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ABSTRACT. In this paper we use a fixed point theorem of Krasnoselskii to prove that

the zero solution of a nonlinear ordinary differential equation is asymptotically stable. The

result is applied to an equation

x′′ + f(x)x′ + g(x) = Kh(t, x, x′).

Although the discussion concerns ordinary differential equations, it can be applied equally

well to functional differential equations.
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1. Introduction

This note represents a part of a continuing investigation of the use of fixed point

theory in stability. One motivation for our work here comes from Perron’s theorem [7]

which states that if

(1) x′ = Dx+G(t, x)

with D a matrix, all of whose characteristic roots have negative real parts, and

limx→0 |G(t, x)|/|x| = 0 uniformly for 0 ≤ t < ∞, then x = 0 is uniformly asymptoti-

cally stable. Coddington and Levinson [4; p. 314 and 327] as well as Lakshmikantham and

Leela [6; p. 115] use other methods to show that solutions with small initial conditions
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tend to zero provided that G(t, x) tends to zero in a uniform way for small x. Those

methods depend strongly on the unperturbed linear system y′ = Dy and they can be well

motivated by solving the Bernoulli equation

(2) x′ + 2x = e−tx3/5

and readily concluding that solutions tend to zero.

And many nice results along the same lines given by Bellman [1] for

(3) x′ = Dx+ E(t)x

where D has all characteristic roots with negative real parts, while E is small either in

norm or in integral.

In this note we conjecture that there is a general theorem concerning asymptotic

stability of the zero solution of

(4) x′ = f(t, x) +G(t, x)

when f satisfies a Lipschitz condition with y′ = f(t, y) uniformly asymptotically stable

and, for example, when |G(t, x)| ≤ q(t)|x|α where 0 < α < 1 and q is small in some sense.

Moreover, it seems that the following modification of Krasnoselskii’s fixed point theorem

may be a proper vehicle for the proof. It can be found in Burton (1998).

THEOREM. Let M be a closed, convex, and nonempty subset of a Banach space

(S, ‖ · ‖). Suppose that A : M → S and B : S → S such that :

(i) B is a contraction with constant α < 1,

(ii) A is continuous, AM resides in a compact subset of S,

(iii) [x = Bx+ Ay, y ∈M ] =⇒ x ∈M .

Then there is a y ∈M with Ay +By = y.

This result differs from the one of Krasnoselskii in that the former requires that

Bx + Ay always resides in M . We will see that this is a crucial change in the present

application.

2. The main result
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We begin the construction with a simple equation to guide us in the construction of

our theorem and then return to a similar problem as an example. Consider the scalar

equation

(5) x′ = −2x+G(t, x)

where G is continuous,

(6) |G(t, x)| ≤ Ke−t|x3/5|,

and K is a positive constant. Let

(7) M = {ψ : [0,∞) → R|ψ ∈ C, |ψ(t)| ≤ e−t},

where C denotes the set of continuous functions, and let (S, ‖ · ‖) be the Banach space of

bounded continuous function on [0,∞) → R with the supremum norm.

LEMMA 1. If |x0| + (5/2)K < 1 and if x(t) = x(t, 0, x0) is the solution of

(8) x′ = −2x+G(t, ψ(t)), ψ ∈M,

then x ∈M .

Proof. We have

|x(t)| ≤ |x0|e−2t +

∫ t

0

e−2(t−s)Ke−se−(3/5)sds

≤ |x0|e−2t +Ke−2t

∫ t

0

e(2/5)sds

≤ |x0|e−2t + (5/2)Ke−t < e−t.

Hence, x ∈M .

LEMMA 2. If for ψ ∈M we define

(9) (Aψ)(t) =

∫ t

0

G(s, ψ(s))ds, t ≥ 0,

then AM resides in a compact subset of S.
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Proof. It is clear that the integrals exist and we readily verify that AM is an equicon-

tinuous set. Moreover, AM is bounded. If we have a sequence {Aψn}, then by Ascoli’s

theorem and a diagonalization process there is a subsequence, say {Aψn} again, converg-

ing uniformly on compact subsets of [0,∞). We will now show that {Aψn} is a Cauchy

sequence on [0,∞).

Given ε > 0, fix T > 0 so that
∫ ∞

T
2Ke−sds < ε/2. Then find N such that n,m > N

implies that

sup
0≤p≤T

|
∫ p

0

[G(s, ψn(s) −G(s, ψm(s))]ds| < ε/2.

Thus, if n,m > N then

sup
0≤t<∞

|
∫ t

0

[G(s, ψn(s)) −G(s, ψm(s))]ds|

≤ sup
0≤p≤T

|
∫ p

0

[G(s, ψn(s)) −G(s, ψm(s))]ds| +

∫ ∞

T

[|G(s, ψn(s))| + |G(s, ψm(s))|]ds

< ε.

As AM is contained in S and S is complete, AM is contained in a compact subset of S.

The following result is known, but we supply the details for reference.

LEMMA 3. Let b : Rd+1 → Rd be continuous and suppose there is an L > 0 so that

|b(t, x) − b(t, y)| ≤ L|x− y|. With the norm

|φ|L = sup
0≤s<∞

{|e−2Lsφ(s)|}

on the Banach space U of bounded countinuous functions φ : [0,∞) → Rd then the

operator H defined by

(Hx)(t) = x0 +

∫ t

0

b(s, x(s))ds, t ≥ 0,

is a contraction with contraction constant 1/2.
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Proof. We have

|Hx1 −Hx2|L = sup
0≤s<∞

|e−2Ls

∫ s

0

(b(u, x1(u)) − b(u, x2(u))du|

≤ sup
0≤s<∞

∫ s

0

e−2LsL|x1(u) − x2(u)|du

= sup
0≤s<∞

∫ s

0

e−2LsL|x1(u) − x2(u)|e−2Lue2Ludu

≤|x1 − x2|L sup
0≤s<∞

∫ s

0

e−2LsLe2Ludu

≤(1/2)|x1 − x2|L

a contraction.

In the proof of Lemma 2, the norm | · |L works as well as the supremum norm.

With this example in mind we now consider a general theorem. Let a, b : [0,∞)×Rd →
Rd be continuous and consider

(10) x′ = b(t, x) + a(t, x), x(0) = x0

where

(11) |b(t, x) − b(t, y)| ≤ L|x− y| on [0,∞) ×Rd.

Thus, (10) has a solution.

Let (U, ‖ · ‖) denote a Banach space of bounded continuous functions φ : [0,∞) → Rd

and M denote a closed convex nonempty subset of U . Let the operator A : M → U defined

by ψ ∈M implies that

(12a) (Aψ)(t) =

∫ t

0

a(s, ψ(s))ds, t ≥ 0,

be continuous and define the operator B by

(12b) (Bφ)(t) = x0 +

∫ t

0

b(s, φ(s))ds, t ≥ 0,

for each φ ∈ U .
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THEOREM 1. Let B be a contraction with constant α < 1 on the space (U, ‖ · ‖) and

suppose that AM resides in a compact subset of that space. Suppose also that for each

ψ ∈M the unique solution φ of

(13) φ′(t) = b(t, φ(t)) + a(t, ψ(t)), φ(0) = x0

is in M . Then a solution of (10) is in M .

PROOF. Notice first that if φ ∈M is a fixed point of P , where P is defined by

(14) (Pφ)(t) = x0 +

∫ t

0

b(s, φ(s))ds +

∫ t

0

a(s, φ(s))ds, t ≥ 0,

then φ is a solution of (10).

Now, for fixed ψ ∈M and all φ ∈ U , define Q by

(15) (Qφ)(t) = x0 +

∫ t

0

b(s, φ(s))ds +

∫ t

0

a(s, ψ(s))ds, t ≥ 0.

If Qφ = φ for some φ ∈ U , then φ is the unique solution of

(16) φ′ = b(t, φ) + a(t, ψ(t)), φ(0) = x0.

By assumption, that unique solution of (16) is in M . By the above stated revision of

Krasnoselskii’s theorem, P itself has a fixed point φ in M .

COROLLARY. If, in addition to the assumptions of Theorem 1, all functions in M

tend to 0 as t→ ∞, then a solution of (10) tends to zero as t→ ∞.

The following example is parallel in content, but different in technique, to the results

in [4; pp. 314, 327] and [6; p. 115]. In the next section we give a nonlinear example.

EXAMPLE. Let D be a d× d constant matrix, all of whose characteristic roots have

negative real parts; thus, there exist α > 0 and k > 0 with

(17) |eDt| ≤ ke−αt, t ≥ 0.

Next, let G : [0,∞) × Rd → Rd be continuous and suppose there is a constant γ > 0, a

continuous function q : [0,∞) → [0,∞) with q(t) → 0 as t→ ∞ and q ∈ L1[0,∞) so that

(18) |G(t, x)| ≤ Kq(t)|x|γ .
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We will show that the conditions of Theorem 1 are satisfied for

x′ = Dx+G(t, x)

when K is sufficiently small.

To this end, if we let

(19) r(t) :=

∫ t

0

e−α(t−s)q(s)ds

then r(t) → 0 as t → ∞ and r ∈ L1[0,∞) since r is the convolution of appropriate

functions.

Define

(20) h(t) = max[r(t), e−αt ]

and note that h(t) ≤ |r(t)|+ e−αt ∈ L1[0,∞); moreover h(t) → 0 as t→ ∞. By redefining

q and K we may assume without loss of generality that

(21) h(t) ≤ 1, t ≥ 0.

Define

(22) M = {ψ : [0,∞) → Rn|ψ ∈ C, |ψ(t)| ≤ h(t)}.

Thus, M is closed and convex.

For arbitrary ψ ∈M , consider

(23) x′ = Dx+G(t, ψ(t)), x(0) = x0.

Then

(24) |x(t)| ≤ |x0|ke−αt +

∫ t

0

kKe−α(t−s)q(s)|ψ(s)|γds

≤ |x0|kh(t) + kKr(t)

≤ [|x0|k + kK]h(t) ≤ h(t)
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provided that

[|x0| +K]k ≤ 1.

Hence, x(t) ∈M .

Exactly as in the proof of Lemma 2, if A is defined by (9) then any sequence {Aψn}
with ψn ∈ M is equicontinuous and so we obtain a subsequence converging uniformly on

compact sets. The norm | · |L works just like the supremum norm in the convergence proof.

3. A perturbed Liénard equation

Consider the scalar equation

(25) x′′ + f(x)x′ + g(x) = Kh(t, x, x′)

which we write as the system

x′ =y

y′ = − f(x)y − g(x) +Kh(t, x, y)(26)

or in vector form as

(27) X ′ = b(X) + a(t,X)

where

a(t,X) = (0,Kh(t, x, y))T .

We assume that for any α > 0 and for any J > 0, if ψ : [0,∞) → R2 and |ψ(t)| ≤ Je−αt

then

(28) a(t, ψ(t)) ∈ L1[0,∞),

that ∀J > 0 ∀α > 0 ∃D > 0 such that |ψ(t)| ≤ Je−αt implies that

(29) |
∫ ∞

t1

a(s, ψ(s))ds −
∫ ∞

t2

a(s, ψ(s))ds| = |
∫ t2

t1

a(s, ψ(s))ds| ≤ D|t1 − t2|,
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and that there are positive L1, L2, L3, L4 so that if Xi ∈ R2 then

(30) |b(X1) − b(X2)| ≤ L1|X1 −X2|, L4 ≥ f(x) ≥ L2, and g(x)

∫ x

0

f(s)ds ≥ L3x
2.

Now, for J, α to be determined, let

M = {ψ : [0,∞) → R2|ψ ∈ C, |ψ(t)| ≤ Je−αt}

and for each ψ ∈M consider the system

x′ =y

y′ =− f(x)y − g(x) + e(t)(31)

where e(t) = Kh(t, ψ(t)).

LEMMA. If (27)-(30) hold and if we define

(32) V (x, y) = (1/2)y2 + 2

∫ x

0

g(s)ds + (1/2)(y +

∫ x

0

f(s)ds)2

then there is an η > 0 so that the derivative of V along a solution of (31) satisfies

(33) V ′(x(t), y(t)) ≤ −ηV (x, y) + 2
√

V (x, y)|e(t)|

and there is a k1 > 0 with

(34) k1(x
2 + y2) ≤ V (x, y).

Proof. We have

V ′(x, y) = 2g(x)y− f(x)y2 − yg(x) + ye(t) + (y+

∫ x

0

f(s)ds)(f(x)y − f(x)y − g(x) + e(t))

= −f(x)y2 + ye(t) − g(x)

∫ x

0

f(s)ds + (y +

∫ x

0

f(s)ds)e(t)

≤ −f(x)y2 − g(x)

∫ x

0

f(s)ds + |y||e(t)| + |y +

∫ x

0

f(s)ds||e(t)|

≤ −L2y
2 − L3x

2 + [
√

2(|y|/
√

2) +
√

2(|y +

∫ x

0

f(s)ds|)/
√

2]|e(t)|
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≤ −L2y
2 − L3x

2 + 2|e(t)|
√

V (x, y).

But if we use (30), in particular g is Lipschitz, then we have

V (x, y) ≤ (1/2)y2 + (L1)x
2 + y2 + (

∫ x

0

f(s)ds)2

≤ (3/2)y2 + (L1)x
2 + L2

4x
2

and so there is an η > 0 with

V ′(x, y) ≤ −ηV (x, y) + 2|e(t)|
√

V (x, y).

To find k1, we have

L3x
2 ≤ g(x)

∫ x

0

f(s)ds ≤ |g(x)|L4|x|

or

|g(x)| ≥ L3|x|/L4

and so
∫ x

0

g(s)ds ≥ L3x
2/(2L4).

From these we can find k1.

THEOREM 2. Suppose there are α, β, J, and S with 0 < α ≤ β < η/2 so that

(35) |ψ(t)| ≤ Je−αt =⇒ |h(t, ψ(t))| ≤ Se−βt, t ≥ 0

and

J((η/2) − β)
√

k1 > SK.

If

M = {ψ : [0,∞) → R2|ψ ∈ C, |ψ(t)| ≤ Je−αt}

and if |(x0, y0)| is small, then the solution of (31) through (x0 , y0) for any t0 ≥ 0 is in M .

Proof. Select ψ ∈ M and (x0, y0, t0) so that (x(t), y(t)) is fixed, and hence, V (t) :=

V (x(t), y(t)) is determined in (32). In

V ′(t) ≤ −ηV (t) + 2|e(t)|
√

V (t),
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we first obtain

V (t) ≤ V (0)e−ηt + 2

∫ t

0

e−η(t−s)|e(s)|
√

V (s)ds

or

eηtV (t) ≤ V (0) + 2

∫ t

0

e(1/2)ηs|e(s)|
√

eηsV (s)ds

which we write as

u(t) ≤ u(0) + 2

∫ t

0

e(1/2)ηs|e(s)|
√

u(s)ds.

By Bihari’s inequality ([2] and [5; p. 29]) we have u(t) ≤ w(t) where w(t) is the maximal

solution of

w(t) = u(0) + 2

∫ t

0

e(1/2)ηs|e(s)|
√

w(s)ds.

Thus, letting v(t) =
√

w(t)e−ηt we obtain 2v′(t) + ηv(t) = 2|e(t)| or v′ + (η/2)v = |e(t)|.
We then have

v(t) = v0e
−(η/2)t +

∫ t

0

e−(η/2)(t−s)|e(s)|ds

≤ v0e
−(η/2)t +

∫ t

0

SKe−(η/2)(t−s)−βsds

= v0e
−(η/2)t + SKe−(η/2)t[(η/2) − β]−1e[(η/2)−β]s|t0

≤ (v0 + [(η/2) − β]−1SK]e−βt.

Hence,
√

k1(x2(t) + y2(t)) ≤
√

V (t)

(36) ≤
[

√

V (x0, y0) + [(η/2) − β]−1SK

]

e−βt.

Thus, (x(t), y(t)) is in M provided that

(37) J0 :=
√

V (x0, y0)/k1 + [((η/2) − β)
√

k1]
−1SK < J,

as required.

REMARK. Notice that (35) is an interesting relation. For example, let h(t, x, y) =

Kp(t)xn. Thus, if |ψ(t)| < Je−αt, then

|h(t, ψ(t))| ≤ KJp(t)e−αnt < Se−αt
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provided that

p(t) < (S/KJ)e−α(1−n)t :

(i) If n = 1, p(t) must be bounded.

(ii) If n > 1, then p(t) can be exponentially unbounded.

(iii) If n < 1, then p(t) must tend to 0 exponentially.

Now for a local result we look at (36) and (37). Let D be the set of (x0, y0) for which

(37) holds. For any such (x0, y0) and any t0 ≥ 0, the solution (x(t), y(t)) remains in a set

Ω(J0) = {(x, y)|x2 + y2 ≤ J2
0}.

THEOREM 3. If (30) holds in Ω(J0) and if (x0, y0) satisfies (37) then the solution of

(31) through (x0 , y0) for t0 ≥ 0 is in M and the corresponding solution of (26) is in M .

Proof. Notice that Ω(J0) is convex. Write (31) as

(31) x′ = F (X) + E(t)

with E(t) = (0,Kh(t, ψ(t)))T and define a new system

(31*) X ′ = G(X) + E(t)

by G(X) = F (X) for X ∈ Ω(J0) and if X is in the complement of Ω(J0) then the line

from (0,0) to X intersects the boundary of Ω(J0) at a unique point X∗. In the latter case,

define G(X) = F (X∗). Then G is continuous and globally Lipschitz. Any solution of (31∗)

with initial values in Ω(J0) lies in M . Krasnoselskii’s theorem will now say that (27) has

a solution in M .
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