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ABSTRACT. This paper is part of a larger study suggested by Krasnoselskii some

sixty years ago concerning the unification of the broad area of differential equations.

The larger study included fractional differential equations, neutral functional differ-

ential equations, and initial investigation of a problem discussed by Volterra in 1928

which is still used to describe many real-world problems. This paper continues that

study of Volterra’s problem in the linear case. Using two transformations we obtain

an integral equation which defines a mapping that is automatically compact. Just

like Brouwer’s fixed point theorem for <n, when this map is continuous and takes a

closed, bounded, convex set M = {φ ∈ BC([0,∞)) : a ≤ φ ≤ b} for some a < b, into

itself, then there is a fixed point.
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1. INTRODUCTION

This is the second paper in which we study an idea of Krasnoselskii concerning

the unification of the broad area of differential equations. The study started in [5].

Our focus here concerns solutions to the forced linear integrodifferential equation

x′ (t) = −
∫ t

0

D(t − s)x(s)ds + f(t), t ≥ 0, (E)

where f, D : [0,∞) → R are continuous with

D(t) > 0,

∫ ∞

0

D(t)dt < ∞. (1.1)
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In 1928 Volterra [18] noted that many real-world problems were being modeled

by (E) with a convex or completely monotone kernel. That observation continues to

this day and we see classical and modern problems including nuclear reactors, heat

flow, fluid flow, as well as many other problems discussed in [11], [12], [13], [14], [15],

and [17] all modeled by (E).

The case in which the kernel has compact support also has interesting applica-

tions to one-dimensional viscoelasticity and reactor dynamics [7, p. 121] and neural

networks [1]. Volterra’s paper contains an application to mathematical biology which

continues to be interesting and a paper by Levin and Nohel [16] covers work of Ergen

on nuclear reactors as well as several other important problems. The problems with

compact support are not covered here, but are closely related to this work.

Volterra conjectured that if the kernel, D, is convex then a Liapunov functional

could be constructed, which would establish stability and long-term qualitative behav-

ior of solutions. Levin [11] constructed several forms of that Liapunov functional for

convex kernels starting in 1963 and those are still widely used by investigators. The

convexity facilitates such a totally elementary proof of boundedness and asymptotic

properties of solutions that investigators have eagerly used it.

But convexity is an assumption which is virtually impossible to verify by inspec-

tion of real-world problems. We must verify that D(t) ≥ 0, D′(t) ≤ 0, and D′′(t) ≥ 0;

if any of those conditions fail, the conclusion is completely lost. Meaningful results

must rely on far less stringent assumptions, regardless of the effort required to supply

proofs.

While Volterra’s conjecture of the existence of a Liapunov functional was correct,

the Liapunov functional was not robust in any sense. If we add perturbations to

take into account errors in observation concerning the very delicate conditions on the

derivatives of D, then the Liapunov arguments collapse.

In the present work we offer conditions resting only on the average value of D in

terms of an integral.

It is worth taking a moment to contrast this with an old parallel problem. We

employ Newton’s second law of motion to model a spring-mass-dashpot system (or

its counterpart electrical circuit) and obtain an equation

x′′ + cx′ + kx = 0,

where c is a positive coefficient of friction and k is a positive spring constant. Knowing

that friction will vary with time, position, and velocity, while the restoring force will

be a function of the position, in the 18th century Lagrange considered a perturbed

equation

x′′ + f(t, x, x′)x′ + g(x) = 0,
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where f > 0 and xg(x) > 0 when x 6= 0. He constructed what was, in effect, the first

Liapunov function

V (x, x′) =
1

2
(x′)2 +

∫ x

0

g(s)ds,

a positive definite function whose time derivative along solutions was non-positive.

It is the sum of the kinetic and potential energy which is a minimum at zero. We

continue to work with that Liapunov function to this day showing that the solutions

of the nonlinear equation are well-represented by solutions of the linear equation.

Most unfortunately, Levin’s Liapunov functional does not help us in the same way

with (E); some mild forcing functions have been allowed. One may consult [15] for a

discussion of the potential and kinetic energy of (E).

The present work starts with an idea of Krasnoselskii [8] some sixty years ago.

He studied an old paper by Schauder on elliptic partial differential equations and

deduced a general hypothesis which we formalize as follows.

Krasnoselskii’s Hypothesis The inversion of a perturbed differential operator

yields the sum of a contraction and a compact map.

Lest we err in thinking that this concerns only the single elliptic equation, note

that Krasnoselskii then obtained the following general result.

Theorem 1.1 (Krasnoselskii). Let ‖ · ‖ be a norm and (S, ‖ · ‖) be a Banach space.

Let M ⊂ S be closed, convex, nonempty. Define A, B : M → S with A continuous,

x, y ∈ M ⇒ Ax + By ∈ M, (i)

AM resides in a compact set , (ii)

B is a contraction (iii)

with constant α < 1. Then ∃ y ∈ M with Ay + By = y.

The big problem is to invert the perturbed differential operator so as to fulfill the

conditions of this theorem, and that has been very challenging in applications over

the last many years. Condition (i) has proved to be difficult, while showing that A

is a compact map has also often been difficult especially when we want a solution

on an infinite interval. In a most interesting way, both difficulties vanish when we

invert the operators in the way introduced in [2] and which was used in a number of

subsequent papers.

In a recent paper [5] we began a study putting Krasnoselskii’s Hypothesis to the

test. We began with a scalar fractional differential equation of Caputo type

cDqx(t) = u(t, x(t)), 0 < q < 1, x(0) ∈ <, t ≥ 0,
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with u continuous. Using theory found in [9, p. 54] and [10], we inverted it as an

integral equation with large kernel

x(t) = x(0) +
1

Γ(q)

∫ t

0

(t − s)q−1u(s, x(s))ds, t ≥ 0.

That was then transformed into an integral equation

x(t) = x(0)

[

1 −
∫ t

0

R(s)ds

]

+

∫ t

0

R(t − s)

[

x(s) +
u(s, x(s))

J

]

ds,

with a completely monotone kernel satisfying
∫ ∞
0

R(t)dt = 1. Under general condi-

tions it turned out that the last integral equation defined a compact map which is so

simple that it is an extended form of Brouwer’s theorem [3]. Such fractional differen-

tial equations represent a myriad of real-world problems in the form of many types

of ordinary and partial differential equations. In short, Krasnoselskii’s Hypothesis

seems to work very well for such equations.

We moved then to some general neutral functional differential equations widely

used in the literature concerning problems in mathematical biology and showed that

the same kind of transformations produced similar inversion, although both con-

tractions and compact maps were used; again, the compactness of the maps was

automatic, even on infinite time intervals. Krasnoselskii’s Hypothesis continued to

be valid.

We then turned to the problem of Volterra (E) and, again, the inversion led to the

same type of problem as in the case of the fractional differential equations. For lack of

space we considered only a simple form of (E). This paper is now devoted to finishing

that problem in the linear case. The nonlinear case is also under investigation. With

the context and history now complete, we return to (E).

Following the same steps as in [5], we integrate (E), divide and multiply by J > 0

(with J being an arbitrary positive number), add and subtract x(s) to obtain

x(t) = x(0)

−
∫ t

0

J

[

x(s) − x(s) − f(s)

J
+

∫ s

0
D(s − u)x(u)du

J

]

ds, t ≥ 0.

Write the linear part as

z(t) = x(0) −
∫ t

0

Jz(s)ds, t ≥ 0,

so that there is a resolvent equation

R(t) = J −
∫ t

0

JR(s)ds, t ≥ 0,

with solution

R(t) = Je−Jt, t ≥ 0,
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which is completely monotone and satisfies
∫ ∞

0

R(s)ds = 1.

We then have

z(t) = x(0)

[

1 −
∫ t

0

R(s)ds

]

, t ≥ 0,

and by a variation of parameters formula

x(t) = z(t) + F (t) (1.2)

+

∫ t

0

R(t − s)

[

x(s) −
∫ s

0
D(s − u)x(u)du

J

]

ds, t ≥ 0,

where

F (t) =

∫ t

0

R(t − s)[f(s)/J ]ds, t ≥ 0.

Now, we prepare the integrand in (1.2):
∫ t

0

R(t − s)

∫ s

0

D(s − u)

J
x(u)duds

=

∫ t

0

∫ t

u

R(t − s)
D(s − u)

J
x(u)dsdu

=

∫ t

0

∫ t

u

R(t − s)
D(s − u)

J
dsx(u)du,

so (1.2) is written as

x(t) = z(t) + F (t) (1.3)

+

∫ t

0

[

R(t − u)x(u)−
∫ t

u

R(t − s)
D(s − u)

J
dsx(u)

]

du, t ≥ 0.

Let

Ax (t) := z(t) + F (t) (1.4)

+

∫ t

0

[

R(t − u) −
∫ t

u

R(t − s)
D(s − u)

J
ds

]

x(u)du, t ≥ 0,

and note that as R(t) = Je−Jt, t ≥ 0, we have

z (t) = x(0)

[

1 −
∫ t

0

R(s)ds

]

(1.5)

= x(0)e−Jt, t ≥ 0,

and

F (t) =

∫ t

0

R(t − s)[f(s)/J ]ds =

∫ t

0

e−J(t−s)f(s)ds (1.6)

= e−Jt

∫ t

0

eJsf(s)ds, t ≥ 0.
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The space used here is that of bounded continuous functions φ : [0,∞) → < with

the supremum norm, (BC, ‖ · ‖), and we denote by M the set M = {φ ∈ BC : ‖φ‖ ≤
1}. We make use of the following result used in [5] (see, also, [3] and its correction

[4]). The correction concerns only the set M in Theorems 3.1 and 4.1 (iii). It asks

that the set M be exactly as described in the result here. This corrects a statement in

the middle of the proof of Theorem 4.1 (iii) stating that M is closed in the weighted

space. With this change, the statement is true and the proof is elementary. Note that

no compactness of the operator A is required but it depends on the mapping being

defined by an integral equation with the kernel as described for (2.1).

Theorem 1.2 (Brouwer-Schauder type). Let (BC, ‖ · ‖) be the Banach space of

bounded continuous functions φ : [0,∞) → < with the supremum norm and let

M = {φ ∈ BC : a ≤ φ(t) ≤ b} for some a < b and all t ∈ [0,∞), and let u(t, x)

be the right-hand-side of (E). Suppose that x (0) and M are chosen so that for A

defined in (1.4) then A : M → M . If A is continuous, if F is uniformly continuous,

and if there is an L > 0 so that |u (t, x)| ≤ L, for t ≥ 0, x ∈ M , then A has a fixed

point in M .

In Section 2 we present the main results of the paper. Application of these

results to the case of the unforced linear equation along with some remarks are given

in Section 3. Section 4 consists of the proofs of Theorem 2.1 and Lemma 1.

2. THE MAIN RESULTS

In view of (1.5) and (1.6), equation (1.3) becomes

x(t) = x(0)e−Jt + e−Jt

∫ t

0

eJsf(s)ds (2.1)

+

∫ t

0

[

Je−J(t−u) −
∫ t

u

e−J(t−s)D(s − u)ds

]

x(u)du, t ≥ 0.

Main Assumption: With reference to Theorem 1.2 we always assume that F

is uniformly continuous on [0,∞). This holds, for example, if f is bounded. A proof

can be patterned after Theorem 5.1 of [6].

In addition, we will later be needing

e−Jt

∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

→ 0. (2.2)

Theorem 2.1. If
(

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

)

e−Jt (2.3)

+

∫ t

0

∣

∣

∣

∣

Je−J(t−u) −
∫ t

u

e−J(t−s)D(s − u)ds

∣

∣

∣

∣

du ≤ 1, t ≥ 0,
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then the mapping defined by (2.1) on the set M maps M → M , and Th. 1.2 will give

a fixed point in M .

Proof. The natural mapping of M into itself from (2.1) is

(Pφ)(t) = x(0)e−Jt + e−Jt

∫ t

0

eJsf(s)ds

+

∫ t

0

[

Je−J(t−u) −
∫ t

u

e−J(t−s)D(s − u)ds

]

φ(u)du, t ≥ 0.

With (2.3) holding, it is easily verified that ‖Pφ‖ ≤ 1. Then, in view of (2.2), one

can see that for the right-hand-side u of (E) (hence, of (1.4)), we have that |u(t, x)|
is bounded for t ≥ 0, x ∈ M . The existence of the fixed point is now exactly as in

Theorem 1.2.

The crucial part of Theorem 2.1, above, is inequality (2.3). The next lemma

attempts to shed some light on that inequality. The proof of the lemma can be found

in the Appendix.

Lemma 1. Let J > 0 and suppose that
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

≤
∫ t

0

∫ t

u

eJsD(s − u)dsdu, t ≥ 0. (2.4)

(i) If
∫ ∞

0

eJvD (v)dv ≤ J , (2.5)

then (2.3) is always true.

(ii) If

J <

∫ ∞

0

eJvD (v) dv, (2.6)

then (2.3) is equivalent with

J

(

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

)

e−Jt (2.7)

+

∫ t

k

[

1 − e−J(t−s)
]

D (s) ds ≤
∫ k

0

D (s) ds, t ≥ k,

where k is the unique solution of

J =

∫ k

0

eJvD (v) dv, k ∈ (0,∞) . (2.8)

By Lemma 1, if (2.4) and (2.5) hold, so does (2.3) and Theorem 1.2 gives a

solution of (E). Proposition 1 below gives some sufficient conditions so that (2.5) is

satisfied.

Proposition 1. Assume that (2.4) holds true.
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(i) If there exists some µ > 2 such that D (t) ≤ e−µt, t ≥ 0, then (2.3) holds

true for any J ∈
[

µ−
√

µ2−4

2
,

µ+
√

µ2−4

2

]

.

(ii) Let J > 0 be given. Then (2.3) holds true for any D with D (t) ≤ e−(J+ 1

J )t,

t ≥ 0.

Proof. (i) For D with D (t) ≤ e−µt, t ≥ 0 where µ > 2, we have for t ≥ 0
∫ t

0

eJvD (v)dv ≤
∫ t

0

e(J−µ)vdv =

[

1

J − µ
e(J−µ)v

]t

0

=
1

µ − J

[

1 − e(J−µ)t
]

,

so for J < µ

lim
t→∞

∫ t

0

eJvD (v) dv ≤ 1

µ − J
.

Thus, in order that (2.5) holds, it suffices to have

1

µ − J
≤ J ⇐⇒ J2 − µJ + 1 ≤ 0,

which is satisfied if and only if J ∈
[

µ−
√

µ2−4

2
,

µ+
√

µ2−4

2

]

.

(ii) Let J > 0 be given and D be such that D (t) ≤ e−(J+ 1

J )t, t ≥ 0. Then for

µ = J + 1
J

we have J2 − µJ + 1 = 0, i.e., (2.5) is satisfied, so (2.3) holds true. Note

that the greatest magnitude for D is D (v) = e−2v which is achieved for J = 1.

For the case that (2.6) holds, Lemma 1 (ii) states that the crucial inequality (2.3)

becomes (2.7). Under rather mild assumptions, the next proposition presents some

necessary and some sufficient conditions so that (2.6) holds. We note that, in case

that f ≡ 0, condition (2.9) holds by itself while condition (2.10) is not very difficult

to be verified. The proof of this result is cited in the Appendix.

Proposition 2. Let (2.4) and (2.6) hold and assume that
∫ t

k

eJs [D (s) − J |f(s)|] ds + eJt |f(t)| is ↗ on [k,∞), (2.9)

and

J

(

|x(0)| +
∣

∣

∣

∣

∫ k

0

eJsf(s)ds

∣

∣

∣

∣

)

e−Jk ≤
∫ ∞

k

D (s) ds. (2.10)

(i) If (2.2) holds and if k is defined in (2.8), then

1

2

∫ ∞

0

D (v) dv ≤
∫ k

0

D (v) dv, (2.11)

is a sufficient condition so that (2.7) holds true.

(ii) Condition (2.11) is necessary so that (2.7) holds true.
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Thus, if (2.2) holds then (2.11) is a necessary and sufficient condition so that

(2.7) holds true.

In view of Proposition 2 and Lemma 1, we have the next result.

Proposition 2b. Let (2.4), (2.6), (2.9) and (2.10) hold.

(i) If (2.2) holds, then (2.11) is a sufficient condition so that (2.3) holds true.

(ii) Condition (2.11) is necessary so that (2.3) holds true.

(iii) If (2.2) holds then (2.11) is a necessary and sufficient condition so that (2.3)

holds true.

A particular case of interest is when there exists, either some µ > 0 such that the

kernel D satisfies D (t) ≤ e−µt, t ≥ 0, or some λ > 0 such that D (t) ≥ e−λt, t ≥ 0,

then (2.11) can be replaced by a condition not containing the number k.

Before we present this result, we show that for a given λ > 0 there always exist

a J > 0 such that the number

kλ =
ln (J2 − λJ + 1)

J − λ
,

is well defined and positive.

If λ ∈ (0, 2), then the discriminant of J2 − λJ + 1 is negative, so we have J2 −
λJ + 1 > 0, for all reals J . Moreover, (J − λ) ln (J2 − λJ + 1) > 0 for J 6= λ, thus kλ

is well defined and positive for any J > 0 with J 6= λ. Note that, for λ = 2, we have

(J − 2) ln (J2 − 2J + 1) = (J − 2) ln [(J − 2) J + 1] > 0 for any J > 0 with J 6= 2. It

follows that for λ ∈ (0, 2] the number kλ is well defined and positive for any J > 0

with J 6= λ.

If λ > 2, then the discriminant is positive and J2 − λJ + 1 has two positive

roots, namely λ1 = λ−
√

λ2−4
2

, λ2 = λ+
√

λ2−4
2

, both roots being less than λ. Thus, for

J ∈ (0, λ1) ∪ (λ2,∞) we have J2 − λJ + 1 > 0, so kλ is well defined. Furthermore,

choosing J ∈ (0, λ1) we have ln (J2 − λJ + 1) = ln [(J − λ)J + 1] < 0 and J −λ < 0,

while choosing J > λ we have ln (J2 − λJ + 1) > 0 and J − λ > 0, hence, in both

cases kλ is positive. It follows that for λ > 2 the number kλ is well defined and

positive for any J ∈
(

0, λ−
√

λ2−4
2

)

∪ (λ,∞).

In view of the above, we conclude that we may always choose J such that kλ and

kµ are well defined and positive, and such a choice is assumed to hold in the proof of

the proposition below.

Next, we note that, when D(t) = e−λt, then the positive number kλ is the solution

of

J =

∫ kλ

0

e−λseJsds.
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Indeed, as

J =

∫ kλ

0

e−λseJsds =
1

J − λ

[

ekλ(J−λ) − 1
]

,

solving for kλ we take

J2 − λJ + 1 = ekλ(J−λ),

kλ (J − λ) = ln
(

J2 − λJ + 1
)

,

kλ =
ln (J2 − λJ + 1)

J − λ
.

Proposition 3. Let (2.6), (2.9) and (2.10) hold.

(i) Assume that for some µ > 0 we have

D (t) ≤ e−µt, t ≥ 0,

and J is such that the number kµ =
ln(J2−µJ+1)

J−µ
is well defined and positive. If (2.2)

holds, then

1

2

∫ ∞

0

D (v) dv ≤
∫ kµ

0

D (v) dv, (2.12)

is a sufficient condition so that (2.7) holds true.

(ii) Assume that for some λ > 0 we have

e−λt ≤ D (t) , t ≥ 0,

and J is such that the number kλ =
ln(J2−λJ+1)

J−λ
is well defined and positive. Then

∫ kλ

0

D (v) dv ≥ 1

2

∫ ∞

0

D (v) dv, (2.13)

is a necessary condition so that (2.7) holds true.

Proof. It suffices to show that (2.11) is satisfied.

(i) Assume that for some µ > 0 we have

D (s) ≤ e−µs, s ≥ 0.

By the discussion before Proposition 3, we have that the number kµ is well defined,

positive, and it is the solution of

J =

∫ kµ

0

e−µseJsds.

Furthermore, as k is given by (2.8) and 0 ≤ D (s) ≤ e−µs, s ≥ 0, we have
∫ k

0

eJsD (s) ds = J =

∫ kµ

0

eJse−µsds,

and we see that

kµ ≤ k,
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which implies
∫ kµ

0

D (v)dv ≤
∫ k

0

D (v) dv.

From this inequality and (2.12) it follows that (2.11) is satisfied and the result follows

from Proposition 2b (i).

(ii) As kλ is the solution of J =
∫ kλ

0
e−λseJsds and k is given by (2.8), in view of

e−λs ≤ D (s) , s ≥ 0 and

∫ k

0

eJsD (s) ds = J =

∫ kλ

0

eJse−λsds,

we have

k ≤ kλ.

This implies
∫ k

0

D (v) dv ≤
∫ kλ

0

D (v)dv,

from which it follows that, if (2.11) is true, then (2.13) must hold. We conclude that

(2.13) is a necessary condition so that (2.11) holds true. The result follows from

Proposition 2b (ii).

We note that if (2.2) holds and

D (t) = e−σt, t ≥ 0,

then a necessary and sufficient condition so that (2.7) holds true is

∫ kσ

0

e−σvdv ≥ 1

2

∫ ∞

0

e−σvdv,

from which we take
1

2
≤ e−σkσ or kσ ≤ ln 2

σ
,

and
ln (J2 − σJ + 1)

J − σ
= kσ ≤ ln 2

σ
.

It is easily verified that this inequality is satisfied with J = 2σ and 2σ2 + 1 = 2, i.e.,

σ =
√

2
2

and J =
√

2.

3. APPLICATIONS AND COMMENTS

For f ≡ 0 equation (E) reduces to the linear equation

x′ (t) =

∫ t

0

D(t − s)x(s)ds, t ≥ 0. (E0)
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Existence of solutions to (E0) was discussed in [5] and the existence result obtained

in that paper may be considered as a special case of Theorem 2.1. Indeed, for f ≡ 0

equation (1.3) is

x(t) = x(0)e−Jt (3.1)

+

∫ t

0

[

R(t − u) −
∫ t

u

R(t − s)
D(s − u)

J
ds

]

x(u)du, t ≥ 0.

In this case (2.2), (2.4), and (2.9) automatically hold, F ≡ 0, while (2.3) becomes

|x(0)| e−Jt +

∫ t

0

∣

∣

∣

∣

Je−J(t−u) −
∫ t

u

e−J(t−s)D(s − u)ds

∣

∣

∣

∣

du ≤ 1, t ≥ 0. (3.2)

Then Theorem 2.1 reduces to the next result (see, also, [5] ).

Theorem 3.1. If (3.2) holds, then the natural mapping defined by (3.1) on the set

M of all bounded continuous functions maps M → M and Theorem 1.2 will give a

fixed point in M .

Since (2.4) holds for f ≡ 0, from Lemma 1 we have the following:

Lemma 2. Let J > 0 and suppose that D satisfies (1.1).

(i) If (2.5) holds then (3.2) is always true.

(ii) If (2.6) holds then (3.2) is equivalent with

J |x(0)| e−Jt +

∫ t

k

[

1 − e−J(t−s)
]

D (s) ds ≤
∫ k

0

D (s) ds, t ≥ k, (3.3)

where k is the unique solution of (2.8).

Part (i) of Lemma 2 is Lemma 5.2 in [5]. Furthermore, as for f ≡ 0 assumptions

(2.2), (2.4) and (2.9) hold by themselves, from Propositions 1, 2b and 3 we have the

following results.

Proposition 4 (i) If there exists some µ > 2 such that D (t) ≤ e−µt, t ≥ 0,

then (3.2) holds true for any J ∈
[

µ−
√

µ2−4

2
,

µ+
√

µ2−4

2

]

.

(ii) Let J > 0 be given. Then (3.2) holds true for any D with D (t) ≤ e−(J+ 1

J )t,

t ≥ 0.

Proposition 5. Let (2.6) hold for some J > 0 , and assume that

J |x(0)| e−Jk <

∫ ∞

k

D (v) dv. (3.4)

Then inequality (2.11) is necessary and sufficient condition so that (3.3) hold true.
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Proposition 6. (i) Assume that for some µ > 0 we have

D (t) ≤ e−µt, t ≥ 0,

and J is such that the number kµ =
ln(J2−µJ+1)

J−µ
is well defined and positive. Then

(2.12) is a sufficient condition so that (3.3) holds true.

(ii) Assume that for some λ > 0 we have

e−λt ≤ D (t) , t ≥ 0,

and J is such that the number kλ =
ln(J2−λJ+1)

J−λ
is well defined and positive. Then

(2.13) is a necessary condition so that (3.3) holds true.

REMARK 1. Assume that x is a solution of (E) which tends to zero. If f has a

limit at infinity then this limit must be zero. For if f → m 6= 0, then as the integral

in (E) tends to zero (as the convolution of an L1 function with a continuous function

tending to zero), then we have that x′ → m 6= 0 which implies that x → ±∞, a

contradiction to x → 0. Hence, if f has a limit at +∞ this limit must be zero.

Now assume that f does not have a limit at +∞. Then, as x satisfies (2.1),

engaging the arguments in the proof of Theorem 2.1 we see that the last integral in

(2.1) tends to zero as t → ∞. Then from (2.1) we have that e−Jt
∫ t

0
eJsf(s)ds → 0,

so that (2.2) holds true. On the other hand, integrating (E) we have

x (t) = x (0) −
∫ t

0

[
∫ s

0

D (s − u)x (u) du

]

ds +

∫ t

0

f (u) du, t ≥ 0; (3.5)

hence for t → ∞ the two integrals on the right either both converge or both diverge.

In view of the above we have the following corollary.

Corollary 1. Assume that (E) has a solution x which tends to zero at infinity.

Then

(i) either (2.2) holds or f → 0.

(ii) f ∈ L1[0,∞) ⇐⇒
∫ s

0
D (s − u)x (u) du ∈ L1[0,∞).

REMARK 2. Clearly, as
∫ t

0

∫ s

0

eJsD(s − u)duds −
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

≥
∫ t

0

∫ s

0

eJsD(s − u)duds −
∫ t

0

eJs |f(s)| ds

=

∫ t

0

eJs

[
∫ s

0

D(s − u)du − |f(s)|
]

ds

=

∫ t

0

eJs

[
∫ s

0

D(u)du − |f(s)|
]

ds,
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it follows that a sufficient condition so that (2.4) holds is

|f(t)| ≤
∫ t

0

D(u)du, t ≥ 0.

Since D (t) > 0 and
∫ ∞
0

eJvD (v) dv ≤ J imply
∫ ∞
0

D (v)dv < ∞ (i.e., (1.1) holds

true) we have the following result.

Let J > 0 and suppose that D satisfies

D (t) > 0 and

∫ ∞

0

eJvD (v)dv ≤ J . (3.6)

If

|f(t)| ≤
∫ t

0

D(u)du, t ≥ 0, (3.7)

then (2.3) is always true.

We close this remark by showing that the assumption (2.9) in Proposition 2b is

not unrealistic. To this end it suffices to show that for a given D satisfying (1.1),

there always exist nontrivial functions f with (2.9) holding, i.e., the function g :

[k,∞) → R with

g (t) =

∫ t

k

eJs [D (s) − J |f(s)|]ds + JeJt |f(t)| , t ≥ k,

is nondecreasing on [k,∞). Indeed, taking

f(t) = αD (t) , t ≥ k,

with α > 0, we have

g′ (t) =

[
∫ t

k

eJs [D (s) − Jf(s)]ds + JeJtf(t)

]′

= eJt [D (t) − Jf (t)] + J2eJtf(t) + JeJtf ′(t)

= eJt [D (t) − αJD (t)] + J2eJtαD (t) + JeJtαD′ (t)

= eJt
[

D (t) − αJD (t) + J2αD (t) + JαD′ (t)
]

= eJtD (t)

{

1 + Jα

[

J +
D′ (t)

D (t)
− 1

]}

,

from which it follows that, if D′ is bounded, then for sufficiently small values of α we

have g′ (t) > 0 for all t ≥ 0. In particular, if D (t) = e−mt, t ≥ k, for some m > 0

then

g′ (t) = eJte−mt
[

1 − αJ + J2α − Jαm
]

, t ≥ k.

Thus, in order that g be nondecreasing, it suffices to have 1 − αJ + J2α− Jαm ≥ 0,

or

1 ≥ αJ (m + 1 − J) ;

i.e., for given J and m, there always exists a (sufficiently small) α > 0 such that (2.9)

holds.
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REMARK 3. A closer look at the inequality (2.4) reveals that the integral on

the right hand side is not bounded. Changing the order of integration in the double

integral, we may write (2.4) as
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

≤
∫ t

0

∫ s

0

eJsD(s − u)duds, t ≥ 0,

or
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

≤
∫ t

0

eJsD∗(s)ds, t ≥ 0, (3.8)

with D∗(s) =
∫ s

0
D(v)dv, s ≥ 0. As D is positive, then D∗ is increasing and the

assertion is immediate. However, there is an unpleasant requirement on f resulting

from (2.4) (see, also, (2.4)). As D∗ (0) = 0, it is not difficult to see that if f (0) 6= 0,

then (3.8) does not hold for values of t close to zero. Clearly, requiring f (0) = 0 is

a disadvantage of condition (2.4) in Lemma 1, which, however, is not necessary in

(2.3). The following example will show that inequality (2.3) is not superfluous.

Take J ≥ 1 and

D (t) = e−2Jt, t ≥ 0.

Then (2.3) is

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

+

∫ t

0

∣

∣

∣

∣

JeJu −
∫ t

u

eJse−2J(s−u)ds

∣

∣

∣

∣

du ≤ eJt, t ≥ 0.

We have
∫ t

u

eJse−2J(s−u)ds =

∫ t

u

e−Jse2Juds

= e2Ju

[

e−Js

−J

]t

u

= − 1

J
e2Ju

[

e−Jt − e−Ju
]

=
1

J
eJu − 1

J
e2Jue−Jt,

and, noting that J ≥ 1 implies that the integrand in the absolute value is nonnegative,

we obtain
∫ t

0

∣

∣

∣

∣

JeJu −
∫ t

u

eJse−2J(s−u)ds

∣

∣

∣

∣

du

=

∫ t

0

∣

∣

∣

∣

JeJu − 1

J
eJu +

1

J
e2Jue−Jt

∣

∣

∣

∣

du

=

∫ t

0

∣

∣

∣

∣

(

J − 1

J

)

eJu +
1

J
e2Jue−Jt

∣

∣

∣

∣

du

=

∫ t

0

[(

J − 1

J

)

eJu +
1

J
e2Jue−Jt

]

du

=

(

J − 1

J

)

1

J

(

eJt − 1
)

+
1

2J2
e−Jt

(

e2Jt − 1
)
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=
1

J

[(

J − 1

J

)

(

eJt − 1
)

+
1

2J

(

eJt − e−Jt
)

]

=
1

J

[(

J − 1

J

)

eJt −
(

J − 1

J

)

+
1

2J
eJt − 1

2J
e−Jt

]

=
1

J

[(

J − 1

2J

)

eJt −
(

J − 1

J

)

− 1

2J
e−Jt

]

<
1

J

(

J − 1

2J

)

eJt

=

(

1 − 1

2J2

)

eJt.

It follows that for any choice of |x (0)| and f with

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

≤ 1

2J2
eJt, t ≥ 0, (3.9)

the inequality (2.3) holds true for all t ≥ 0. For example, it is not difficult to verify

that the choice

|x(0)| ≤ 1

4J2
and |f (t)| ≤ 1

4J
e−2Jt, t ≥ 0,

satisfies (3.9). Furthermore, it is interesting to see that (3.9) is satisfied with

|x(0)| ≤ 1

2J2
and |f (t)| ≤ J |x(0)| , t ≥ 0. (3.10)

Indeed, for t ≥ 0 we have

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

≤ |x(0)| +
∫ t

0

eJs |f(s)| ds

≤ |x(0)| + J |x(0)|
∫ t

0

eJsds

= |x(0)| + J |x(0)| 1

J

(

eJt − 1
)

= |x(0)| + |x(0)| eJt − |x(0)|
= |x(0)| eJt

≤ 1

2J2
eJt,

so that (3.9) is satisfied, and this proves our assertion. With D (t) = e−2Jt, t ≥
0 for J ≥ 1, f : [0, +∞) → R satisfying (3.9) and lim

t→+∞
f (t) = 0, we conclude

that (E) has a solution. Moreover, from (3.9) we see that if f ∈ L1[0, +∞), with

f∗ :=
∫ +∞

0
|f(s)| ds < 1

2J2 , then (E) has a solution for any initial value x(0) with

|x(0)| ≤ 1
2J2 − f∗.
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4. APPENDIX

Proof. (of Lemma 1) Fix an arbitrary t > 0. For 0 ≤ u ≤ t we set

R (u; t) = R (t − u) = Je−J(t−u),

T (u; t) =

∫ t

u

R (t − s)
D (s − u)

J
ds =

1

J

∫ t

u

Je−J(t−s)D (s − u) ds

=

∫ t

u

e−J(t−s)D (s − u) ds = e−Jt

∫ t

u

eJsD (s − u) ds.

Then

R (0; t) = R (t) = Je−Jt,

T (0; t) =

∫ t

0

e−J(t−s)D (s) ds = e−Jt

∫ t

0

eJsD (s) ds,

while

R (t; t) = R (t − t) = J ,

T (t; t) = 0.

Denote by CR and CT the graphs of R and T , respectively, on [0, t]. If the two graphs

meet at some u0 ∈ (0, t), then

Je−J(t−u0) =

∫ t

u0

e−J(t−s)D (s − u0) ds,

J =

∫ t

u0

eJ(t−u0)e−J(t−s)D (s − u0) ds =

∫ t

u0

eJ(s−u0)D (s − u0) ds;

that is,

J =

∫ t−u0

0

eJvD (v)ds.

Because of the positivity of the integrand eJvD (v), the integral
∫ u

0
eJvD (v) dv is an

increasing function in u, so if (2.8) has a solution, then this solution is unique. (It is

worth noticing that, the distance between t and the point u0 where the two graphs

meet is t−u0 = k, thus this distance is independent of t). Clearly, if for some t ≥ 0 we

have
∫ t

0
eJvD (v) dv ≤ J , then CR and CT do not meet on (0, t). As T (t; t) = 0 < J =

R (t; t), it follows that T (u; t) ≤ R (u; t) for all 0 ≤ u ≤ t, i.e.,
∫ t

u

e−J(t−s)D(s − u)ds ≤ Je−J(t−u), 0 ≤ u ≤ t,

and so, the argument of the absolute value in the second integral in (2.3) is non-

negative for such t. Thus, in view of (1.6) and using |x(0)| ≤ 1, taking (2.4) into

consideration for the expression in the left-hand side of (2.3) we have for t ≥ 0
(

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

)

e−Jt +

∫ t

0

∣

∣

∣

∣

Je−J(t−u) −
∫ t

u

e−J(t−s)D(s − u)ds

∣

∣

∣

∣

du
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= |x(0)| e−Jt +

∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

e−Jt +

∫ t

0

[

Je−J(t−u) −
∫ t

u

e−J(t−s)D(s − u)ds

]

du

≤ 1 · e−Jt +

∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

e−Jt +

∫ t

0

Je−J(t−u)du −
∫ t

0

∫ t

u

e−J(t−s)D(s − u)dsdu

= e−Jt +

∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

e−Jt + 1 − e−Jt −
∫ t

0

∫ t

u

e−J(t−s)D(s − u)dsdu

= e−Jt + 1 − e−Jt −
[
∫ t

0

∫ t

u

e−J(t−s)D(s − u)dsdu −
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

e−Jt

]

= 1 − e−Jt

[
∫ t

0

∫ t

u

eJsD(s − u)dsdu −
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

]

≤ 1.

In other words, if t ≥ 0 is such that
∫ t

0
eJvD (v)dv < J , then (2.3) holds true.

In view of the above, we proceed to the proof of (i) and (ii).

(i) If (2.5) holds true it follows that
∫ t

0
eJvD (v)dv < J for all t ≥ 0, so (2.3)

holds true for all t ≥ 0.

(ii) Assume now that (2.6) holds. For t with
∫ t

0
eJvD (v) dv ≤ J we have seen

that (2.3) holds true.

Now, let us consider a t with
∫ t

0
eJvD (v) dv > J , thus t > k. We see that

T (0; t) = e−Jt
∫ t

0
eJsD (s) ds > Je−Jt = R (0; t) while T (t; t) = 0 < R (t; t) = J ,

hence the graphs of CR and CT meet exactly once at u0 = t − k. Moreover, CR is

below CT on [0, u0] and CR is above CT on [u0, t], i.e., the argument in the absolute

value in the second integral is nonnegative on [0, u0] and nonpositive on [u0, t]. Hence,

for the second integral on the left hand-side part of (2.3) we have for t > k

∫ t

0

∣

∣

∣

∣

Je−J(t−u) −
∫ t

u

e−J(t−s)D (s − u) ds

∣

∣

∣

∣

du

=

∫ u0

0

∣

∣

∣

∣

Je−J(t−u) −
∫ t

u

e−J(t−s)D (s − u) ds

∣

∣

∣

∣

du

+

∫ t

u0

∣

∣

∣

∣

Je−J(t−u) −
∫ t

u

e−J(t−s)D (s − u) ds

∣

∣

∣

∣

du

=

∫ u0

0

[
∫ t

u

e−J(t−s)D (s − u) ds − Je−J(t−u)

]

du

+

∫ t

u0

[

Je−J(t−u) −
∫ t

u

e−J(t−s)D (s − u) ds

]

du

= e−Jt

∫ u0

0

[
∫ t

u

eJsD (s − u) ds − JeJu

]

du

+e−Jt

∫ t

u0

[

JeJu −
∫ t

u

eJsD (s − u) ds

]

du
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= e−Jt

∫ u0

0

[
∫ t

u

eJsD (s − u) ds

]

du − e−Jt

∫ u0

0

JeJudu

+e−Jt

∫ t

u0

JeJudu − e−Jt

∫ t

u0

∫ t

u

eJsD (s − u) dsdu

= e−Jt

∫ u0

0

[
∫ t

u

eJsD (s − u) ds

]

du − e−Jt
(

eJu0 − 1
)

+e−Jt
(

eJt − eJu0

)

− e−Jt

∫ t

u0

∫ t

u

eJsD (s − u) dsdu

= e−Jt

∫ u0

0

[
∫ t

u

eJsD (s − u) ds

]

du − e−J(t−u0) + e−Jt

+1 − e−J(t−u0) − e−Jt

∫ t

u0

∫ t

u

eJsD (s − u) dsdu

= e−Jt

∫ u0

0

[
∫ t

u

eJsD (s − u) ds

]

du − 2e−J(t−u0) + e−Jt

+1 − e−Jt

∫ t

u0

∫ t

u

eJsD (s − u) dsdu,

so, for t > k, inequality (2.3) is equivalent to

(

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

)

e−Jt + e−Jt

∫ u0

0

[
∫ t

u

eJsD (s − u) ds

]

du

− 2e−J(t−u0) + e−Jt − e−Jt

∫ t

u0

∫ t

u

eJsD (s − u) dsdu ≤ 0.

Multiplying by eJt we see that, for t > k, inequality (2.7) is written as

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

+

∫ u0

0

[
∫ t

u

eJsD (s − u) ds

]

du

− 2eJu0 + 1 −
∫ t

u0

∫ t

u

eJsD (s − u) dsdu ≤ 0,

or (recall that u0 = t − k)

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

+

∫ t−k

0

[
∫ t

u

eJsD (s − u) ds

]

du + 1 (4.1)

≤ 2eJ(t−k) +

∫ t

t−k

[
∫ t

u

eJsD (s − u) ds

]

du, t > k.

Since
∫ t

u

eJsD (s − u) ds =

∫ t−u

0

eJ(s+u)D (s) ds = eJu

∫ t−u

0

eJsD (s) ds,

we see that (4.1) becomes

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

+

∫ t−k

0

[

eJu

∫ t−u

0

eJsD (s) ds

]

du + 1 (4.2)
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≤ 2eJ(t−k) +

∫ t

t−k

[

eJu

∫ t−u

0

eJsD (s) ds

]

du, t > k.

Using integration by parts and taking into consideration the definition of k for

the term with the double integral on the left-hand side of (4.2) we have
∫ t−k

0

[

eJu

∫ t−u

0

eJsD (s) ds

]

du

=

[

1

J
eJu

∫ t−u

0

eJsD (s) ds

]u=t−k

u=0

− 1

J

∫ t−k

0

eJu
[

eJ(t−u)D (t − u)
]

(−1) du

=
1

J
eJ(t−k)

∫ k

0

eJsD (s) ds − 1

J

∫ t

0

eJsD (s) ds +
1

J

∫ t−k

0

eJtD (t − u) du

=
1

J
eJ(t−k)

∫ k

0

eJsD (s) ds − 1

J

∫ t

0

eJsD (s) ds +
1

J
eJt

∫ t−k

0

D (t − u) du

=
1

J
eJ(t−k)J − 1

J

∫ t

0

eJsD (s) ds +
1

J
eJt

∫ t−k

0

D (t − u) du

= eJ(t−k) − 1

J

∫ t

0

eJsD (s) ds +
1

J
eJt

∫ t−k

0

D (t − u) du,

and (4.2) becomes

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

+ eJ(t−k) − 1

J

∫ t

0

eJsD (s) ds +
1

J
eJt

∫ t−k

0

D (t − u) du + 1

≤ 2eJ(t−k) +

∫ t

t−k

[

eJu

∫ t−u

0

eJsD (s) ds

]

du,

or

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

(4.3)

− 1

J

∫ t

0

eJsD (s) ds +
1

J
eJt

∫ t−k

0

D (t − u) du + 1

≤ eJ(t−k) +

∫ t

t−k

[

eJu

∫ t−u

0

eJsD (s) ds

]

du, t > k.

In a similar manner, integrating the integral on the right-hand side in (4.2) by parts,

we find
∫ t

t−k

[

eJu

∫ t−u

0

eJsD (s) ds

]

du

=

[

1

J
eJu

∫ t−u

0

eJsD (s) ds

]u=t

u=t−k

−
∫ t

t−k

1

J
eJu

[

eJ(t−u)D (t − u)
]

(−1) du

= 0 − 1

J
eJ(t−k)

∫ k

0

eJsD (s) ds +
1

J
eJt

∫ t

t−k

D (t − u) du

= − 1

J
eJ(t−k)J +

1

J
eJt

∫ t

t−k

D (t − u) du
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= −eJ(t−k) +
1

J
eJt

∫ t

t−k

D (t − u) du,

so (4.3) is

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

− 1

J

∫ t

0

eJsD (s) ds +
1

J
eJt

∫ t−k

0

D (t − u) du + 1

≤ eJ(t−k) − eJ(t−k) +
1

J
eJt

∫ t

t−k

D (t− u) du, t > k,

i.e.,

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

− 1

J

∫ t

0

eJsD (s) ds +
1

J
eJt

∫ t−k

0

D (t − u) du + 1

≤ 1

J
eJt

∫ t

t−k

D (t − u) du, t > k,

or

J

(

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

)

−
∫ t

0

eJsD (s) ds

+ eJt

∫ t−k

0

D (t− u) du + J ≤ eJt

∫ t

t−k

D (t − u) du, t > k.

That is,

J

(

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

)

+ eJt

∫ t−k

0

D (t− u) du + J (4.4)

≤ eJt

∫ t

t−k

D (t − u) du +

∫ t

0

eJsD (s) ds, t > k.

As k < t, in view of the definitions of J and k, the right-hand side of (4.4) gives

eJt

∫ t

t−k

D (t − u) du +

∫ t

0

eJsD (s) ds

= eJt

∫ t

t−k

D (t − u) du +

∫ k

0

eJsD (s) ds +

∫ t

k

eJsD (s) ds

= eJt

∫ t

t−k

D (t − u) du + J +

∫ t

k

eJsD (s) ds,

and so (4.4) may be written as

J

(

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

)

+ eJt

∫ t−k

0

D (t− u) du

≤ eJt

∫ t

t−k

D (t − u) du +

∫ t

k

eJsD (s) ds, t > k,

or

J

(

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

)

e−Jt +

∫ t−k

0

D (t − u) du
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≤
∫ t

t−k

D (t− u) du + e−Jt

∫ t

k

eJsD (s) ds, t > k,

from which for v = t − u we have

J

(

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

)

e−Jt +

∫ k

t

D (v) (−dv)

≤
∫ 0

k

D (v) (−dv) +

∫ t

k

e−J(t−s)D (s) ds, t > k,

or

J

(

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

)

e−Jt +

∫ t

k

D (v) dv

≤
∫ k

0

D (v) dv +

∫ t

k

e−J(t−s)D (s) ds,

or

J

(

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

)

e−Jt +

∫ t

k

[

1 − e−J(t−s)
]

D (s) ds

≤
∫ k

0

D (s) ds, t > k.

Due to the continuity (in t) of the left-hand-side of the last inequality, we see that it

still holds for t = k, i.e.,

J

(

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

)

e−Jt +

∫ t

k

[

1 − e−J(t−s)
]

D (s) ds

≤
∫ k

0

D (s) ds, t ≥ k.

which is (2.7). The proof of Lemma 1 is complete.

Before we prove Proposition 2, we establish that

lim
t→∞

∫ t

k

[

1 − e−JteJs
]

D (s) ds =

∫ ∞

k

D (v)dv. (***)

To this end we consider an arbitrary t1 ≥ k. Then for any t ≥ t1 we have

[

1 − e−JteJt1
]

∫ t1

k

D (s) ds

=

∫ t1

k

[

1 − e−JteJt1
]

D (s) ds

≤
∫ t1

k

[

1 − e−JteJs
]

D (s) ds +

∫ t

t1

[

1 − e−JteJs
]

D (s) ds

=

∫ t

k

[

1 − e−JteJs
]

D (s) ds
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≤
∫ ∞

k

D (v) dv;

that is, for an arbitrary t1 ≥ k and any t ≥ t1 we obtain

[

1 − e−JteJt1
]

∫ t1

k

D (s) ds ≤
∫ t

k

[

1 − e−JteJs
]

D (s) ds ≤
∫ ∞

k

D (v) dv.

Letting t → ∞ we see that for any t1 ≥ k we have
∫ t1

k

D (s) ds ≤ lim
t→∞

∫ t

k

[

1 − e−JteJs
]

D (s) ds ≤
∫ ∞

k

D (v) dv.

As the last inequality holds true for any arbitrary t1 ≥ k we conclude that (***) holds

true.

Proof. (of Proposition 2.) (i) We will prove that (2.11) implies (2.7).

Denote by G the left hand side of (2.7), i.e., let

G (t) = J

(

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

)

e−Jt

+

∫ t

k

[

1 − e−J(t−s)
]

D (s) ds, t ≥ k,

and set

G1 (t) = J

(

|x(0)|+
∫ t

0

eJs |f(s)| ds

)

e−Jt

+

∫ t

k

[

1 − e−J(t−s)
]

D (s) ds, t ≥ k.

Clearly

G (t) ≤ G1 (t) , t ≥ k. (4.5)

Noting that (2.11) is equivalent to
∫ ∞

k

D (v)dv ≤
∫ k

0

D (v) dv, (4.6)

we see that all we have to show is that (4.6) implies (2.7), i.e., that

(4.6) =⇒ G (t) ≤
∫ k

0

D (v) dv.

To this end, in view of (4.6) and (4.5) it is sufficient to show that

G1 (t) ≤
∫ ∞

k

D (v) dv, t ≥ k. (4.7)

We have for t ≥ k,

G′
1 (t) = −JJ

(

|x(0)| +
∫ t

0

eJs |f(s)| ds

)

e−Jt + JeJt |f(t)| e−Jt

+
[

1 − e−J(t−t)
]

D (t) +

∫ t

k

[

Je−J(t−s)
]

D (s) ds
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= Je−Jt

{

−J

(

|x(0)| +
∫ t

0

eJs |f(s)| ds

)

+

∫ t

k

eJsD (s) ds + eJt |f(t)|
}

= Je−Jt

{

−J

(

|x(0)| +
∫ k

0

eJs |f(s)| ds

)

−J

∫ t

k

eJs |f(s)| ds +

∫ t

k

eJsD (s) ds + eJt |f(t)|
}

,

i.e.,

G′
1 (t) = Je−Jt

{

c +

∫ t

k

eJs [D (s) − J |f(s)|] ds + eJt |f(t)|
}

, t ≥ k,

with c = −J
(

|x(0)| +
∫ k

0
eJs |f(s)| ds

)

. Taking (2.9) into consideration, we see that

for the derivative G′
1 exactly one of the following can hold:

(I) either G′
1 (t) ≤ 0 for all t ≥ k (i.e., G1 is nonincreasing on [k,∞)), or

(II) there exists some t0 ∈ (k,∞) such that G′
1 (t) ≤ 0 on [k, t0) and G′

1 (t) ≥ 0

on (t0,∞).

We observe that

G1 (k) = J

(

|x(0)| +
∣

∣

∣

∣

∫ k

0

eJsf(s)ds

∣

∣

∣

∣

)

e−Jk,

while by (***) and (2.2) it follows that

G1 (∞)

= lim
t→∞

{

J

(

|x(0)| +
∣

∣

∣

∣

∫ t

0

eJsf(s)ds

∣

∣

∣

∣

)

e−Jt +

∫ t

k

[

1 − e−J(t−s)
]

D (s) ds

}

= 0 + 0 + lim
t→∞

∫ t

k

[

1 − e−J(t−s)
]

D (s) ds =

∫ ∞

k

D (s) ds.

Thus, from (2.10) we have

G1 (k) = J

(

|x(0)| +
∣

∣

∣

∣

∫ k

0

eJsf(s)ds

∣

∣

∣

∣

)

e−Jk ≤
∫ ∞

k

D (s) ds = G1 (∞) ,

which means that G1 cannot be nonincreasing on the whole interval [k,∞), i.e., (I)

is not true. Hence (II) does hold true, and this means that G1 is decreasing on [k, t0]

and nondecreasing on [t0,∞) for some t0 ∈ (k,∞), and so

G1 (t) ≤ max {G1 (k) , G1 (∞)} = G1 (∞) =

∫ ∞

k

D (s) ds, t ∈ [k,∞),

i.e., (4.7) is true.

(ii) As (2.11) is equivalent to (4.6), it suffices to prove that (2.7) implies (4.6).

For the sake of contradiction we assume that (2.7) holds but (4.6) is not true, i.e.,
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that
∫ ∞

k
D (v) dv >

∫ k

0
D (v) dv. Then, in view of (***), we see that there exists a

t1 > 0 such that
∫ t1

k

[

1 − e−J(t1−s)
]

D (s) ds =

∫ t1

k

[

1 − e−Jt1eJs
]

D (s) ds >

∫ k

0

D (v) dv,

an immediate contradiction to (2.7). We conclude that (4.6) is a necessary condition

so that (2.7) holds.
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