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Abstract.

The defining property of an integral equation with resolvent R(t, s) is the relation

between a(t) and
∫ t

0
R(t, s)a(s)ds for functions a(t) in a given vector space. We

study the behavior of a solution of an integral equation

x(t) = a1(t) + a2(t) −

∫ t

0

C(t, s)x(s)ds

when a1(t) is periodic, C(t + T, s + T ) = C(t, s), while a2(t) is typified by (t + 1)β

with 0 < β < 1. There is a resolvent, R(t, s), so that

x(t) = a1(t) + a2(t) −

∫ t

0

R(t, s)[a1(s) + a2(s)]ds.

We show that the integral
∫ t

0
R(t, s)a2(s)ds so closely approximates a2(t) that the

only trace of that large function, a2(t), in the solution is an Lp-function, p <

∞. In short, that large function a2(t) has essentially no long term effect on the
solution which turns out to be the sum of a periodic function, a function tending
to zero, and an Lp-function. The noteworthy property here is that with great

precision the integral
∫ t

0
R(t, s)a(s)ds can duplicate vector spaces of functions both

large and small, both monotone and oscillatory; however, it cannot duplicate a

given nontrivial periodic function a(t) other than k

[

1 +
∫ t

−∞
C(t, s)ds

]

where k is

constant. The integral
∫ t

0
R(t, s) sin(s+1)βds is an Lp approximation to sin(t+1)β

for 0 < β < 1, but contraction mappings show us that precisely at β = 1 that

approximation fails and sin(t + 1) −
∫ t

0
R(t, s) sin(s + 1)ds approaches a nontrivial

periodic function.
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1. Introduction

It is a classical, but elementary, exercise to show that if
∫ t

0
|C(t, s)|ds ≤

α < 1 then every solution of x(t) = a(t)−
∫ t

0
C(t, s)x(s)ds is bounded

for every a ∈ BC , the space of bounded continuous functions. More-
over, it is a simple consequence of Perron’s theorem that every so-
lution of that equation is bounded for every a ∈ BC if and only if
supt≥0

∫ t

0
|R(t, s)|ds < ∞ where R(t, s) is the resolvent. Such facts

promote the conventional idea that when an integral equation has a
nice kernel the solution follows the forcing function. To motivate our
work, if we encounter

x(t) = sin t + (t + 1)β −

∫ t

0

C(t, s)x(s)ds

with
∫ t

0
|C(t, s)|ds ≤ α < 1, it might never occur to us to ask if there

is an asymptotically periodic solution following sin t since (t + 1)β , for
0 < β < 1, should vastly dominate everything else in the equation. Yet,
under a variety of generous conditions, it is true that (t +1)β is totally
ignored and the solution follows sin t. It is a classic David and Goliath
scenerio which should signal important properties to be investigated.

In our work here we consider an integral equation

x(t) = a(t) −

∫ t

0

C(t, s)x(s)ds,

a resolvent R(t, s), and a variation of parameters formula

x(t) = a(t)−

∫ t

0

R(t, s)a(s)ds.

Continuing work in [3] and [5] we use a Liapunov functional and Young’s
inequality to obtain conditions showing that a′ ∈ Lp, 0 < p < ∞,
implies that the solution x ∈ Lp[0,∞). While this fact in the equa-
tion itself seems most unremarkable, when we look at the variation of
parameters formula it is remarkable indeed. This means that a(t) −
∫ t

0
R(t, s)a(s)ds ∈ Lp for all functions a in a vector space W of func-

tions having a derivative in Lp. For every one of those functions, it
is true that

∫ t

0
R(t, s)a(s)ds so closely approximates a(t) that it is vir-

tually the identity map for large t on that whole vector space. Thus,
we may think of R as being stable since the result of the operation
∫ t

0
R(t, s)a(s)ds remains close to a(t).
Such behavior is a special surprise since the ideal theory of Ritt

[12] shows that R(t, s) is arbitrarily complicated. Yet,
∫ t

0
R(t, s)a(s)ds
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strips away all that complication and leaves us with a(t) virtually un-
scathed.

The new direction here concerns the question of what happens to
a(t) −

∫ t

0
R(t, s)a(s)ds at what we might call boundary points of that

vector space W . Obviously, with no topology given for W there is
no boundary in standard mathematical terminology. To be definite, if
0 < βi < 1 then we have a p > 0 with

sin(t + 1)β1 + (t + 1)β2 −

∫ t

0

R(t, s)[sin(s + 1)β1 + (s + 1)β2 ]ds ∈ Lp.

It is shown in [3] that when β2 = 1 then the relation is unchanged;
thus, the so-called boundary point (t + 1) is still faithfully duplicated
by that integral.

The problem of this paper begins with the challenge of just what
happens when β1 = 1. Two sections of this paper are devoted to it
using contractions. Once we have determined the proper space and the
proper mapping, then it becomes a simple problem with contractions.
It turns out that the point sin(t + 1) generates a major instability
in the variation of parameters relation. That resolvent which could
so faithfully duplicate a when a′ ∈ Lp is totally unable to duplicate
sin(t + 1). As β1 leaves (0, 1) and takes on the value 1, the solution
loses its Lp property and becomes the sum of a periodic function, a
function tending to zero (both from sin(t+1)), and an Lp-function (from
(t+1)). The surprising fact is that the large function t+1 is essentially
ignored as part of the solution and the small periodic function exerts
a permanent and large influence on the solution.

Thus, some boundary points are stable and some are not. This in-
troduces an important inquiry. Which properties of a(t) are essentially
unimportant and which properties are of lasting and fundamental sig-
nificance for the solution?

This paper is one in a long series in which we strive to construct
spaces and mappings to study the fundamental properties of solutions
of differential and integral equations in a concise and elementary way.
In a recent monograph [4] we collect roughly 100 such presentations.

Most of this work can be done for systems, but all the ideas are
present in the scalar case. General theory of integral equations can be
found in [1], [6-8], and [11].
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PART I: SMALL KERNELS, PERFECT HARMONY

In the next two sections we develop material which shows us that
under appropriate smallness condiitons on a(t) and C(t, s) there is per-
fect correspondence between the solution x(t) and the forcing function
a(t). Notice that every one of these theorems is true for C(t, s) ≡ 0;
thus, if we expect the solution to be bounded we must ask a(t) to be
bounded. In Part II we allow a(t) to be unbounded.

2. Asymptotically Periodic Forcing

First, we study a known example in which neither the mapping nor
the space is elusive, but it directs our thinking for future problems. We
consider a scalar integral equation

(1) x(t) = a(t)−

∫ t

−∞

C(t, s)x(s)ds

in which a is continuous on R, while C(t, s) is continuous on R × R,
and there is a positive constant T with

(2) a(t + T ) = a(t) and C(t + T, s + T ) = C(t, s).

Theorem 2.1. Suppose that (2) holds, that
∫ t

−∞
|C(t, s)|ds is contin-

uous and

sup
0≤t≤T

∫ t

−∞

|C(t, s)|ds ≤ α < 1.

Then (1) has a T -periodic solution.

Proof. Let (X, ‖·‖) be the Banach space of continuous T -periodic func-
tions φ with the supremum norm. Define P : X → X by φ ∈ X implies

(Pφ)(t) = a(t) −

∫ t

−∞

C(t, s)φ(s)ds.

A translation using (2) readily establishes that Pφ is T -periodic. Next,
if φ, η ∈ X then for 0 ≤ t ≤ T we have

|(Pφ)(t) − (Pη)(t)| ≤

∫ t

−∞

|C(t, s)||φ(s)− η(s)|ds

≤ ‖φ − η‖

∫ t

−∞

|C(t, s)|ds

≤ α‖φ − η|.

Hence, P is a contraction and there is a unique fixed point solving (1)
and residing in X. �
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The result is certainly known, but we want to focus on the forms
being used here.

With this as our guide we consider a scalar equation

(3) x(t) = a(t)−

∫ t

0

C(t, s)x(s)ds

where C is continuous on R × R and a is continuous on R.
When (2) is satisfied, then (3) can have a periodic solution for certain

rare functions a(t), as is noted in [2; p. 95] and [10; p. 121] for a
differentiated form. But it depends on an orthogonal relation between
the resolvent and a(t). The difficulty is that the lower limit on the
integral prevents the right-hand-side from being periodic when x(t)
is periodic. In those same references, as well as Hino and Murakami
[9], one finds cases in which limiting equations can be used to prove
the existence of asymptotically periodic solutions, but the details are
buried deeply inside the theory. All of that work can be avoided with
a simple contraction argument.

If we write (3) as

x(t) = a(t)−

∫ t

−∞

C(t, s)x(s)ds +

∫ 0

−∞

C(t, s)x(s)ds

then

a(t)−

∫ t

−∞

C(t, s)x(s)ds

suggests the periodic function of our last problem, while

∫ 0

−∞

C(t, s)x(s)ds

can readily be expected to tend to zero for any bounded function x. It
is then natural to expect a solution x = p+ q where p is periodic and q
tends to zero. Moreover, a space of such functions with the supremum
norm is a Banach space, (Y, ‖ · ‖). We note that the natural mapping
defined from (3) will map Y → Y .

Let PT be the set of continuous T -periodic functions and suppose
that for φ ∈ PT then

(4)

∫ 0

−∞

C(t, s)φ(s)ds → 0 as t → ∞.
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Let Q be the set of continuous functions q : [0,∞) → R such that
q(t) → 0 as t → ∞. For each q ∈ Q let

(5)

∫ t

0

C(t, s)q(s)ds → 0 as t → ∞.

We will need the follwing lemma in the proof of the next result.

Lemma 2.2. Let (Y, ‖ · ‖) be the space of continuous functions φ :
[0,∞) → R with the supremum norm such that φ ∈ Y implies there
is a p ∈ PT and q ∈ Q with φ = p + q. Then (Y, ‖ · ‖) is a complete
metric space.

Proof. Let {pn + qn} be a Cauchy sequence in (Y, ‖ · ‖). Now for each
ε > 0 and each q ∈ Q there is an L > 0 such that t ≥ L implies that
|q(t)| < ε/4. Given ε > 0 there is an N such that for n, m ≥ N then

|pn(t) + qn(t)− pm(t) − qm(t)| < ε/2

for all t ≥ 0. Fix n, m ≥ N ; for ε/4 find L such that t ≥ L implies
that both |qn(t)| < ε/4 and |qm(t)| < ε/4. Now

|pn(t)− pm(t)| − |qm(t)− qn(t)| ≤ |pn(t) + qn(t)− pm(t)− qm(t)| < ε/2

so t ≥ L implies that

|pn(t) − pm(t)| < (ε/2) + |qn(t)|+ |qm(t)| < ε.

But pn and pm are periodic so the left and right sides of the last inequal-
ity hold for all t. As this is true for every pair (m, n) with m, n ≥ N , it
follows that {pn} is a Cauchy sequence. This, in turn, shows the same
for {qn}. As both PT and Q are complete in the supremum norm, Y
is complete. �

Thanks to colleagues Geza Makay and Bo Zhang, one can say that
the representation of φ ∈ Y as φ = p+q is unique. For if p1+q1 = p2+q2

then p1 − p2 = q2 − q1. The right-hand-side tends to zero, but the left
is periodic so the left is zero.

Theorem 2.3. Let C(t + T, s + T ) = C(t, s) and let (4) and (5) hold.

Suppose also that there is an α < 1 with
∫ t

0
|C(t, s)|ds ≤ α. If a ∈ Y

so is x, the unique solution of (3).

Proof. Let (Y, ‖ · ‖) be the Banach space of functions φ = p + q where
p ∈ PT and q ∈ Q with the supremum norm. Also, let a = p∗ +q∗ ∈ Y .
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Define a mapping P : Y → Y by φ = p + q ∈ Y implies that

(Pφ)(t) = a(t)−

∫ t

0

C(t, s)[p(s) + q(s)]ds

=

[

p∗(t) −

∫ t

−∞

C(t, s)p(s)ds

]

+

[

q∗(t) +

∫ 0

−∞

C(t, s)p(s)ds −

∫ t

0

C(t, s)q(s)ds

]

=: Bφ + Aφ.

This defines operators A and B on Y . Note that B : Y → PT ⊂ Y and
A : Y → Q ⊂ Y .

But from the first line of this array we see that P is a contraction
with unique fixed point φ ∈ Y and that proves the result. �

Remark 2.4. Our use of contractions here allows us to show that the
fixed point is not constant. In Section 4 we will see that when a′ ∈ L2n

then x(t) = a(t)−
∫ t

0
R(t, s)a(s)ds ∈ L2n so that the integral is faithfully

duplicating a(t). Notice that in the present case if a ∈ PT and if x(t) =
p(t)+q(t) then p(t) really is a nontrivial periodic function; the integral
is not duplicating a(t). For suppose p is constant. From the proof we see

that p = a(t)−
∫ t

−∞
C(t, s)pds or p[1+

∫ t

−∞
C(t, s)ds] = a(t). This is the

only form for a(t) for which that duplication is possible. For all other
a(t) ∈ PT there is a nontrivial asymptotically periodic solution. In

that case
∫ t

0
R(t, s)a(s)ds misses a(t) by a nontrivial periodic function

plus a function tending to zero.

3. An inequality and Liapunov functional

There is a set of results which the reader should have in mind as we
proceed. Throughout this discussion, notice which variable in C(t, s)
is being integrated.

The first result is an ancient theorem and it has many generalizations.
Here, BC is the Banach space of bounded continuous functions with
the supremum norm.

Theorem 3.1. If a ∈ BC and C is continuous with
∫ t

0

|C(t, s)|ds ≤ α < 1

then the solution x of (3) is also in BC.

Simply use (3) to define a mapping which is a contraction.
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Theorem 3.2. If a and C are continuous and if
∫ ∞

0

|C(u + t, t)|du ≤ β < 1

then a ∈ L1[0,∞) implies that x ∈ L1[0,∞).

This is proved in [3] and is a quick consequence of a Liapunov func-

tional V (t) =
∫ t

0

∫ ∞

t−s
|C(u + s, s)|du|x(s)|ds.

Theorem 3.3. If both the integral conditions of the last two results
hold, then a ∈ L2[0,∞) implies that x ∈ L2[0,∞).

This is also proved in [3] and we note here that an inequality can be
developed to yield a general result.

Lemma 3.4. Suppose there is an α < 1 with

sup
t≥0

∫ t

0

|C(t, s)|ds ≤ α.

Consider equation (3). There is an M > 0 and for each integer n > 0
we have

x2n

(t) ≤ M2n−1a2n

(t) +

∫ t

0

|C(t, s)|x2n

(s)ds.

Proof. In (3) we take absolute values and square both sides to obtain

x2(t) ≤ a2(t) − 2a(t)

∫ t

0

C(t, s)x(s)ds +

(
∫ t

0

C(t, s)x(s)ds

)2

.

Find ε > 0 with (1 + ε)α = 1 and then find M > 1 with 2|a(t)||y| ≤
(M − 1)a2(t) + εy2. Thus,

x2(t) ≤ Ma2(t) + (1 + ε)

(
∫ t

0

C(t, s)x(s)ds

)2

≤ Ma2(t) + (1 + ε)

∫ t

0

|C(t, s)|ds

∫ t

0

|C(t, s)|x2(s)ds

≤ Ma2(t) +

∫ t

0

|C(t, s)|x2(s)ds

where we have used the Schwarz inequality. Next, suppose there is a
positive integer k with

x2k(t) ≤ M2k−1a2k(t) +

∫ t

0

|C(t, s)|x2k(s)ds.
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Squaring yields

x4k(t) ≤ M4k−2a4k(t)

+ 2M2k−1a2k(t)

∫ t

0

|C(t, s)|x2k(s)ds

+

(
∫ t

0

|C(t, s)|x2k(s)ds

)2

≤ M4k−2a4k(t) + (M − 1)

[

M2k−1a2k(t)

]2

+ (1 + ε)

(
∫ t

0

|C(t, s)|x2k(s)ds

)2

≤ M4k−2a4k(t)(M − 1 + 1)

+ (1 + ε)

∫ t

0

|C(t, s)|ds

∫ t

0

|C(t, s)|x4k(s)ds

≤ M4k−1a4k(t) +

∫ t

0

|C(t, s)|x4k(s)ds.

As we repeatedly apply these inequalities our exponents are the ones
stated in the theorem. �

Theorem 3.5. Let a and C be continuous. Suppose there are constants
α < 1 and β < 1 with

∫ t

0

|C(t, s)|ds ≤ α and

∫ ∞

0

|C(u + t, t)|du ≤ β.

If there is an n > 0 with a ∈ L2n

[0,∞) then the solution of (3) satisfies
x ∈ L2n

[0,∞).

Proof. Define a Liapunov functional

V (t) =

∫ t

0

∫ ∞

t−s

|C(u + s, s)|dux2n

(s)ds

so that

V ′(t) =

∫ ∞

0

|C(u + t, t)|dux2n

(t) −

∫ t

0

|C(t, s)|x2n

(s)ds

≤ βx2n

(t)− x2n

(t) + M2n−1a2n

(t).

Thus, an integration yields

0 ≤ V (t) ≤ V (0) − (1 − β)

∫ t

0

x2n

(s)ds + M2n−1

∫

∞

0

a2n

(t)dt,

as required. �
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Remark 3.6. As we go through the previous results we see that there is
absolute correspondence between a(t) and x(t) so it is easy to see how
we would believe that with a nice kernel, then x(t) always follows a(t).
But in the next part we will see that this is something of an illusion.
The solution can be expressed as x(t) = a(t) −

∫ t

0
R(t, s)a(s)ds and

that integral faithfully duplicates a(t). Thus, a ∈ L1 will yield that
the integral is in L1 so x will be in L1 by default. The function x was
simply in the wrong place at the wrong time.

PART II: LARGE KERNELS, GREAT DISCORD

In this part we deal with kernels which could not be integrable and
find that there is great disparity between a(t) and the solution of (3).
The fundamental difference between Parts I and II is that C(t, s) ≡ 0
is permitted in every result in Part I, but in no result in Part II.

4. A Remarkable Resolvent

All of the remaining theorems concern the case in which there is
either a positive additive constant, an additive function of t, or an
additive function of s which would be cleansed by differentiation with
respect to either s or t. Our first result is new in both generality and
use of the Hölder-Young’s inequality. We mention Young here since
it should be possible to extend this result to nonlinear equations and
Young’s inequality would be used instead of Hölder’s.

The periodicity of a(t) is a very special property which enables the
forcing function to exert continued influence over the solution, no mat-
ter how small a(t) may be. We now give a concise proof using Liapunov
theory to show that this property is, indeed, rare.

Thus, we again consider the scalar equation (3) where we now sup-
pose a′ and Ct are continuous so that it can be written as

(7) x′(t) = a′(t)− C(t, t)x−

∫ t

0

Ct(t, s)x(s)ds.

The resolvent equation for (3) is

(8) R(t, s) = C(t, s)−

∫ t

s

R(t, u)C(u, s)du

and the variation-of-parameters formula for (3) is

(9) x(t) = a(t)−

∫ t

0

R(t, s)a(s)ds.
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These relations can be found in Chapter 7 of [1] and [11; p. 190], for
example.

We will see that for a′ ∈ Lp then x ∈ Lp so that (9) will assure
us that the integral so faithfully duplicates a(t) that the error in that
duplication is an Lp function. As time goes on the duplication becomes
so precise on average that we can hardly tell the difference between the
integral in (9) and a(t). That large function, a(t) = (t + 1)β , has such
a small effect on the solution of (3) it is almost as if it were absent.
The same is true for a(t) = sin(t + 1)β when 0 < β < 1.

In preparation for the next result, we note that the polynomial form
of Young’s inequality states that if p and q are numbers with p > 0,
p 6= 1, and (1/p) + (1/q) = 1, then

|ab| ≤
|a|p

p
+

|b|q

q
.

For our repeated application below we will have n a positive integer,
p = 2n

2n−1
, then q = 2n.

Moreover, in the subsequent work C1 denotes the partial derivative
with respect to the first argument, while C2 denotes differentiation
with respect to the second argument. The fundamental inequality in
Theorem 4.1 below asks that integration of Ct(t, s) fails to recover all
of C(t, s). Something, perhap a constant, is lost in forming Ct(t, s).
We have results in [3] which do not require this. However, this result is
given mainly to work with our later results on asymptotically periodic
solutions and all of those results require a similar condition.

Theorem 4.1. Suppose there is a positive integer n with a′(t) ∈ L2n[0,∞),
a constant α > 0, and a constant N > 0 with

2n − 1

2nN
2n

2n−1

−C(t, t)+
2n− 1

2n

∫ t

0

|Ct(t, s)|ds+
1

2n

∫ ∞

0

|C1(u+t, t)|du ≤ −α.

Then the unique solution x of (3) is bounded and x ∈ L2n[0,∞). From

(9) we then have x(t) = a(t)−
∫ t

0
R(t, s)a(s)ds ∈ L2n.

Proof. For a fixed solution of (7) we define the function

V (t) =
x2n(t)

2n
+

1

2n

∫ t

0

∫ ∞

t−s

|C1(u + s, s)|dux2n(s)ds.



12 T. A. BURTON

Compute the derivative along a solution of (7) by the chain rule as

V ′(t) = −C(t, t)x2n −

∫ t

0

Ct(t, s)x(s)x2n−1(t)ds + x2n−1(t)a′(t)

+
1

2n

∫ ∞

0

|C1(u + t, t)|dux2n(t)−
1

2n

∫ t

0

|C1(t, s)|x
2n(s)ds

(Use Young’s inequality on the second and third terms on the R-H-S.)

≤
(2n − 1)x2n(t)

2nNk
+

(Na′(t))2n

2n
− C(t, t)x2n

+

∫ t

0

|Ct(t, s)|

[

(2n − 1)x2n(t)

2n
+

x2n(s)

2n

]

ds

+
1

2n

∫ ∞

0

|C1(u + t, t)|dux2n(t)−
1

2n

∫ t

0

|C1(t, s)|x
2n(s)ds

=
(Na′(t))2n

2n
+ x2n(t)

[

(2n − 1)

2nNk
− C(t, t)

+
2n − 1

2n

∫ t

0

|Ct(t, s)|ds +
1

2n

∫

∞

0

|C1(u + t, t)|du

]

≤ −αx2n(t) +
N2n

2n
|a′(t)|2n

for large N and for k = 2n
2n−1

.
It follows that

x2n(t)

2n
≤ V (t) ≤ V (0) − α

∫ t

0

x2n(s)ds + k∗

∫ ∞

0

(a′(s))2nds

for some k∗ > 0. This is true for every solution of (7) and, hence, for
(3). �

As we continue to study the behavior of the resolvent, it increasingly
seems to be a question of stability. In earlier work [3] and [5] we said
that R(t, s) generated an Lp approximate identity on a space W if

φ ∈ W implies that φ(t)−
∫ t

0
R(t, s)φ(s)ds ∈ Lp.

It will be convenient in the remainder of the paper to use the follow-
ing terminology.

Definition 4.2. A function R mapping [0,∞) × [0,∞) into the reals
is said to be LN -stable with respect to a vector space W of specified
continuous functions φ mapping [0,∞) into the reals if for each φ ∈ W
there is an integer n with

φ(t) −

∫ t

0

R(t, s)φ(s)ds ∈ Ln[0,∞).
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In our last theorem, the vector space W consisted of those functions
φ such that φ′ ∈ Lp for some p ∈ (0,∞).

Remark 4.3. Of course, this is a classical stability concept. For suppose
that φ1 and φ2 are functions with φ1 − φ2 ∈ W . Then for

xφ1
(t) = φ1(t) −

∫ t

0

C(t, s)x(s)ds

and

xφ2
(t) = φ2(t) −

∫ t

0

C(t, s)x(s)ds

we have

xφ1
− xφ2

= φ1 − φ2 −

∫ t

0

R(t, s)[φ1(s) − φ2(s)]ds ∈ Ln[0,∞).

We are saying that if φ1 − φ2 ∈ W then they are “close” and the solu-
tions generated are“close.” In our examples we find that the functions
sin(t+1)β, (t+1)β, and (t+1) are “close.” Notice that if our examples
are based on Theorem 4.1 with φ′

1 ∈ Lp and φ′
2 ∈ Lq where p < q, since

x2n/2n ≤ V (t) we have x(t) = φ1(t) −
∫ t

0
R(t, s)φ1s)ds ∈ Lp and also

x ∈ Lq .

5. Periodicity revisited

Theorem 2.3 and Lemma 2.2 enabled us to show the existence of as-
ymptotically periodic solutions by an elementary fixed point argument
instead of the traditional long and difficult process involving limiting
equations, as may be seen for example in Burton [2; p. 105] or Laksh-
mikantham and Rao [10; pp. 115-122]. We continue that study here.

Our asymptotic periodic result in Theorem 2.3 asks that
∫ t

0
|C(t, s)|ds ≤

α < 1. Differentiation of (3) can produce two simplifications; one is
expected, the other is a pleasant surprise.

We continue to use the same notation here as in Theorem 2.3 for
PT , Q and Y .

Suppose that C(t, s) has an additive function of s, perhaps a con-

stant, so that the inequality
∫ t

0
|C(t, s)|ds ≤ α < 1 fails. When we

write (7) as

x′ = a′(t) − C(t, t)x(t)−

∫ t

0

Ct(t, s)x(s)ds,

that offending function of s has been cleansed from the kernel. But,
fortuitously, it has been transferred over to a place in the equation
where it can be used to actually increase the size of the new requirement
on the kernel, Ct(t, s).
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From (7) and the variation of parameters formula we have a new
integral equation with x(0) = a(0) in the form
(10)

x(t) = x(0)e−
R

t

0
C(s,s)ds +

∫ t

0

e−
R

t

u
C(s,s)ds

[

a′(u)−

∫ u

0

C1(u, s)x(s)ds

]

du.

Notice that (2) will bestow many properties on (10). For example,
C(t, t) is periodic since C(t + T, t + T ) = C(t, t). Thus,

∫ t+T

u+T

C(s, s)ds =

∫ t

u

C(s, s)ds,

as will be needed to show periodicity later. We suppose that there is a
number c∗ > 0 with

(11) C(t, t) ≥ c∗

and an α < 1 with

(12)

∫ t

0

e−
R

t

u
C(s,s)ds

∫ u

0

|C1(u, s)|dsdu ≤ α

which will make the mapping defined from (10) be a contraction on any
space with the supremum norm. Notice again that (12) is almost like
the inequality in Theorem 4.1. We are assuming that when we integrate
C1(t, s) we get less than C(t, s); something is lost in the differentiation,
possibly a constant.

Remark 5.1. We could replace (11) with

(11∗)

∫ T

0

C(t, t)dt ≥ c∗ > 0

if we ask that (16) and (17) hold.

In order to prove that (10) has an asymptotically periodic solution
in the same way we proved Theorem 2.3, (10) must be decomposed
into the mappings A and B as in the proof of Theorem 2.3. Thus, we
begin by writing a′(t) = p∗(t) + q∗(t) ∈ Y and define a mapping from
(10) by φ = p + q ∈ Y implies that

(Pφ)(t) = a(0)e−
R

t

0
C(s,s)ds

+

∫ t

0

e−
R

t

u
C(s,s)ds

[

p∗(u) + q∗(u) −

∫ u

0

C1(u, s)[p(s) + q(s)]ds

]

du.

(13)

The decomposition will be done in the proof of Theorem 5.3.
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Parallel to (4) and (5) we now ask that

(14)

∫ 0

−∞

|C1(t, s)|ds → 0 as t → ∞

and for q ∈ Q then

(15)

∫ t

0

C1(t, s)q(s)ds → 0 as t → ∞.

It may help to understand these by noting that if C were of convolution
type then (14) would say that C1 ∈ L1[0,∞), while (15) would then
be the classical theorem that the convolution of an L1 function with a
function tending to zero does, itself, tend to zero as t → ∞.

Lemma 5.2. If (11) holds then

(16)

∫ 0

−∞

e−
R

t

u
C(s,s)dsdu → 0 as t → ∞

and for q ∈ Q then

(17)

∫ t

0

e−
R

t

u
C(s,s)dsq(u)du → 0 as t → ∞.

Proof. We have c∗ = minC(t, t) and C(t, t) ∈ PT . Thus,
∫ 0

−∞

e−
R

t

u
C(s,s)dsdu ≤ (1/c∗)

∫ 0

−∞

C(u, u)e−
R

t

u
C(s,s)dsdu

= (1/c∗)e−
R

t

u
C(s,s)ds

∣

∣

∣

∣

0

−∞

= (1/c∗)e
R

t

0
−C(s,s)ds

which tends to zero as t → ∞.
Next,

∫ t

0

e−
R

t

u
C(s,s)ds|q(u)|du ≤

∫ t

0

e−c∗(t−u)|q(u)|du

which is the convolution of an L1-function with a function tending to
zero so it tends to zero. �

Theorem 5.3. In (3) let a′ and C1(t, s) be continuous. Let (11)-(12),
and (14)-(15) hold. Suppose, in addition, that

(18)

∫ t

−∞

|C1(t, s)|ds

is bounded and C(t + T, s + T ) = C(t, s). If a′ ∈ Y so is x, the unique
solution of (3).
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Proof. Using (10) we define a mapping P : Y → Y by φ = p + q ∈ Y
implies that

(Pφ)(t) = a(0)e−
R

t

0
C(s,s)ds+

∫ t

0

e−
R

t

u
C(s,s)ds

[

a′(u)−

∫ u

0

C1(u, s)φ(s)ds

]

du.

By (12) it is clearly a contraction, but we must show that P : Y → Y .
Write a′ = p∗ + q∗ and then

(Pφ)(t) =

∫ t

−∞

e−
R

t

u
C(s,s)ds

[

p∗(u) −

∫ u

−∞

C1(u, s)p(s)ds

]

du

−

∫ t

0

e−
R

t

u
C(s,s)ds

∫ u

0

C1(u, s)q(s)dsdu

+ a(0)e−
R

t

0
C(s,s)ds −

∫ 0

−∞

e−
R

t

u
C(s,s)ds

[

p∗(u) −

∫ u

−∞

C1(u, s)p(s)ds

]

du

+

∫ t

0

e−
R

t

u
C(s,s)ds

∫ 0

−∞

C1(u, s)p(s)dsdu

+

∫ t

0

e−
R

t

u
C(s,s)dsq∗(u)du.

The first term on the right-hand-side is clearly in PT . In the second
term,

∫ u

0
C1(u, s)q(s)ds ∈ Q by (15). Hence the second term is in Q by

(17). The third term is in Q by (11). The fourth term is in Q by (16),
(18), and the fact that p∗ ∈ PT and, hence, is bounded. The next to
last term is in Q because of (14) followed by (15). The last term is in
Q by (17). This completes the proof �

Remark 5.4. Notice in the last result that a significant instability can
occur at β = 1. Under conditions on C(t, s) of Theorem 4.1 the integral
of that resolvent has been faithfully following sin(t + 1)β so that the
difference is an Lp function. Suddenly, that relationship breaks com-
pletely and the integral with the resolvent seems to “struggle along
trying to catch up with sin(t + 1)” but always is out of step, lagging
by a nontrivial periodic function plus a function tending to zero.

Corollary 5.5. If the conditions of Theorem 4.1 hold and if 0 < β < 1
then sin(t + 1)β −

∫ t

0
R(t, s) sin(s + 1)βds ∈ Lp for some p < ∞. But

at β = 1, under conditions on C(t, s) of Theorem 5.3 then p = ∞ and
that difference approaches a periodic function.

We can now state the promised result, a corollary of Theorems 5.3
and 4.1.

Corollary 5.6. Let the conditions on C(t, s) of Theorems 5.3 and 4.1
hold. For fixed β ∈ (0, 1) there is a p ∈ PT , q ∈ Q, and u ∈ Lp[0,∞)
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so that the solution of

x(t) = sin t + (t + 1)β −

∫ t

0

C(t, s)x(s)ds

may be written as

x(t) = p(t) + q(t) + u(t).

Proof. The solution is

x(t) = sin t + (t + 1)β −

∫ t

0

R(t, s)[sin s + (s + 1)β ]ds.

But

(t + 1)β −

∫ t

0

R(t, s)(s + 1)βds =: u(t) ∈ Lp[0,∞),

while

sin t−

∫ t

0

R(t, s) sin sds

is the solution described in Theorem 5.3 and it has the required form
of p + q. �

Remark 5.7. For a transparent example linking Theorem 4.1 and The-
orem 5.3, let k > 0,

C(t, s) = k + sin2 s + D(t − s), D(t) > 0, D′(t) ≤ 0.

We then have
∫ t

0

−D′(s)ds = D(0) − D(t) < D(0)

and C(t, t) = C(0) = k + sin2 t + D(0) and so we readily verify the
inequality in Theorem 4.1 holds for large N and n. To satisfy (12) we
have

∫ t

0

e−
R

t

u
[k+sin2 s+D(0)]ds

∫ u

0

−D′(u − s)dsdu <
D(0)

k + D(0)

and conditions of Theorem 5.3 are satisfied.

Notice in Theorem 5.3 that we work with C1(t, s) and that conditions
(14), (15), and (18) all concern C1(t, s). There is a seemingly little
known transformation which allows us to obtain a completely parallel
result by working with C2(t, s) and to avoid differentiating a(t). This
time one might think of C(t, s) = k + sin2 t + D(t − s) and note that
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Cs(t, s) = −D′(t− s); the kernel has been cleansed of k +sin2 t so that
conditions of Theorem 4.1 can possibly be satisfied. Write (3) as

x(t) = a(t)− C(t, s)

∫ s

0

x(u)du

∣

∣

∣

∣

t

0

+

∫ t

0

Cs(t, s)

∫ s

0

x(u)duds

= a(t)− C(t, t)

∫ t

0

x(u)du +

∫ t

0

Cs(t, s)

∫ s

0

x(u)duds.

Let y(t) :=
∫ t

0
x(u)du so that y(0) = 0 and we have

(7∗) y′(t) = a(t) −C(t, t)y(t) +

∫ t

0

Cs(t, s)y(s)ds.

By the variation of parameters formula we have

(10∗) y(t) =

∫ t

0

e−
R

t

u
C(s,s)ds

[

a(u) +

∫ u

0

Cs(u, s)y(s)ds

]

du

and we will need α < 1 with

(12∗)

∫ t

0

e−
R

t

u
C(s,s)ds

∫ u

0

|Cs(u, s)|dsdu ≤ α.

Parallel to (14) and (15) we ask that

(14∗)

∫ 0

−∞

|Cs(t, s)|ds → 0 as t → ∞

and

(15∗)

∫ t

0

Cs(t, s)q(s)ds → 0 as t → ∞ for q ∈ Q.

Conditions (11), (16), (17), and Lemma 5.2 will be the same for both
(7) and (7∗), while (18) will be replaced by the conditon that

(18∗)

∫ t

−∞

|Cs(t, s)|ds

is bounded.

Theorem 5.8. In (3) let a(t) and Cs(t, s) be continuous. Let (11),
(12∗), (14∗), (15∗), and (18∗) hold. Let (C(t + T, s + T ) = C(t, s) for
some T > 0. If a ∈ Y so is the unique solution of (10∗) and of (3).
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Proof. The proof that y ∈ Y is completely parallel to that of Theorem
5.3. Then consider (7∗) with y ∈ Y so that y = p + q. We have
∫ t

0

Cs(t, s)[p(s) + q(s)]ds =

∫ t

−∞

Cs(t, s)p(s)ds −

∫ 0

−∞

Cs(t, s)px(s)ds

+

∫ t

0

Cs(t, s)q(s)ds ∈ Y.

It follows that y′ ∈ Y . �

Remark 5.9. These results represent an introduction into some of the
very interesting properties of the resolvent. One can hardly help but be-
lieve there are many more surprises about the effects of

∫ t

0
R(t, s)a(s)ds.

It would be most interesting to come to understand how the resolvent
can be so complicated and yet the integral so closely duplicate a(t) for
such a great variety of functions. But it does seem clear that we had
come to believe that the solution follows a(t) because we had looked at
too few problems and functions a(t) which were too small. We looked
at small functions, found that x(t) remained small, and erroneously
concluded that x(t) followed a(t).
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