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Abstract. In this paper we continue the study of an idea of Kras-
noselskii for a unifying theory of differential equations of many
types based on a certain kind of inversion of the perturbed differ-
ential operator and a fixed point theorem. Earlier we had studied
the idea for fractional differential equations, neutral differential
equations, and for a linear form of an integrodifferential equation
studied by Volterra. Here, we continue that study of Volterra’s
problem for nonlinear equations based on the global linearization
technique of Aizerman.

1. Introduction

This is the third paper in which we study an idea of Krasnoselskii [8]
concerning the unification of a broad area of differential equations. We
have described that theory in some detail in [4] and that will not be re-
peated here. Briefly, Krasnoselskii’s idea was that by careful inversion
of a perturbed differential operator we obtain the sum of a contraction
and compact map. He then offered a fixed point theorem which cov-
ered such cases. In [6] we simplified that theorem and used it to put
the theory to the test in [4] and [5] concerning fractional differential
equations, neutral functional differential equations, and a linear prob-
lem of Volterra. Here, we continue the study of Volterra’s problem for
the nonlinear case.

The problem of Volterra [16] is one of prime importance as it is used
to model many classical and modern problems of applied mathematics.
Our focus here is on the nonlinear integrodifferential equation

(1.1) x′ (t) = −
∫ t

0

D(t − s)g(x(s))ds + f(t), t ≥ 0,

where f, D : [0,∞) → R and g : R → R are continuous with

(1.2) D(t) > 0,

∫ ∞

0

D(t)dt < ∞,
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and

(1.3) xg(x) > 0 for x 6= 0.

The problem has been studied mainly by means of Liapunov’s direct
method under the assumption that D is convex: D(t) > 0, D′(t) ≤ 0,
and D′′(t) ≥ 0. See [10], [11], [12], [15], [13], and [14]. As those
conditions are virtually impossible to verify in real-world problems, we
study the problem here under assumptions on the average value of D.

We assume that there exist G1 ≥ 0 and G2 > 0 with

(1.4) G1 ≤
g(x)

x
≤ G2, x 6= 0.

Note that from (1.4), (1.3) and the continuity of g it follows that

(1.5) G1 |x| ≤ |g(x)| ≤ G2 |x| , x ∈ R.

In the special case when

G1 = 1 = G2,

equation (1.1) reduces to the forced linear equation

(1.6) x′ (t) = −
∫ t

0

D(t − s)x(s)ds + f(t), t ≥ 0.

The reader may note that this process, in effect, is an extension
of the classical Aizerman [1] problem from ordinary differential equa-
tions to integrodifferential equations. Aizerman had an idea for global
linearization of an ordinary differential equation containing a single
nonlinear function, g(x).

The first step in his process is to determine positive constants α < β
so that if α < a < β and if g(x) is replaced by ax in the differential
equation (making it linear) then the zero solution of that linear equa-
tion is globally asymptotically stable. If the equation is autonomous,
then that stability is immediately established using the Routh-Hurwicz
criterion. Accordingly, the first step is quite trivial in the study of or-
dinary differential equations.

For the second step consider a class of admissible functions, g(x), for
which

αx2 < xg(x) < βx2, x 6= 0.

This expression is our (1.4) when we multiply by x2. The Aizerman
problem is to find conditions so that for every g(x) in that admissible
class then the zero solution is globally asymptotically stable. While
the sector may turn out to be narrow, notice that this linearization
does not require differentiability of g(x) and it admits a solution for
0 ≤ t < ∞, together with qualitative properties of the solution, which
is a much superior situation to that found in classical linearization
using differentiability.

Aizerman’s work was motived in large measure by control theory
where g(x) might be a control function. He was finding an admissible
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set of controls. Investigators have been very successful in solving the
Aizerman problem for many important systems. Easily accessible dis-
cussions, together with many references, are found in Hahn [2, p. 42],
Krasovskii [9, pp. 110-114], and Lefschetz [3, p. 42].

Our work here goes well beyond the Aizerman problem in that we
consider an integrodifferential equation which has a forcing function.
When we replace g(x) by x in (1.1) we obtain

x′ (t) = f (t) +

∫ t

0

R(t − s)x(s)ds,

which is the linear equation considered in [5]. In this paper we take
the second step and show boundedness in case g is nonlinear and f is
not zero.

The convexity of Volterra is replaced by (1.2) because of the essential
impossibility of observing that behavior in real-world problems. In the
same way, treating any function g(x) satisfying (1.4) takes into account
uncertainties and difficulty in measurements.

Having given the history and motivation of the project, we now begin
the analysis. Concerning existence of solutions to (1.6), the results
below cited as Theorem A and Lemma A have recently been obtained
in [5]. We note that the assumption

(1.7) e−Jt

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣ → 0,

found in [5] is not needed here. The reason is that condition (1.7) is
used in obtaining Propositions 2 and 2b in [5] but results parallel to
these are not given here.

Theorem A. If F is uniformly continuous and
(
|x(0)| +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt(1.8)

+

∫ t

0

∣∣∣∣Je−J(t−u) −
∫ t

u

e−J(t−s)D(s − u)ds

∣∣∣∣ du ≤ 1, t ≥ 0,

then there exists a bounded solution of equation (1.6).

Lemma A. Let J > 0 and suppose that D satisfies (1.2).
(i) If

(1.9)

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣ ≤
∫ t

0

∫ t

u

eJsD(s − u)dsdu, t ≥ 0,

is satisfied and

(1.10)

∫ ∞

0

eJvD (v) dv ≤ J ,

then (1.8) is always true.
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(ii) If

(1.11)

∫ ∞

0

eJvD (v) dv > J ,

then (1.8) is equivalent with

J

(
|x(0)| +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt

+

∫ t

k

[
1 − e−J(t−s)

]
D (s) ds ≤

∫ k

0

D (s) ds, t ≥ k,

where k is the unique solution of

(1.12) J =

∫ k

0

eJvD (v) ds.

In this paper, our aim is to extend Theorem A, to the case of non-
linear equation (1.1).

Following the same steps as in [4], (see, also, [5]), we integrate (1.1),
divide and multiply by J > 0 (with J being an arbitrary positive
number), add and subtract x(s) to obtain

x(t) = x(0)−
∫ t

0

J

[
x(s) − x(s) − f(s)

J
+

∫ s

0
D(s − u)g(x(u))du

J

]
ds, t ≥ 0.

Write the linear part as

z(t) = x(0) −
∫ t

0

Jz(s)ds, t ≥ 0,

so that there is a resolvent equation

R(t) = J −
∫ t

0

JR(s)ds, t ≥ 0,

with solution
R(t) = Je−Jt, t ≥ 0,

which is completely monotone and satisfies∫ ∞

0

R(s)ds = 1.

We then have

z (t) = x(0)

[
1 −

∫ t

0

R(s)ds

]
= x(0)e−Jt, t ≥ 0,

and by a variation of parameters formula

x(t) = z(t) + F (t)(1.13)

+

∫ t

0

R(t − s)

[
x(s) −

∫ s

0
D(s − u)g(x(u))du

J

]
ds, t ≥ 0,
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where

F (t) =

∫ t

0

R(t − s)[f(s)/J ]ds =

∫ t

0

e−J(t−s)f(s)ds

= e−Jt

∫ t

0

eJsf(s)ds, t ≥ 0.

Changing the order of integration in the double integral, (1.13) is
written as

x(t) = z(t) + F (t)

(1.14)

+

∫ t

0

[
R(t − u)x(u) −

∫ t

u

R(t − s)
D(s − u)

J
dsg(x(u))

]
du, t ≥ 0.

Let (BC, ‖ · ‖) be the Banach space of bounded continuous functions
φ : [0,∞) → < with the supremum norm and let

M = {φ ∈ BC : ‖φ‖ ≤ 1} .

Let A : M → M be defined by

(Ax) (t) := z(t) + F (t)

(1.15)

+

∫ t

0

[
R(t − u)x(u) −

∫ t

u

R(t − s)
D(s − u)

J
dsg(x(u))

]
du, t ≥ 0.

For our purposes we make use of the the following fixed point theorem
used in [5] (see, also, [4], [6] and its correction [7]). Note that no
compactness of the operator A is required. Here is the reason. In the
proof of the theorem we had an operator of the form

∫ t

0

R(t − s)u(s, x(·))ds,

and it was assumed that |u(t, x(·))| is bounded when 0 ≤ t < ∞ and
x(t) is a bounded function on [0,∞). That enabled us to show that
we were dealing with an equi-continuous set of functions. By going
to a weighted space we could then show that the resulting mapping is
compact. In (1.15) we see that u(s, x(·)) is a function which is bounded
when x is bounded. Thus, we do not even mention u in the theorem
and we do not mention compactness. All we are asking is continuity of
A. The correction noted that we need M to be the closed ball.

Theorem 1.1 (Brouwer-Schauder type). Let M = {φ ∈ BC : a ≤ φ ≤ b}
for some a < b and t ≥ 0. Suppose that x (0) and M are chosen so
that for A defined in (1.15) then A : M → M . If A is continuous then
A has a fixed point in M .
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2. THE MAIN RESULTS

By continuity of g, from (1.4) we have that g (0) = 0, thus for u0

with x(u0) = 0 the integrand in (1.14) is zero. In view of (1.4), for this

integrand we get the same result if we assume that the fraction g(x)
x

is
meaningful at x = 0 (with possible value any number in [G1, G2]) and
write (1.14) as

x(t) = z(t) + F (t)

(2.1)

+

∫ t

0

[
R(t − u) −

∫ t

u

R(t − s)
D(s − u)

J
ds

g(x(u))

x(u)

]
x(u)du, t ≥ 0.

So, for the rest of the paper, without loss of generality, we may use

the convention that the fraction g(x)
x

is meaningful at x = 0 with (2.1)
being well defined, regardless of u with x(u) = 0.

Let

Di(t) = GiD (t) , t ≥ 0, (i = 1, 2),

and set

m (u, t) := max
i=1,2

{∣∣∣∣Je−J(t−u) −
∫ t

u

e−J(t−s)Di(s − u)ds

∣∣∣∣
}

, 0 ≤ u ≤ t.

Our first result is the next theorem which generalizes Theorem A.

Theorem 2.1. If F is uniformly continuous and

(2.2)

(
|x(0)| +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt +

∫ t

0

m (u, t) du ≤ 1, t ≥ 0,

then the natural mapping defined by (2.1) on the set M maps M into
M and Theorem 1.1 will give a fixed point in M .

Proof. From (2.1) we have for x ∈ M and any t ≥ 0

|x(t)| ≤ |z(t)| + |F (t)|

+

∫ t

0

∣∣∣∣R(t − u) −
∫ t

u

R(t − s)
D(s − u)

J
ds

g(x(u))

x(u)

∣∣∣∣ |x(u)| du

and

|x(t)| ≤ |z(t)| + |F (t)|(2.3)

+

∫ t

0

∣∣∣∣R(t − u) −
∫ t

u

R(t − s)
D(s − u)

J
ds

g(x(u))

x(u)

∣∣∣∣ du.
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from which, in view of (1.4), (1.3) and the nonnegativity of the inte-
grands, we have for 0 ≤ u ≤ t

R(t − u) −
∫ t

u

R(t − s)
D(s − u)

J
dsG2

≤ R(t − u) −
∫ t

u

R(t − s)
D(s − u)

J
ds

g(x(u))

x(u)

≤ R(t − u) − G1

∫ t

u

R(t − s)
D(s − u)

J
ds,

or

R(t − u) −
∫ t

u

R(t − s)
D2(s − u)

J
ds

≤ R(t − u) −
∫ t

u

R(t − s)
D(s − u)

J
ds

g(x(u))

x(u)

≤ R(t − u) −
∫ t

u

R(t − s)
D1(s − u)

J
ds.

It follows that
∣∣∣∣R(t − u) −

∫ t

u

R(t − s)
D(s − u)

J
ds

g(x(u))

x(u)

∣∣∣∣

≤ max

{∣∣∣∣R(t − u) −
∫ t

u

R(t − s)
D1(s − u)

J
ds

∣∣∣∣ ,

∣∣∣∣R(t − u) −
∫ t

u

R(t − s)
D2(s − u)

J
ds

∣∣∣∣
}

= max

{∣∣∣∣Je−J(t−u) −
∫ t

u

e−J(t−s)D1(s − u)ds

∣∣∣∣ ,
∣∣∣∣Je−J(t−u) −

∫ t

u

e−J(t−s)D2(s − u)ds

∣∣∣∣
}

:= m (u, t) ,

and so, in view of (2.3) and (2.2), we have

|x(t)| ≤ |z(t)| + |F (t)|

+

∫ t

0

∣∣∣∣R(t − u) −
∫ t

u

R(t − s)
D(s − u)

J
ds

g(x(u))

x(u)

∣∣∣∣ du

≤
(
|x(0)| +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt +

∫ t

0

m (u, t) du

≤ 1.

Consequently, for the natural operator P defined by (2.1) we have
PM ⊂ M . A routine proof of continuity of A and application of
Theorem 1.1 complete the proof. �
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Lemma 1, below, attempts to give a more handy form of the inequal-
ity (2.2). For our convenience, we set

T (u, t) = e−Jt

∫ t−u

0

eJ(s+u)D (s) ds, 0 ≤ u ≤ t,

(2.4) Ti (u, t) = GiT (u, t) , 0 ≤ u ≤ t ., (i = 1, 2) ,

and

R (u, t) = Je−J(t−u), 0 ≤ u ≤ t.

As it will be shown in the next section, in the special case of the
linear forced equation (1.6) (i.e., when (1.5) holds), Lemma 1, reduces
to Lemma A (Lemma 1 in [4]).

First, we note that by (1.2) one easily sees that
∫ ∞
0

eJvD (v) dv is
either a positive real number or +∞, hence

D0 :=

{ J∫∞
0 eJvD(v)dv

,
∫ ∞
0

eJvD (v) dv < +∞
0,

∫ ∞
0

eJvD (v) dv = +∞
,

is a nonnegative real number. If G1, G2 are positive numbers with
G1 6= G2, then G1, G2 and G1+G2

2
define four disjoint semi-closed inter-

vals on the half-axis [0, +∞), namely the intervals [0, G1),
[
G1,

G1+G2

2

)
,[

G1+G2

2
, G2

)
, and (G2,∞). In Lemma 1 we study the inequality (2.2)

according to the position of D0 regarding to these intervals. It turns
out that, for the first two intervals, inequality (2.2) takes the same form
(case (iii), in Lemma 1). If G1 = G2 = G, then g (x) = Gx, and (1.1)
reduces to an equation of the type of (1.6), which has been studied in
[5]. The proof of Lemma 1 is cited in the Appendix.

Lemma 1. Let J > 0, D satisfy (1.2) and assume that

(2.5)

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣ ≤ G1

∫ t

0

∫ t

u

eJsD(s − u)dsdu, t ≥ 0.

(i) If D0 ∈ [G2,∞) then (2.2) is always true.
(ii) If D0 ∈

[
G1+G2

2
, G2

)
, then (2.2) is

(2.6)

(
|x(0)| +

∣∣∣
∫ t

0
eJsf(s)ds

∣∣∣
)

e−Jt

+
∫ t

0
[R (u, t) − T1 (u, t)] du ≤ 1, t ≥ 0.

(iii) If D0 ∈
[
0, G1+G2

2

)
then (2.2) is

(2.7)(
|x(0)| +

∣∣∣
∫ t

0
eJsf(s)ds

∣∣∣
)

e−Jt +
∫ t

0
[R (u, t) − T1 (u, t)] du ≤ 1, t ≤ t0,(

|x(0)| +
∣∣∣
∫ t

0
eJsf(s)ds

∣∣∣
)

e−Jt +
∫ t−t0
0

[T2 (u, t) − R (u, t)] du

+
∫ t

t−t0
[R (u, t) − T1 (u, t)] du ≤ 1,

t > t0.
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where t0 the unique solution of the equation

(2.8)
G1 + G2

2

∫ t0

0

eJsD (s) ds = J .

3. DISCUSSION

In this section we are concerned, mainly, with four issues: (I) we
show that if g is linear then Theorem 2.1 reduces to Theorem A and
Lemma 1(ii) coincides with Lemma A (i) (see, also [5]); (II) we give a
modified version of Theorem 2.1 which still yields bounded solutions
of (1.1) under slightly weaker assumptions than inequality (2.2); (III)
we apply our results to the case of a nonlinear unforced equation with
G1 = 0, and (IV) we discuss the inequality (2.7) in Lemma 1 (iii).

(I) As already noticed, for G1 = 1 = G2 equation (1.1) becomes
the linear forced equation (1.6). Furthermore, we have G1+G2

2
= 1, so

the interval
[

G1+G2

2
, G2

)
(case (ii) in Lemma 1) reduces to the empty

set. This explains why, in the linear case, only two cases are considered
(Lemma A), in contrast with the three cases in Lemma 1.

By (1.4), from the definitions of Di (i = 1, 2) and m we have that

Di(t) = D (t) , t ≥ 0, (i = 1, 2),

and

m (u, t) =

∣∣∣∣Je−J(t−u) −
∫ t

u

e−J(t−s)D(s − u)ds

∣∣∣∣ , 0 ≤ u ≤ t.

Then, inequality (2.2) becomes

(
|x(0)| +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt

+

∫ t

0

∣∣∣∣Je−J(t−u) −
∫ t

u

e−J(t−s)D(s − u)ds

∣∣∣∣ du ≤ 1, t ≥ 0,

which, is (1.8), so Theorem 2.1 reduces to Theorem A.
Next, as G1 = 1 = G2, we see that (2.5) becomes (1.9), (2.2) becomes

(1.8), while D0 ∈ [G2,∞) becomes (1.10). It follows that Lemma 1 (i)
coincides with Lemma A (i). We note that, Lemma 1(iii) is not the
analog of Lemma A (ii). It is possible that the technique used in [5]
might also be of use to obtain results parallel to Lemma A (ii) in [5]
for the (more complicated) inequality (2.2).

Concerning the first inequality in Lemma 1(iii), one may see that

for t ≤ t0 we have
∫ t

0
eJvD (v) dv ≤ J , and this is identical to the case

discussed in (i), so we may conclude that for t ≤ t0 (1.10) is satisfied,
thus, (2.2) holds true (this case coincides with Lemma 1 (i)). Thus, in
the linear case, Lemma 1 (iii) reduces to
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Corollary 1. Let J > 0, D satisfy (1.2) and assume that (1.9)
holds true. If (1.11) is true, then (1.8) is equivalent to

(
|x(0)| +

∣∣∣
∫ t

0
eJsf(s)ds

∣∣∣
)

e−Jt +
∫ t−t0
0

[T (u, t) − R (u, t)] du

+
∫ t

t−t0
[R (u, t) − T (u, t)] du ≤ 1, t > t0,

where t0 ≡ k is the unique solution of (1.12).

II. Theorem 2.1 yields bounded solutions to (1.1) provided that
(1.8) holds. In order to have (1.8) satisfied, in particular, it must be
true that

(3.1) sup
t≥0

(
|x(0)| +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt ≤ 1.

For t = 0, we see that it is necessary that |x(0)| ≤ 1, which is natural
as we seek solutions bounded by one. In fact, the initial values x(0)
may be forced to be very close to 0 as their values are dictated by the
behavior of f so that the inequality (1.8) holds on the whole half axis.

Moreover, from (3.1) it follows that sup
t≥0

∣∣∣
∫ t

0
eJsf(s)ds

∣∣∣ e−Jt ≤ 1, also,

another necessary condition so that (1.8) holds. Clearly inequality (3.1)
shows that, the space for suitable |x(0)| and f so that (1.8) holds is
rather narrow. We would like to enlarge this space so that it includes

large initial values and functions f with sup
t≥0

∣∣∣
∫ t

0
eJsf(s)ds

∣∣∣ e−Jt > 1.

The following modification of Theorem 2.1 states that it is possible to
obtain existence of bounded solutions of (1.1) for any initial value x(0)

as well as for functions f with sup
t≥0

∣∣∣
∫ t

0
eJsf(s)ds

∣∣∣ e−Jt > 1, provided

that a weaker type of (1.8) holds.

Theorem 3.1. If there exist an α > 0 and a c > 0 such that for the
function

(3.2) φ (t) :=

(
α +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt, t ≥ 0,

we have

(3.3)

∫ t

0

m (u, t) du ≤ 1 − cφ (t) , t ≥ 0,

then, for any x (0) ∈ R, equation (1.1) has a bounded solution.

Proof. Let x (0) ∈ R be given and set δ := max
{

1, |x(0)|
α

}
. Choose a

µ > 0 so that δ
µ
≤ c and denote by Mµ the set of all bounded by µ

continuous functions, i.e.,

Mµ = {x : [0,∞) → < : ‖x‖ ≤ µ} .
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Let P be the natural mapping defined by (2.1) on the set Mµ. In view
of (3.3), for an arbitrary x ∈ Mµ we have for t ≥ 0

|(Px)(t)| ≤
(
|x(0)| +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt +

∫ t

0

m (u, t) |x(u)| du

=

(
|x(0)|

α
α +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt +

∫ t

0

m (u, t) |x(u)| du

≤ δ

(
α +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt + µ

∫ t

0

m (u, t) du

= δφ (t) + µ

∫ t

0

m (u, t) du

= µ

{
φ (t) δ

µ
+

∫ t

0

m (u, t) du

}

≤ µ

{
φ (t) δ

µ
+ 1 − cφ (t)

}

≤ µ

[
1 − φ (t)

(
c − δ

µ

)]

≤ µ,

from which we obtain ‖Px‖ ≤ µ. This implies that the natural map-
ping P defined by (2.1) on the set Mµ maps Mµ → Mµ.

The rest of the proof is the same as in Theorem 2.1. We conclude
that P has a fixed point x in Mµ. �

Remark 1. Taking α = |x(0)| in (3.2) and c = 1, we immediately see
that inequality (3.3) becomes (1.8), so Theorem 3.1 reduces to Theorem
2.1.

Remark 2. From the proof of Theorem 3.1, we see that the bound
µ for the solutions yielded satisfies δ

µ
≤ c, i.e., δ

c
≤ µ This means that

the smallest bound for the solutions is achieved by taking µ = δ
c
. For

a given |x(0)|, by

max

{
1

c
,
|x(0)|
cα

}
=

δ

c
,

it follows that the smallest value of µ is either |x(0)|
αc

or 1
c
, where ac ≤ 1

(by setting t = 0 in (3.3)). We may conclude that the solution yielded

by Theorem 3.1 is bounded either by 1
c

when |x(0)| ≤ α, or by |x(0)|
cα

when |x(0)| ≥ α. Note that, for c = 1 and α = |x(0)|, we take µ = 1,
as in Theorem 2.1.

III. As pointed out in [5], condition (2.5) forces us to choose that
f (0) = 0, which is not a necessity in (3.3). Hence, Lemma 1 does not
apply for f with f (0) 6= 0. Furthermore, we see that if G1 = 0, then
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(2.5) holds only if f ≡ 0. However, in such a case, i.e., in the case of
the nonlinear unforced equation

(3.4) x′ (t) = −
∫ t

0

D(t − s)g(x(s))ds, t ≥ 0,

with g satisfying

0 ≤ g (x)

x
≤ G2, x 6= 0,

condition (2.5) holds by itself, so both, Theorem 2.1 and Lemma 1
apply. By (2.4) we have T1 = 0, while m becomes

m0 (u, t) :=

max

{
Je−J(t−u),

∣∣∣∣Je−J(t−u) − G2

∫ t

u

e−J(t−s)D(s − u)ds

∣∣∣∣
}

, 0 ≤ u ≤ t.

From Theorem 2.1 and Theorem 3.1 we have the following results.

Corollary 2. If

(3.5) |x(0)| e−Jt +

∫ t

0

m0 (u, t) du ≤ 1, t ≥ 0,

then equation (3.4) has a bounded solution.

Corollary 3 If there exist a c0 > 0 such that
∫ t

0

m0 (u, t) du ≤ 1 − c0e
−Jt, t ≥ 0,

then, equation (3.4) has a bounded solution , for any x (0) ∈ R.

We note that as T1 = 0, the inequality (2.6) reduces to

(3.6) |x(0)| e−Jt +

∫ t

0

R (u, t) du ≤ 1 t ≥ 0.

As
∫ t

0
R (u, t) du =

∫ t

0
Je−Judu = 1 − e−Jt, t ≥ 0, we see that (3.6)

becomes

|x(0)| e−Jt + 1 − e−Jt ≤ 1 t ≥ 0,

hence (2.6) is satisfied for |x(0)| ≤ 1, which is always true since solu-
tions yielded by Theorem 2.1 are bounded by 1. Thus, from Lemma 1
(i) and (ii) we have the following result.

Corollary 4. Let J > 0, D satisfy (1.2). If D0 ∈ [G2

2
,∞) then (3.5)

is always true and Theorem 2.1 yields a bounded solution to equation
(3.4).
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IV. The most complicated form of the inequality (2.2) appears in
the case where D0 ∈ [0, G1+G2

2
), i.e., when (2.2) is (2.7) in Lemma 1

(iii). In view of the proof of Lemma 1 (iii), we see that
(3.7)

∫ t

0

m (u, t) du =





∫ t

0
[R (u, t) − T1 (u, t)] du ≤ 1, t ≤ t0,∫ t−t0

0
[T2 (u, t) − R (u, t)] du

+
∫ t

t−t0
[R (u, t) − T1 (u, t)] du ≤ 1, t > t0.

With this in hand, we will show that (3.3) is not unrealistic. For
convenience, we consider the simple case of D (t) = e−qt, t ≥ 0, with

q > J and assume that
∣∣∣
∫ t

0
eJsf(s)ds

∣∣∣ ≤ f ∗, t ≥ 0. Note that, if

f ∈ C1[0, +∞), then (1.1) takes the form

x′′ (t) + qx′ (t) = −g (x (t)) + h (t) , t > t0,

with h ∈ C[0, +∞), so our results also hold for the above o.d.e..
The following is a summary of the calculations. Observing that for

t ≥ 0 we have 1 − cφ (t) ≥ 1 − cf ∗e−Jt, it follows that, in order to
establish (3.3), it suffices to show that

(3.8)

∫ t

0

m (u, t) du ≤ 1 − c∗e−Jt, t ≥ 0,

for some c∗ > 0. For t ∈ [0, t0], in view of (3.7) we have
∫ t

0
m (u, t) du ≤∫ t

0
R (u, t) du = 1 − e−Jt, so (3.8) holds true with c∗ = 1. For t > t0

we have D0 = (q − J) J , so D0 ∈ [0, G1+G2

2
) implies that (q − J) J <

G1+G2

2
, while by (2.8),we obtain

(3.9) eJt0 =

(
1 − 2J |q − J |

G1 + G2

)
eqt0 .

Calculating the integral of m (u, t), then estimating, we find
∫ t

0

m (u, t) du ≤ 1−e−Jt0 +
G2e

−Jt0

|J − q|J
+

G1

|J − q| q
− G2

|J − q|J
e−Jt, t > t0.

We see that if q is taken so that

(3.10) −e−Jt0 +
1

|J − q|

(
G2e

−Jt0

J
+

G1

q

)
≤ 0,

then (3.7) is satisfied with c∗ = G2

|J−q|J . By (3.9), (3.10) becomes

(3.11)

(
1 − 2J |q − J |

G1 + G2

)
1

|J − q|

(
G2e

−Jt0

J
+

G1

q

)
< e−qt0 .

The left-hand-side of (3.11) is less than G1+G2

|J−q|J − 2, so, in order that

(3.11) hold true, it suffices to have

(3.12)
G1 + G2

|J − q|J < 2 + e−qt0 .
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Recalling that (q − J) J < G1+G2

2
and q > J , i.e., that

(3.13) J < q < J +
G1 + G2

2J
,

we observe that for values of q close to J + G1+G2

2J
, the left hand side

of (3.11) comes very close to 2 while, by (3.13), the right-hand-side is

always larger than e−(J+
G1+G2

2J )t0 . We conclude that there exist values
of q so that (3.12) is satisfied, and this proves that, for such values of
q, (3.8) holds true, hence so does (3.3).

It is worth noticing here that if q, G1, G2 are given, then J ∈ (0, q)
can always be chosen so that (3.13) is satisfied.

4. APPENDIX

For convenience, we state and prove Lemma 1 by considering four
cases corresponding to the four intervals mentioned in the paragraph
preceding Lemma 1 in Section 2. Cases (iii) and (iv), below, are both
included in case (iii) in the statement of Lemma 1 in Section 2.

Lemma 1. (i) If D0 ∈ [G2,∞), then (2.2) is always true.
Proof. Write D0 ∈ [G2,∞) as

∫ ∞
0

eJvD (v) dv ≤ J
G2

or
∫ ∞

0

eJvD2 (v) dv ≤ J ,

and note that for 0 ≤ u ≤ t < ∞ then
(4.1)

0 ≤ Je−J(t−u) −
∫ t

u

e−J(t−s)D2(s − u)ds ⇐⇒
∫ ∞

0

eJvD2 (v) dv ≤ J .

Indeed, for 0 ≤ u ≤ t, t ∈ [0,∞) we have

Je−J(t−u) −
∫ t

u

e−J(t−s)D2(s − u)ds

= e−J(t−u)

[
J −

∫ t

u

eJ(t−u)e−J(t−s)D2(s − u)ds

]

= e−J(t−u)

[
J −

∫ t

u

eJ(s−u)D2(s − u)ds

]

= e−J(t−u)

[
J −

∫ t−u

0

eJsD2(s)ds

]
,

which proves our assertion.
Thus, in view of our assumption on D0, from (4.1) we have that

0 ≤ Je−J(t−u) −
∫ t

u
e−J(t−s)D2(s − u)ds, 0 ≤ u ≤ t.

Consequently, in view of D1 (t) ≤ D2 (t), t ≥ 0 we have

0 ≤ Je−J(t−u)−
∫ t

u

e−J(t−s)D2(s−u)ds ≤ Je−J(t−u)−
∫ t

u

e−J(t−s)D1(s−u)ds
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and so,

m (u, t) = max

{∣∣∣∣Je−J(t−u) −
∫ t

u

e−J(t−s)D1(s − u)ds

∣∣∣∣ ,

∣∣∣∣Je−J(t−u) −
∫ t

u

e−J(t−s)D2(s − u)ds

∣∣∣∣
}

= max

{
Je−J(t−u) −

∫ t

u

e−J(t−s)D1(s − u)ds,

Je−J(t−u) −
∫ t

u

e−J(t−s)D2(s − u)ds

}

= Je−J(t−u) −
∫ t

u

e−J(t−s)D1(s − u)ds.

Then, (2.2) becomes
(
|x(0)| +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt

+

∫ t

0

[
Je−J(t−u) −

∫ t

u

e−J(t−s)D1(s − u)ds

]
du ≤ 1, t ≥ 0,

which is inequality (1.8) for D = D1. As G1 ≤ G2 we have
∫ ∞

0

eJvD (v) dv ≤ J

G2
≤ J

G1
;

∫ ∞

0

eJvG1D (v) dv ≤ J

and

(4.2)

∫ ∞

0

eJvD1 (v) dv ≤ J .

Now observe that (2.5) and (4.2) here, are (1.9) and (1.10) in Lemma
A, respectively, with D1 in place of D. Noting that the proof of Lemma
A is idependent of the equation (1.6) we may conclude that our result
follows from Lemma A (i) with D1 in place of D.

For the rest of the proof we fix an arbitrary t ≥ 0. By the definitions
of the functions R and Ti, (i = 1, 2) we have

(4.3)
R (0, t) = Je−Jt, R (t, t) = R(0) = J ,

Ti (0, t) = e−Jt
∫ t

0
eJsDi (s) ds, Ti (t, t) = 0, (i = 1, 2) ,

and note that as G1 ≤ G2, it holds

(4.4)
0 ≤ T1 (u, t) < T2 (u, t) , 0 ≤ u ≤ t, if G1 < G2,
0 ≤ T1 (u, t) = T2 (u, t) , 0 ≤ u ≤ t, if G1 = G2.

Clearly if G1 = G2 then T1 ≡ T2 which leads to the linear case, so for
the rest of the proof we assume that G1 < G2.
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Denote by CR, CTi
, the corresponding graphs of R and Ti, respectively

(i = 1, 2).
If CTi

and CR meet at some point ui ∈ (0, t) then

T (ui, t) − R (ui, t) = 0;

e−J(t−ui)

[∫ t−ui

0

eJsD (s) ds − J

]
= 0,

or

(4.5) J =

∫ t−ui

0

eJsDi (s) ds, i = 1, 2,

and we note that these meeting points (whenever they exist) have con-
stant distance ki from t, i.e., we have

ui = t − ki, i = 1, 2,

where ki is the unique positive number satisfying

J =

∫ ki

0

eJsDi (s) ds, i = 1, 2.

Due to the positivity of the integrand, this may happen if and only if
J <

∫ t

0
eJsDi (s) ds; i.e.,

CTi
and CR meet in (0, t) ⇔ J ≤ Gi

∫ t

0

eJsD (s) ds, i = 1, 2,

and in such case, the meeting points ui, (i = 1, 2) are unique.
Let hi (u) := Ti (u, t) − R (u, t), u ∈ [0, t], (i = 1, 2), i.e.,

(4.6) hi (u) = e−J(t−u)

[∫ t−u

0

eJsDi (s) ds − J

]
, u ∈ [0, t] , (i = 1, 2) ,

and note that

hi (0) = Ti (0, t) − R (0, t) = e−Jt
[∫ t

0
eJsDi (s) ds − J

]
,

hi (t) = Ti (t, t) − R (t, t) = 0 − J < 0, (i = 1, 2) .

We observe that the function m can be written as

(4.7) m (u, t) = max {|h1 (u)| , |h2 (u)|} , 0 ≤ u ≤ t.

Due to (4.4) we have that

(4.8)
h1 (u) < h2 (u) , u ∈ [0, t), if G1 < G2

h1 (u) = h2 (u) , u ∈ [0, t] , if G1 = G2.

In view of (4.6) and the positivity of the integrand we see that hi

may change sign at most once on [0, t], and this may happen if and

only if J <
∫ t

0
eJsDi (s) ds, hence

(4.9)

∫ t

0
eJsDi (s) ds ≤ J ⇔ hi (u) ≤ 0, u ∈ [0, t]

J <
∫ t

0
eJsDi (s) ds ⇔

{
0 ≤ hi (u) , u ∈ [0, ui]
hi (u) ≤ 0, u ∈ [ui, t]
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where ui satisfies 0 = hi (ui) (i = 1, 2), i.e., ui are the unique meeting
points of CR, CTi

(i = 1, 2) given by (4.5).

Aiming to have a closer look at (4.7), we observe that as G1 < G2

by (4.8) it holds h1 (u) 6= h2 (u) on [0, t). Therefore, if there exists
u0 ∈ (0, t) with |h1 (u0)| = |h2 (u0)| then we must have −h1 (u0) =
h2 (u0) > 0, from which we find

−h1 (u0) = h2 (u0)

−T1 (u0, t) + R (u0, t) = T2 (u0, t) − R (u0, t)

2R (u0, t) = T2 (u0, t) + T1 (u0, t)

2Je−J(t−u0) = (G1 + G2) e−Jt

∫ t−u0

0

eJ(s+u0)D (s) ds,

i.e.,

(4.10) J =
G1 + G2

2

∫ t−u0

0

eJsD (s) ds.

It follows that
(4.11)

∃u0 ∈ (0, t) : |h1 (u0)| = |h2 (u0)| ⇔ J <
G1 + G2

2

∫ t

0

eJsD (s) ds.

Due to the positivity of the integrand in (4.10) the point u0 is unique.
By the definitions of u1, u0, u2 by (4.5) and (4.10) it is not difficult to
see

(4.12) u1 ≤ u0 ≤ u2.

provided that u1, u0, u2 exist. Moreover, we may also see that if u1

exists in (0, t) then so do u0 and u2, while existence of u0 implies exis-

tence of u2. Consequently, by (4.11) we have that: if G1+G2

2

∫ t

0
eJsD (s) ds ≤

J then the functions |h1 (u)| and |h2 (u)| do not meet, so the continuous
function |h1 (u)| − |h2 (u)|, u ∈ (0, t) cannot change sign on u ∈ (0, t);
hence either |h1 (u)| < |h2 (u)|, u ∈ (0, t) or |h1 (u)| > |h2 (u)|, u ∈
(0, t), in other words,

(4.13)

G1+G2

2

∫ t

0
eJsD (s) ds ≤ J ⇐⇒{

either m (u, t) = |h1 (u)| , u ∈ (0, t) ,
or m (u, t) = |h2 (u)| , u ∈ (0, t) .

We note that if h2 (u) ≤ 0, u ∈ [0, t] then (4.8) implies |h2 (u)| ≤
|h1 (u)|, u ∈ [0, t], and so

h2 (u) ≤ 0, u ∈ [0, t] =⇒ m (u, t) = |h1 (u)| .
Now let us assume that t > 0 is such that there exists u0 ∈ (0, t) with
|h1 (u0)| = |h2 (u0)|. Since this implies the existence of u2, in view of
(4.9) it follows that for u ∈ [u2, t] we have h1 (u) ≤ h2 (u) ≤ 0, so
the relations |h2 (u)| ≤ |h1 (u)|, u ∈ [u2, t] hold. As this inequality
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does not change on [u0, t] we have that |h2 (u)| ≤ |h1 (u)| , u ∈ [u0, t].
By uniqueness of u0 we conclude that for u ∈ [0, u0] we must have
|h1 (u)| ≤ |h2 (u)| = h2 (u). Thus, in order that there exists a u0 ∈ (0, t)
with |h1 (u0)| = |h2 (u0)|, it is necessary, in particular, that 0 < h2 (0),
i.e.,

∃u0 ∈ (0, t) : |h1 (u0)| = |h2 (u0)| =⇒ 0 < h2 (0) .

From the above discussion we have the following result:

∃u0 ∈ (0, t) : |h1 (u0)| = |h2 (u0)| =⇒ m (u, t) =

{
|h2 (u)| , u ∈ [0, u0]
|h1 (u)| , u ∈ [u0, t]

,

or, more precisely,

∃u0 ∈ (0, t) : |h1 (u0)| = |h2 (u0)|(4.14)

=⇒ m (u, t) =

{
h2 (u) , u ∈ [0, u0]
−h1 (u) , u ∈ [u0, t]

.

Lemma 1 (ii) If D0 ∈
[

G1+G2

2
, G2

)
, then (2.2) is,

(
|x(0)| +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt

+

∫ t

0

[
Je−J(t−u) − G1

∫ t

u

e−J(t−s)D (s − u) ds

]
du ≤ 1.

Proof. It is not difficult to see that all we have to prove is that

m (u, t) = R (u, t) − T1 (u, t) , 0 ≤ u ≤ t < ∞.

Write D0 ∈
[

G1+G2

2
, G2

)
as

G1 + G2

2

∫ ∞

0

eJvD (v) dv ≤ J < G2

∫ ∞

0

eJvD (v) dv.

First we note that, by (4.13), from the inequality on the left we

have G1+G2

2

∫ t

0
eJsD (s) ds ≤ J for all t ≥ 0; thus, either m (u, t) =

|h1 (u)| , u ∈ [0, t] or m (u, t) = |h2 (u)| , u ∈ [0, t], independently of t.
We claim that

(4.15) m (u, t) = |h1 (u)| , u ∈ [0, t] for any t ≥ 0.

In view of the inequality on the right we have that there exists a t0 >
0 such that G2

∫ t

0
eJvD (v) dv ≤ J , t ∈ [0, t0] and J < G2

∫ t

0
eJvD (v) dv,

t ∈ (t0,∞). We consider two cases.

(I) For t ∈ [0, t0], as
∫ t

0
eJvD2 (v) dv ≤ J , by (4.9) we have that

h2 (u) ≤ 0, u ∈ [0, t], hence by (4.8) we take

h1 (u) ≤ h2 (u) ≤ 0, u ∈ [0, t]

which gives

(4.16) m (u, t) = |h1 (u)| , u ∈ [0, t] for t ∈ [0, t0] .



VOLTERRA’S EQUATION AND AIZERMAN’S METHOD 19

(II) Let t ∈ (t0,∞). From G1+G2

2

∫ t

0
eJsD (s) ds < J we take G1

∫ t

0
eJsD (s) ds <

J so in view of (4.9) we have that

h1 (u) ≤ 0, u ∈ [0, t]

from which we have

(4.17) |h1 (u)| = −h1 (u) , u ∈ [0, t] .

As t ∈ (t0,∞), in view of by (4.9) from J < G2

∫ t

0
eJvD (v) dv,

t ∈ (t0,∞) we have that h2 (0) ≥ 0 so

0 < |h2 (0)| = h (0) = T2 (0, t) − R (0, t) .

But then, engaging (4.3) and (4.17) we find

|h2 (0)| − |h1 (0)| = T2 (0, t) − R (0, t) − [R (0, t) − T1 (0, t)]

= T2 (0, t) + T1 (0, t) − 2R (0, t)

= e−Jt

[∫ t

0

eJsD (s) ds (G1 + G2) − 2J

]
≤ 0,

i.e., |h2 (0)| ≤ |h1 (0)|, so by (4.13) it follows that

(4.18) m (u, t) = |h1 (u)| , u ∈ [0, t] for t ≥ t0.

From (4.16) and (4.18) we conclude that (4.15) holds true. Thus, in
view of (4.17) it follows that for u ∈ [0, t], t ≥ 0 we have

m (u, t) = |h1 (u)| = −h1 (u) = R (u, t) − T1 (u, t)

so (2.2) becomes
(
|x(0)| +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt +

∫ t

0

[R (u, t) − T1 (u, t)] du ≤ 1,

as asserted.

Lemma 1 (iii) If D0 ∈
[
G1,

G1+G2

2

)
then (2.2) is

(
|x(0)| +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt+

∫ t

0

[R (u, t) − T1 (u, t)] du ≤ 1, t ≤ t0,

(
|x(0)| +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt +

∫ t−t0

0

[T2 (u, t) − R (u, t)] du

+

∫ t

t−t0

[R (u, t) − T1 (u, t)] du ≤ 1 t > t0.

Proof. First let us write the condition D0 ∈
[
G1,

G1+G2

2

)
as

G1

∫ ∞

0

eJvD (v) dv ≤ J <
G1 + G2

2

∫ ∞

0

eJvD (v) dv.

From the inequality on the left it follows that
∫ t

0

eJvD1 (v) dv < J for all t ≥ 0,
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so from (4.9) we have that h1 (u) ≤ 0, u ∈ [0, t] for all t ≥ 0, and so

|h1 (u)| = −h1 (u) , u ∈ [0, t] , t ≥ 0.

From the inequality on the right,one can see that there exist a t0 > 0
satisfying (2.8). Note that, by the definitions of u0 and t0 (in (2.8) and
(4.10), respectively), it holds

t − u0 = t0.

It follows that

G1 + G2

2

∫ t

0

eJvD (v) dv ≤ J, t ∈ [0, t0] ,

and

J <
G1 + G2

2

∫ t

0

eJvD (v) dv, t > t0.

We consider two cases.
(I) For t ∈ [0, t0] we have that G1+G2

2

∫ t

0
eJvD (v) dv ≤ J so from

(4.13) we see that either |h1 (u)| < |h2 (u)|, u ∈ (0, t), or |h1 (u)| >
|h2 (u)|, u ∈ (0, t), so it suffices to check the difference |h1 (0)|−|h2 (0)|.

If h2 (0) < 0 then as h1 (u) ≤ h2 (u) we have h1 (0) ≤ h2 (0) which
implies that |h2 (0)| ≤ |h1 (0)|. If h (0) ≥ 0, then taking (4.3) into

consideration from G1+G2

2

∫ t

0
eJvD (v) dv ≤ J we have

T2 (0, t) + T1 (0, t) ≤ 2R (0, t)

T2 (0, t) − R (0, t) ≤ R (0, t) − T1 (0, t)

i.e.,

0 ≤ h2 (0) ≤ |h1 (0)| = −h1 (0)

which again leads to |h2 (0)| ≤ |h1 (0)|. We onclude that

(4.19) m (u, t) = |h1 (u)| = −h1 (u) , u ∈ [0, t] , t ∈ [0, t0] .

(II) If t > t0, then J < G1+G2

2

∫ t

0
eJvD (v) dv. By (4.11) and the dis-

cussion after (4.12) there exists a u0 ∈ [0, u2] with |h1 (u0)| = |h2 (u0)|.
From (4.14) it follows that

(4.20) m (u, t) =

{
h2 (u) , u ∈ [0, t − t0]
−h1 (u) , u ∈ [t − t0, t]

, t > t0.

From (4.19) and (4.20) we have that

m (u, t) =





−h1 (u) , 0 ≤ u ≤ t ≤ t0
h2 (u) , 0 ≤ u ≤ t − t0, t > t0
−h1 (u) , t − t0 ≤ u ≤ t, t > t0.

and

m (u, t) =





R (u, t) − T1 (u, t) , 0 ≤ u ≤ t ≤ t0
T2 (u, t) − R (u, t) ,
R (u, t) − T1 (u, t) ,

0 ≤ u ≤ t − t0
t − t0 ≤ u ≤ t

, t > t0
,
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With this in hand we see that (2.2) becomes
(
|x(0)| +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt+

∫ t

0

[R (u, t) − T1 (u, t)] du ≤ 1, t ≤ t0,

(
|x(0)| +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt +

∫ t−t0

0

[T2 (u, t) − R (u, t)] du

+

∫ t

t−t0

[R (u, t) − T1 (u, t)] du ≤ 1 t > t0,

as asserted.

Lemma 1 (iv) If D0 ∈ [0, G1) then (2.2) becomes
(
|x(0)| +

∣∣∣∣
∫ t

0

eJsf(s)ds

∣∣∣∣
)

e−Jt+

∫ t−t0

0

[T2 (u, t) − R (u, t)] du +

∫ t

t−t0

[R (u, t) − T1 (u, t)] du ≤ 1.

with Ti, (i = 1, 2) and t0 defined in (2.4) and (2.8), respectively.
Proof. Condition D0 ∈ [0, G1) gives

0 < J < G1

∫ ∞

0

eJvD (v) dv,

so existence of t1 with J = G1

∫ t1
0

eJvD (v) dv is established.

(I) For t ∈ [0, t1] we have G1

∫ t

0
eJvD (v) dv ≤ J from which, in view

of D0 < G1 and G1 < G2 we have

G1

∫ t

0

eJvD (v) dv ≤ J <
G1 + G2

2

∫ ∞

0

eJvD (v) dv, t ∈ [0, t1] .

Arguing exactly as in the preceding case (iii), we may conclude that

(4.21) m (u, t) =





−h1 (u) , 0 ≤ u ≤ t ≤ t0
h2 (u) , 0 ≤ u ≤ t − t0
−h1 (u) , t − t0 ≤ u ≤ t

, t ∈ [0, t1] .

(II) If t > u1 then by the discussion following (4.12) we have that
existence of u1 ∈ (0, t) implies existence of u0, u2 with (4.12), thus
from (4.14) we have that

(4.22) m (u, t) =

{
h2 (u) , u ∈ [0, t − t0]
−h1 (u) , u ∈ [t − t0, t]

, t > u1.

From (4.21) and (4.22) we see that in both relations, m has the same
expression for t > t0, so we may conclude that

m (u, t) =





−h1 (u) , 0 ≤ u ≤ t ≤ t0
h2 (u) ,
−h1 (u) ,

0 ≤ u ≤ t − t0
t − t0 ≤ u ≤ t

, t > t0
,
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so the expression for (2.2) is the same as in the previous case.
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