The proof is based on four lemmas.

Lemma 1. For A defined in (5), if φ ∈ M then |(Aφ)(t)| ≤ L3/J ≤ L. Moreover,

(Aφ)(t) → 0 as t→ ∞.

Proof. We have
∫ t

0

e−
R

t

s
a(u)du|b(s)||φ3(s − r(s))|ds

≤ (L3/J)

∫ t

0

e−
R

t

s
a(u)dua(s)ds ≤ L3/J,

as required.

Let φ ∈ M be fixed. We will show that (Aφ)(t) → 0. For a given ε > 0 we can find T

such that |φ3(t − r(t))| < ε for t ≥ T . We then have

|(Aφ)(t)| ≤
∫ T

0

e−
R

t

s
a(u)dua(s)ds(L3/J) +

∫ t

T

(ε/J)e−
R

t

s
a(u)dua(s)ds

≤ (L3/J)e−
R

t

T
a(u)du + (ε/J).

The result follows from this.

Lemma 2. For A,B defined in (5) and ψ satisfying (8), if y ∈M is fixed, but arbitrary,

then the mapping Bx + Ay : M → M and B is a large contraction on M with a unique

fixed point in M .

Proof. Using the definition of B, the result of Lemma 1, and the fact that |x| ≤
√

3/3

implies |x− x3| ≤ (2
√

3)/9 we obtain

|Bx+ Ay| ≤ |x0| + (2
√

3/9)

∫ t

0

e−
R

t

s
a(u)dua(s)ds + L3/J

≤ ‖ψ‖ + (2
√

3/9) + (
√

3/[9J ]) ≤
√

3/3
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by (8). Note that 0 ∈M so we have proved that B : M →M .

To see that B : M → M is a large contraction on M , we note that our example after

Theorem 3 showed that φ−φ3 is a large contraction within the integrand; when that term

is taken outside the integral as a supremum, then the resulting integral is bounded by 1.

Thus for the ε of the proof of that example, we have

‖Bφ1 −Bφ2‖ ≤
∫ t

0

e−
R

t

s
a(u)dua(s)ds‖φ1 − φ2‖δ

≤ ‖φ1 − φ2‖δ,

as required.

We already know that Ay → 0 as t→ ∞ and the proof that Bx→ 0 is just the same.

Lemma 3. The mapping A : M →M is continuous in the supremum norm.

Proof. If φ1, φ2 ∈M then there are positive constants J and K with

|(Aφ1)(t) − (Aφ2)(t)|

=

∣

∣

∣

∣

∫ t

0

e−
R

t

s
a(u)dub(s)[φ3

1(s − r(s)) − φ3
2(s − r(s))]ds

∣

∣

∣

∣

≤ ‖φ1 − φ2‖(1/J)

∫ t

0

e−
R

t

s
a(u)dua(s)ds

≤ K‖φ1 − φ2‖.

Lemma 4. The operator A maps M into a compact subset of M .

Proof. Let φ ∈M and let 0 ≤ t1 < t2 so that

|(Aφ)(t2) − (Aφ)(t1)|

=

∣

∣

∣

∣

∫ t2

0

e−
R

t2

s
a(u)dub(s)φ3(s − r(s))ds −

∫ t1

0

e−
R

t1

s
a(u)dub(s)φ3(s − r(s))ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t1

0

e−
R

t1

s
a(u)dub(s)φ3(s − r(s))[e−

R t2

t1
a(u)du − 1]ds
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+

∫ t2

t1

e−
R

t2

s
a(u)dub(s)φ3(s − r(s))ds

∣

∣

∣

∣

≤ (L3/J)

∫ t1

0

e−
R

t1

s
a(u)dua(s)ds

∣

∣

∣

∣

e−
R

t2

t1
a(u)du − 1

∣

∣

∣

∣

+ (L3/J)

∣

∣

∣

∣

e−
R

t2

t1
a(u)du − 1

∣

∣

∣

∣

≤ 2(L3/J)

∣

∣

∣

∣

e−
R

t2

t1
a(u)du − 1

∣

∣

∣

∣

.

Hence, AM is equi-continuous. Next, we notice that for arbitrary φ ∈M we have

|(Aφ)(t)| ≤
∫ t

0

e−
R

t

s
a(u)dua(s)|b(s)/a(s)|L3ds

=: c(t)

where c(t) → 0 as t→ ∞ by a proof like that of Lemma 1, because of the assumption that

|b(t)|/a(t) → 0 as t → ∞. This, and the equi-continuity will imply the conclusion (see

Burton-Furumochi [6]).

The conditions of Theorem 3 are satisfied and there is a φ ∈ M with φ = Aφ +Bφ, a

solution of (1).

NOTE. The set AM contains the solution and so from c(t) we see that we actually

prove equi-asymptotic stability. If b(t)/a(t) → 0 in a certain uniform way, we could prove

uniform asymptotic stability.

4. Stability and compactness

We have mentioned before that Razumikhin techniques can be very effective in proving

Liapunov stability for problems like (1). While one may show that the zero solution of

(1) is Liapunov stable using a Razumikhin technique, we know of no way to prove that

solutions tend to zero except by the method presented. As we are trying to give a general

discussion of how fixed point theory will yield stability, it is still worth the space to give a

short discussion here.

If all we ask is stability (not asymptotic stability) then we can avoid (11) and still

use Krasnoselskii’s theorem. In that case we would achieve the compactness by using a

different norm. Any Cg−space will work.
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Let g(t) = t + 1 for t ≥ 0 and define (S, | · |g) to be the Banach space of continuous

functions φ : [0,∞) → R for which

|φ|g := sup
t≥0

|φ(t)|/g(t)

exists. Continue to use ‖ · ‖ as the supremum norm of any φ ∈ S, provided φ is bounded.

Also, continue to use ‖ψ‖ as the bound on an initial function, as before.

Theorem 5. If the conditions of Theorem 4 hold, except for (11), then the zero solution

of (1) is stable.

Proof. We give the proof for solutions starting at t0 = 0. Refer to (8) and the proof of

Lemma 2. If ε > 0 is given with 0 < ε <
√

3/3, then for |x| ≤ ε, find a δ∗ with |x−x3| ≤ δ∗;

then we will ask that

‖ψ‖ + δ∗ + [ε3/J ] ≤ ε.

To verify that the last inequality allows ‖ψ‖ > 0, note that for 0 ≤ x ≤ ε <
√

3/3, the

function x− x3 is increasing so 0 ≤ x− x3 ≤ ε − ε3 =: δ∗. This will yield a δ > 0 so that

‖ψ‖ < δ is the requirement on the initial function.

We now construct a set

M = {φ ∈ S|‖φ‖ ≤ ε}.

Define A and B as before. We easily verify that B is a large contraction on M and that

Ax + By : M → M , just as before. AM is an equi-continuous set and in the g − norm

it is contained in a compact subset of M . Moreover, both A and B are continuous in the

g−norm. The mapping has a fixed point satisfying (1) and lying in M .
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