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ABSTRACT. In this paper we use a fixed point theorem of Krasnoselskii to prove that
the zero solution of a nonlinear ordinary differential equation is asymptotically stable. The

result is applied to an equation
2 + f(x)2' + g(x) = Kh(t,z,2').

Although the discussion concerns ordinary differential equations, it can be applied equally

well to functional differential equations.
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1. Introduction
This note represents a part of a continuing investigation of the use of fixed point
theory in stability. One motivation for our work here comes from Perron’s theorem [7]

which states that if
(1) t' =Dz +G(t,x)

with D a matrix, all of whose characteristic roots have negative real parts, and
lim, o |G(t,z)|/|z| = 0 uniformly for 0 < t < oo, then z = 0 is uniformly asymptoti-
cally stable. Coddington and Levinson [4; p. 314 and 327] as well as Lakshmikantham and

Leela [6; p. 115] use other methods to show that solutions with small initial conditions
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tend to zero provided that G(t,z) tends to zero in a uniform way for small . Those
methods depend strongly on the unperturbed linear system 3’ = Dy and they can be well

motivated by solving the Bernoulli equation
(2) o+ 22 = e te?/?

and readily concluding that solutions tend to zero.

And many nice results along the same lines given by Bellman [1] for
(3) ' = Dz + E(t)x

where D has all characteristic roots with negative real parts, while E is small either in
norm or in integral.
In this note we conjecture that there is a general theorem concerning asymptotic

stability of the zero solution of
(4) o’ = f(t,z) + G(t,2)

when f satisfies a Lipschitz condition with y' = f(¢,y) uniformly asymptotically stable
and, for example, when |G(¢,x)| < q(t)|x|* where 0 < @ < 1 and ¢ is small in some sense.
Moreover, it seems that the following modification of Krasnoselskii’s fixed point theorem
may be a proper vehicle for the proof. It can be found in Burton (1998).

THEOREM. Let M be a closed, convex, and nonempty subset of a Banach space
(S,]| - ||)- Suppose that A: M — S and B : S — S such that :

(i) B is a contraction with constant o < 1,

(ii) A is continuous, AM resides in a compact subset of .S,

(iii) [t = Bx + Ay,y € M| = z € M.

Then there is a y € M with Ay + By = y.

This result differs from the one of Krasnoselskii in that the former requires that
Bx 4+ Ay always resides in M. We will see that this is a crucial change in the present
application.

2. The main result



We begin the construction with a simple equation to guide us in the construction of
our theorem and then return to a similar problem as an example. Consider the scalar

equation

(5) ¥ =—2x+ G(t, )

where (G is continuous,

(6) G(t,z)| < Ke '|2/7],

and K is a positive constant. Let

(7) M ={¢:[0,00) = Ry € C, (1) < e™'},

where C' denotes the set of continuous functions, and let (S, || - ||) be the Banach space of
bounded continuous function on [0, 00) — R with the supremum norm.

LEMMA 1. If |zo| 4+ (5/2)K < 1 and if x(t) = x(t,0, x9) is the solution of
(8) o' =2z + Gt Y1), ¥ € M,

then r € M.
Proof. We have

t
2(8)] < |zole2 + / —2(=8) e o—s o= (3/5)5 g
0

t

< |$0|6_2t +K6_2t/ 6(2/5)5d8
0

< |zgle™t + (5/2)Ke ™t < et

Hence, x € M.
LEMMA 2. If for ¢ € M we define

(9) (A9) (1) = / G5, (s))ds, t > 0,

then AM resides in a compact subset of S.



Proof. It is clear that the integrals exist and we readily verify that AM is an equicon-
tinuous set. Moreover, AM is bounded. If we have a sequence {Aw,}, then by Ascoli’s
theorem and a diagonalization process there is a subsequence, say { A, } again, converg-
ing uniformly on compact subsets of [0,00). We will now show that {A,} is a Cauchy
sequence on [0, 00).

Given € > 0, fix T' > 0 so that f;o 2Ke *ds < €/2. Then find N such that n,m > N
implies that

sup | / (G5, (5) — G, Y (3)))ds] < /2.

0<p<T

Thus, if n,m > N then

sup | / (G (5, (5)) — G5, 1pm (5))]ds]

0<t<oco

p o0
< sup | [ 1G(s0a(5) = Glsstm (DI + [ 165,00 (9)| + 1G5t (5)) s
0<p<T JoO T
< €.
As AM is contained in S and S is complete, AM is contained in a compact subset of S.

The following result is known, but we supply the details for reference.

LEMMA 3. Let b : R — RY be continuous and suppose there is an L > 0 so that
|b(t,z) — b(t,y)| < Lz — y|. With the norm

6l = sup {le7*"*¢(s)|}

0<s<0

on the Banach space U of bounded countinuous functions ¢ : [0,00) — R? then the

operator H defined by

(Ha)(t) = 20 + /0 b(s, z(s))ds, t > 0,

is a contraction with contraction constant 1/2.
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Proof. We have

Hay — Haslp = sup |25 / (b(u, 21 (u)) — bty 22 (u))dul
0

0<s<©

< sup / 25 Ly (u) — a(u)|du
0<s<00 JO

S
= sup /6_2L5L|931(u)—asg(u)|e_2L“62L“du
0<s<00 JO

S
<|z1 — x2|r sup /e_QLSLeQL“du
0<s<0 JO

<(1/2)|z1 — z2|1

a contraction.
In the proof of Lemma 2, the norm |- |;, works as well as the supremum norm.
With this example in mind we now consider a general theorem. Let a,b : [0,00)x R? —

R? be continuous and consider

(10) 2 =b(t,z) + a(t,z),z(0) = 2
where
(11) b(t, ) — b(t,y)| < L|z —y| on [0,00) x R%.

Thus, (10) has a solution.

Let (U, ]| -||) denote a Banach space of bounded continuous functions ¢ : [0,00) — R?
and M denote a closed convex nonempty subset of U. Let the operator A : M — U defined
by ¢ € M implies that

t

(120) (40)0) = [ als,v(s))ds.t 20,
0

be continuous and define the operator B by

(12b) (Bo)(t) = o + / b(s, 6(s))ds, t > 0.

for each ¢ € U.



THEOREM 1. Let B be a contraction with constant o < 1 on the space (U, || - ||) and
suppose that AM resides in a compact subset of that space. Suppose also that for each

1) € M the unique solution ¢ of

(13) ¢'(t) = b(t, ¢(t)) + a(t,p(t)), 6(0) = xo

is in M. Then a solution of (10) is in M.
PROOF. Notice first that if ¢ € M is a fixed point of P, where P is defined by

(14) (P&)(t) = 0 + / (s, b(s))ds + / a(s, 6(s))ds,t >0,

then ¢ is a solution of (10).
Now, for fixed ¢» € M and all ¢ € U, define Q by

(15) (Q)(t) = a0 + / b(s, b(s))ds + / a(s,10(s))ds, t > 0.

If Q¢ = ¢ for some ¢ € U, then ¢ is the unique solution of

(16) ¢ =b(t, d) +alt,y(t)), #(0) = o.

By assumption, that unique solution of (16) is in M. By the above stated revision of
Krasnoselskii’s theorem, P itself has a fixed point ¢ in M.

COROLLARY. If, in addition to the assumptions of Theorem 1, all functions in M
tend to 0 as t — oo, then a solution of (10) tends to zero as t — oo.

The following example is parallel in content, but different in technique, to the results
in [4; pp. 314, 327] and [6; p. 115]. In the next section we give a nonlinear example.

EXAMPLE. Let D be a d x d constant matrix, all of whose characteristic roots have

negative real parts; thus, there exist a > 0 and k > 0 with
(17) Pt < ket > 0.

Next, let G : [0,00) x R — R be continuous and suppose there is a constant v > 0, a

continuous function ¢ : [0,00) — [0, 00) with ¢(t) — 0 as t — oo and ¢ € L'[0,0) so that
(18) G(t,z)| < Kq(t)|=]".
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We will show that the conditions of Theorem 1 are satisfied for
2 = Dz + G(t, )

when K is sufficiently small.

To this end, if we let

t
(19) r(t) ::/ e~ =) q(s)ds
0
then r(t) — 0 as t — oo and r € L'[0,00) since r is the convolution of appropriate
functions.
Define
(20) h(t) = max[r(t),e”*]

and note that h(t) < |r(t)| +e~* € L]0, 00); moreover h(t) — 0 as t — co. By redefining

q and K we may assume without loss of generality that
(21) h(t) < 1,t> 0.
Define
(22) M ={¢ :[0,00) = R"[¢ € C,[9(t)] < h(t)}.

Thus, M is closed and convex.

For arbitrary ¢ € M, consider

(23) 2 = D + G(t, (1)), 2(0) = xo.

Then

(24) 2()] < Jolke ™ + / kK e U=9)g(s)|(s)]" ds
0

< |xolkh(t) + kKr(t)
< [Jzolls + FKJR(t) < h(t

7



provided that
[|$0| +K]k‘ <1.

Hence, z(t) € M.
Exactly as in the proof of Lemma 2, if A is defined by (9) then any sequence {A,, }
with v, € M is equicontinuous and so we obtain a subsequence converging uniformly on

compact sets. The norm |- |7, works just like the supremum norm in the convergence proof.
3. A perturbed Liénard equation
Consider the scalar equation
(25) " + f(z)2' + g(z) = Kh(t,z,2")

which we write as the system

' =y
(26) Y =— f(x)y — g(z) + Kh(t, z,y)
or in vector form as
(27) X' =b(X) +a(t, X)

where

a(t,X) = (0, Kh(t, =, y))T.

We assume that for any o > 0 and for any J > 0, if ¢ : [0,00) — R? and |[¢(t)| < Je™
then

(28) a(t,¥(t)) € L'[0,00),
that VJ > 0 Va > 0 3D > 0 such that [ (t)| < Je™* implies that

e 1 " s, (s))ds — / " (s, (s))ds| = | [ ats.vts)as) < it — 1o,

t1
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and that there are positive L1, Lo, L3, Ly so that if X; € R? then
(30)  [b(X1) —b(X2)| < L1|X1 — Xof|, Ly > f(x) > L, and g(x) /OI f(s)ds > Lza®.
Now, for .J, a to be determined, let
M = {¢:[0,00) = R € C, [(t)] < Je™*'}
and for each 1y € M consider the system

=y

(31) Yy =— flx)y —g(zx) +e(t)

where e(t) = Kh(t,(t)).
LEMMA. If (27)-(30) hold and if we define

(32) Vi) = (/2 +2 [ a(o)ds+ /20 + [ flepasy?
then there is an 77 > 0 so that the derivative of V' along a solution of (31) satisfies
(33) V/(@(t),y(1) < —nV(@,y) +2/V(z,y)|e(t)]
and there is a k1 > 0 with
(34) ki(a® +y°) < V(z,y).
Proof. We have

V'(z,y) =29(x)y — f(2)y® —yg(x) +ye(t) + (y + /Ox f(s)ds)(f(x)y — f(x)y —g(x) +e(t))

— f@)y + yelt) — g(x) / F(s)ds + (y + / F(s)ds)e(t)
< fa)? — gla) / F()ds + lulle(®)] + Iy + / £(s)ds]le(t)|
< —Loy? — Lsa® + [V2(yl/VD) + V2(Jy + / " f()ds) V) lelt)]

9



< —Lay® — Laz® + 2|e(t)V/V ().
But if we use (30), in particular g is Lipschitz, then we have
Vi) < (0/25° + (L) +372+ ([ fepds)?
< (3/2)? + (Lo)a® + 124
and so there is an n > 0 with
V'(@,y) < —nV(z,y) + 2le(t)|v/V(2,y).

To find k1, we have

Laa® < g(a) [ 1(5)ds < lg(o)|Lala
or
9(@)] > Lalal/La
and so
/Ox g(s)ds > Lsxz?/(2Ly).

From these we can find k.

THEOREM 2. Suppose there are o, 3, .J, and S with 0 < o < § < 1/2 so that

(35) ()| < Je=* = |h(t, (1) < Se” 7t >0
and

J((n/2) — \/7 > SK.
If

M = {3 :[0,00) — R*[pp € C, [i(1)] < Je™*'}
and if |(xo,yo)| is small, then the solution of (31) through (z¢,yo) for any ty > 0 is in M.
Proof. Select ¢» € M and (xg, yo0,t0) so that (z(t),y(t)) is fixed, and hence, V (t) :=
V(z(t),y(t)) is determined in (32). In
V'(t) < —nV(t) + 2]e(t)|]\/V
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we first obtain

V() < V(0)e " +2 / == ¢ (s)|\/V ()ds

0

or
t
MV (t) < V(0) + 2 / (/23] (5[ eV (3 ds
0
which we write as
t
u(t) < u(0) + 2/ 6(1/2)7’5|e(3)|\/u(3)d3.
0

By Bihari’s inequality ([2] and [5; p. 29]) we have u(t) < w(t) where w(t) is the maximal

solution of )
w(t) = u(0) + 2/ e3¢ () [y /w(s)ds.
0

Thus, letting v(t) = y/w(t)e~" we obtain 2v'(t) + nu(t) = 2le(t)| or v' + (n/2)v = le(t)|.
We then have

t
u(t) = voe~ (/2 +/ e_("/Q)(t_5)|e(s)|ds
0

t
< er—(n/2)t + / SKe—(n/Q)(t—s)—ﬁst
0
— woe~ (112t L SR = (1121 (/2) — g~ Lel1/2)=ls)t
< (vo + [(n/2) — BT SK]e"".

Hence,

Vhi(@2(t) +12(t) < VV ()

(36) < |VV(wo,90) +[(n/2) = BT SK | e 7.
Thus, (z(t),y(t)) is in M provided that
(37) Jo = /V{zo, go) k1 + [((7/2) — B)V/ka] " SK < J.

as required.
REMARK. Notice that (35) is an interesting relation. For example, let h(t,z,y) =
Kp(t)z™. Thus, if [1(t)| < Je~*!, then
|h(t,(t)| < K Jp(t)e™*™ < Se
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provided that
p(t) < (S/KJ)e (=t .

(i) If n =1, p(t) must be bounded.

(ii) If n > 1, then p(t) can be exponentially unbounded.

(iii) If n < 1, then p(¢) must tend to 0 exponentially.

Now for a local result we look at (36) and (37). Let D be the set of (zg,yo) for which
(37) holds. For any such (xg,y0) and any to > 0, the solution (x(t),y(t)) remains in a set

Q(Jo) = {(z,y)l2* +y* < J5}.

THEOREM 3. If (30) holds in Q(Jy) and if (z, yo) satisfies (37) then the solution of
(31) through (xg,yo) for tg > 0 is in M and the corresponding solution of (26) is in M.
Proof. Notice that Q(Jy) is convex. Write (31) as

(31) ¥ =F(X)+ E(t)
with E(t) = (0, Kh(t,(t)))T and define a new system
(31%) X' '=G(X)+ E(t)

by G(X) = F(X) for X € Q(Jy) and if X is in the complement of Q(Jy) then the line
from (0,0) to X intersects the boundary of (Jy) at a unique point X*. In the latter case,
define G(X) = F(X™). Then G is continuous and globally Lipschitz. Any solution of (31*)
with initial values in £(Jy) lies in M. Krasnoselskii’s theorem will now say that (27) has
a solution in M.
References

[1] Bellman, R. (1953) Stability Theory of Differential Equations, McGraw-Hill, New
York.

[2] Bihari, I. (1956) A generalization of a lemma of Bellman and its application to
uniqueness problems of differential equations, Acta. Math. Sci. Hungar. 7, pp. 71-94.

[3] Burton, T. (1998) A fixed-point theorem of Krasnoselskii, Appl. Math. Lett. 11,
85-88.

12



[4] Coddington, E. A. and Levinson, N. (1955) Theory of Ordinary Differential Equa-
tions, McGraw-Hill, New York.

[5] Hartman, P. (1964) Ordinary Differential Equations, Wiley, New York.

[6] Lakshmikantham, V. and Leela, S. (1969) Differential and Integral Inequalities,
Vol. I, Academic Press, New York.

[7] Perron, O. (1929) Uber Stabilitat und asymptotisches verhalten der Integrale von
Differentialgleichungssystemen, Math. Zeit. 29, 129-160.

13



