Krasnoselskii's Fixed Point Theorem and Stability

T.A. Burton
Northwest Research Institute
732 Caroline Street
Port Angeles, WA 98362
taburton at olypen.com

Tetsuo Furumochi
Department of Mathematics
Shimane University
Matsue, Japan 690-8504
furumochi at math.shimane-u.ac.jp

ABSTRACT. In this paper we use a fixed point theorem of Krasnoselskii to prove that the zero solution of a nonlinear ordinary differential equation is asymptotically stable. The result is applied to an equation

$$
x^{\prime \prime}+f(x) x^{\prime}+g(x)=K h\left(t, x, x^{\prime}\right) .
$$

Although the discussion concerns ordinary differential equations, it can be applied equally well to functional differential equations.

Key words and phrases: fixed points, stability, Liénard equation, Krasnoselskii

1. Introduction

This note represents a part of a continuing investigation of the use of fixed point theory in stability. One motivation for our work here comes from Perron's theorem [7] which states that if

$$
\begin{equation*}
x^{\prime}=D x+G(t, x) \tag{1}
\end{equation*}
$$

with D a matrix, all of whose characteristic roots have negative real parts, and $\lim _{x \rightarrow 0}|G(t, x)| /|x|=0$ uniformly for $0 \leq t<\infty$, then $x=0$ is uniformly asymptotically stable. Coddington and Levinson [4; p. 314 and 327] as well as Lakshmikantham and Leela [6; p. 115] use other methods to show that solutions with small initial conditions
tend to zero provided that $G(t, x)$ tends to zero in a uniform way for small x. Those methods depend strongly on the unperturbed linear system $y^{\prime}=D y$ and they can be well motivated by solving the Bernoulli equation

$$
\begin{equation*}
x^{\prime}+2 x=e^{-t} x^{3 / 5} \tag{2}
\end{equation*}
$$

and readily concluding that solutions tend to zero.
And many nice results along the same lines given by Bellman [1] for

$$
\begin{equation*}
x^{\prime}=D x+E(t) x \tag{3}
\end{equation*}
$$

where D has all characteristic roots with negative real parts, while E is small either in norm or in integral.

In this note we conjecture that there is a general theorem concerning asymptotic stability of the zero solution of

$$
\begin{equation*}
x^{\prime}=f(t, x)+G(t, x) \tag{4}
\end{equation*}
$$

when f satisfies a Lipschitz condition with $y^{\prime}=f(t, y)$ uniformly asymptotically stable and, for example, when $|G(t, x)| \leq q(t)|x|^{\alpha}$ where $0<\alpha<1$ and q is small in some sense. Moreover, it seems that the following modification of Krasnoselskii's fixed point theorem may be a proper vehicle for the proof. It can be found in Burton (1998).

THEOREM. Let M be a closed, convex, and nonempty subset of a Banach space $(S,\|\cdot\|)$. Suppose that $A: M \rightarrow S$ and $B: S \rightarrow S$ such that :
(i) B is a contraction with constant $\alpha<1$,
(ii) A is continuous, $A M$ resides in a compact subset of S,
(iii) $[x=B x+A y, y \in M] \Longrightarrow x \in M$.

Then there is a $y \in M$ with $A y+B y=y$.
This result differs from the one of Krasnoselskii in that the former requires that $B x+A y$ always resides in M. We will see that this is a crucial change in the present application.

2. The main result

We begin the construction with a simple equation to guide us in the construction of our theorem and then return to a similar problem as an example. Consider the scalar equation

$$
\begin{equation*}
x^{\prime}=-2 x+G(t, x) \tag{5}
\end{equation*}
$$

where G is continuous,

$$
\begin{equation*}
|G(t, x)| \leq K e^{-t}\left|x^{3 / 5}\right| \tag{6}
\end{equation*}
$$

and K is a positive constant. Let

$$
\begin{equation*}
M=\left\{\psi:[0, \infty) \rightarrow R\left|\psi \in C,|\psi(t)| \leq e^{-t}\right\}\right. \tag{7}
\end{equation*}
$$

where C denotes the set of continuous functions, and let $(S,\|\cdot\|)$ be the Banach space of bounded continuous function on $[0, \infty) \rightarrow R$ with the supremum norm.

LEMMA 1. If $\left|x_{0}\right|+(5 / 2) K<1$ and if $x(t)=x\left(t, 0, x_{0}\right)$ is the solution of

$$
\begin{equation*}
x^{\prime}=-2 x+G(t, \psi(t)), \psi \in M \tag{8}
\end{equation*}
$$

then $x \in M$.
Proof. We have

$$
\begin{aligned}
|x(t)| & \leq\left|x_{0}\right| e^{-2 t}+\int_{0}^{t} e^{-2(t-s)} K e^{-s} e^{-(3 / 5) s} d s \\
& \leq\left|x_{0}\right| e^{-2 t}+K e^{-2 t} \int_{0}^{t} e^{(2 / 5) s} d s \\
& \leq\left|x_{0}\right| e^{-2 t}+(5 / 2) K e^{-t}<e^{-t}
\end{aligned}
$$

Hence, $x \in M$.
LEMMA 2. If for $\psi \in M$ we define

$$
\begin{equation*}
(A \psi)(t)=\int_{0}^{t} G(s, \psi(s)) d s, t \geq 0 \tag{9}
\end{equation*}
$$

then $A M$ resides in a compact subset of S.

Proof. It is clear that the integrals exist and we readily verify that $A M$ is an equicontinuous set. Moreover, $A M$ is bounded. If we have a sequence $\left\{A \psi_{n}\right\}$, then by Ascoli's theorem and a diagonalization process there is a subsequence, say $\left\{A \psi_{n}\right\}$ again, converging uniformly on compact subsets of $[0, \infty)$. We will now show that $\left\{A \psi_{n}\right\}$ is a Cauchy sequence on $[0, \infty)$.

Given $\epsilon>0$, fix $T>0$ so that $\int_{T}^{\infty} 2 K e^{-s} d s<\epsilon / 2$. Then find N such that $n, m>N$ implies that

$$
\sup _{0 \leq p \leq T} \mid \int_{0}^{p}\left[G\left(s, \psi_{n}(s)-G\left(s, \psi_{m}(s)\right)\right] d s \mid<\epsilon / 2\right.
$$

Thus, if $n, m>N$ then

$$
\begin{gathered}
\sup _{0 \leq t<\infty}\left|\int_{0}^{t}\left[G\left(s, \psi_{n}(s)\right)-G\left(s, \psi_{m}(s)\right)\right] d s\right| \\
\leq \sup _{0 \leq p \leq T}\left|\int_{0}^{p}\left[G\left(s, \psi_{n}(s)\right)-G\left(s, \psi_{m}(s)\right)\right] d s\right|+\int_{T}^{\infty}\left[\left|G\left(s, \psi_{n}(s)\right)\right|+\left|G\left(s, \psi_{m}(s)\right)\right|\right] d s \\
<\epsilon .
\end{gathered}
$$

As $A M$ is contained in S and S is complete, $A M$ is contained in a compact subset of S. The following result is known, but we supply the details for reference.

LEMMA 3. Let $b: R^{d+1} \rightarrow R^{d}$ be continuous and suppose there is an $L>0$ so that $|b(t, x)-b(t, y)| \leq L|x-y|$. With the norm

$$
|\phi|_{L}=\sup _{0 \leq s<\infty}\left\{\left|e^{-2 L s} \phi(s)\right|\right\}
$$

on the Banach space U of bounded countinuous functions $\phi:[0, \infty) \rightarrow R^{d}$ then the operator H defined by

$$
(H x)(t)=x_{0}+\int_{0}^{t} b(s, x(s)) d s, t \geq 0
$$

is a contraction with contraction constant $1 / 2$.

Proof. We have

$$
\begin{aligned}
\left|H x_{1}-H x_{2}\right|_{L} & =\sup _{0 \leq s<\infty} \mid e^{-2 L s} \int_{0}^{s}\left(b\left(u, x_{1}(u)\right)-b\left(u, x_{2}(u)\right) d u \mid\right. \\
& \leq \sup _{0 \leq s<\infty} \int_{0}^{s} e^{-2 L s} L\left|x_{1}(u)-x_{2}(u)\right| d u \\
& =\sup _{0 \leq s<\infty} \int_{0}^{s} e^{-2 L s} L\left|x_{1}(u)-x_{2}(u)\right| e^{-2 L u} e^{2 L u} d u \\
& \leq\left|x_{1}-x_{2}\right|_{L} \sup _{0 \leq s<\infty} \int_{0}^{s} e^{-2 L s} L e^{2 L u} d u \\
& \leq(1 / 2)\left|x_{1}-x_{2}\right|_{L}
\end{aligned}
$$

a contraction.
In the proof of Lemma 2, the norm $|\cdot|_{L}$ works as well as the supremum norm.
With this example in mind we now consider a general theorem. Let $a, b:[0, \infty) \times R^{d} \rightarrow$ R^{d} be continuous and consider

$$
\begin{equation*}
x^{\prime}=b(t, x)+a(t, x), x(0)=x_{0} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
|b(t, x)-b(t, y)| \leq L|x-y| \text { on }[0, \infty) \times R^{d} \tag{11}
\end{equation*}
$$

Thus, (10) has a solution.
Let $(U,\|\cdot\|)$ denote a Banach space of bounded continuous functions $\phi:[0, \infty) \rightarrow R^{d}$ and M denote a closed convex nonempty subset of U. Let the operator $A: M \rightarrow U$ defined by $\psi \in M$ implies that

$$
\begin{equation*}
(A \psi)(t)=\int_{0}^{t} a(s, \psi(s)) d s, t \geq 0 \tag{12a}
\end{equation*}
$$

be continuous and define the operator B by

$$
\begin{equation*}
(B \phi)(t)=x_{0}+\int_{0}^{t} b(s, \phi(s)) d s, t \geq 0 \tag{12b}
\end{equation*}
$$

for each $\phi \in U$.

THEOREM 1. Let B be a contraction with constant $\alpha<1$ on the space $(U,\|\cdot\|)$ and suppose that $A M$ resides in a compact subset of that space. Suppose also that for each $\psi \in M$ the unique solution ϕ of

$$
\begin{equation*}
\phi^{\prime}(t)=b(t, \phi(t))+a(t, \psi(t)), \phi(0)=x_{0} \tag{13}
\end{equation*}
$$

is in M. Then a solution of (10) is in M.
PROOF. Notice first that if $\phi \in M$ is a fixed point of P, where P is defined by

$$
\begin{equation*}
(P \phi)(t)=x_{0}+\int_{0}^{t} b(s, \phi(s)) d s+\int_{0}^{t} a(s, \phi(s)) d s, t \geq 0 \tag{14}
\end{equation*}
$$

then ϕ is a solution of (10).
Now, for fixed $\psi \in M$ and all $\phi \in U$, define Q by

$$
\begin{equation*}
(Q \phi)(t)=x_{0}+\int_{0}^{t} b(s, \phi(s)) d s+\int_{0}^{t} a(s, \psi(s)) d s, t \geq 0 \tag{15}
\end{equation*}
$$

If $Q \phi=\phi$ for some $\phi \in U$, then ϕ is the unique solution of

$$
\begin{equation*}
\phi^{\prime}=b(t, \phi)+a(t, \psi(t)), \phi(0)=x_{0} . \tag{16}
\end{equation*}
$$

By assumption, that unique solution of (16) is in M. By the above stated revision of Krasnoselskii's theorem, P itself has a fixed point ϕ in M.

COROLLARY. If, in addition to the assumptions of Theorem 1, all functions in M tend to 0 as $t \rightarrow \infty$, then a solution of (10) tends to zero as $t \rightarrow \infty$.

The following example is parallel in content, but different in technique, to the results in $[4 ; \mathrm{pp} .314,327]$ and $[6 ;$ p. 115]. In the next section we give a nonlinear example.

EXAMPLE. Let D be a $d \times d$ constant matrix, all of whose characteristic roots have negative real parts; thus, there exist $\alpha>0$ and $k>0$ with

$$
\begin{equation*}
\left|e^{D t}\right| \leq k e^{-\alpha t}, t \geq 0 \tag{17}
\end{equation*}
$$

Next, let $G:[0, \infty) \times R^{d} \rightarrow R^{d}$ be continuous and suppose there is a constant $\gamma>0$, a continuous function $q:[0, \infty) \rightarrow[0, \infty)$ with $q(t) \rightarrow 0$ as $t \rightarrow \infty$ and $q \in L^{1}[0, \infty)$ so that

$$
\begin{equation*}
|G(t, x)| \leq K q(t)|x|^{\gamma} . \tag{18}
\end{equation*}
$$

We will show that the conditions of Theorem 1 are satisfied for

$$
x^{\prime}=D x+G(t, x)
$$

when K is sufficiently small.
To this end, if we let

$$
\begin{equation*}
r(t):=\int_{0}^{t} e^{-\alpha(t-s)} q(s) d s \tag{19}
\end{equation*}
$$

then $r(t) \rightarrow 0$ as $t \rightarrow \infty$ and $r \in L^{1}[0, \infty)$ since r is the convolution of appropriate functions.

Define

$$
\begin{equation*}
h(t)=\max \left[r(t), e^{-\alpha t}\right] \tag{20}
\end{equation*}
$$

and note that $h(t) \leq|r(t)|+e^{-\alpha t} \in L^{1}[0, \infty)$; moreover $h(t) \rightarrow 0$ as $t \rightarrow \infty$. By redefining q and K we may assume without loss of generality that

$$
\begin{equation*}
h(t) \leq 1, t \geq 0 . \tag{21}
\end{equation*}
$$

Define

$$
\begin{equation*}
M=\left\{\psi:[0, \infty) \rightarrow R^{n}|\psi \in C,|\psi(t)| \leq h(t)\}\right. \tag{22}
\end{equation*}
$$

Thus, M is closed and convex.
For arbitrary $\psi \in M$, consider

$$
\begin{equation*}
x^{\prime}=D x+G(t, \psi(t)), x(0)=x_{0} . \tag{23}
\end{equation*}
$$

Then

$$
\begin{gather*}
|x(t)| \leq\left|x_{0}\right| k e^{-\alpha t}+\int_{0}^{t} k K e^{-\alpha(t-s)} q(s)|\psi(s)|^{\gamma} d s \tag{24}\\
\leq\left|x_{0}\right| k h(t)+k K r(t) \\
\leq\left[\left|x_{0}\right| k+k K\right] h(t) \leq h(t)
\end{gather*}
$$

provided that

$$
\left[\left|x_{0}\right|+K\right] k \leq 1
$$

Hence, $x(t) \in M$.
Exactly as in the proof of Lemma 2, if A is defined by (9) then any sequence $\left\{A \psi_{n}\right\}$ with $\psi_{n} \in M$ is equicontinuous and so we obtain a subsequence converging uniformly on compact sets. The norm $|\cdot|_{L}$ works just like the supremum norm in the convergence proof.

3. A perturbed Liénard equation

Consider the scalar equation

$$
\begin{equation*}
x^{\prime \prime}+f(x) x^{\prime}+g(x)=K h\left(t, x, x^{\prime}\right) \tag{25}
\end{equation*}
$$

which we write as the system

$$
\begin{align*}
& x^{\prime}=y \\
& y^{\prime}=-f(x) y-g(x)+K h(t, x, y) \tag{26}
\end{align*}
$$

or in vector form as

$$
\begin{equation*}
X^{\prime}=b(X)+a(t, X) \tag{27}
\end{equation*}
$$

where

$$
a(t, X)=(0, K h(t, x, y))^{T}
$$

We assume that for any $\alpha>0$ and for any $J>0$, if $\psi:[0, \infty) \rightarrow R^{2}$ and $|\psi(t)| \leq J e^{-\alpha t}$ then

$$
\begin{equation*}
a(t, \psi(t)) \in L^{1}[0, \infty) \tag{28}
\end{equation*}
$$

that $\forall J>0 \forall \alpha>0 \exists D>0$ such that $|\psi(t)| \leq J e^{-\alpha t}$ implies that

$$
\begin{equation*}
\left|\int_{t_{1}}^{\infty} a(s, \psi(s)) d s-\int_{t_{2}}^{\infty} a(s, \psi(s)) d s\right|=\left|\int_{t_{1}}^{t_{2}} a(s, \psi(s)) d s\right| \leq D\left|t_{1}-t_{2}\right| \tag{29}
\end{equation*}
$$

and that there are positive $L_{1}, L_{2}, L_{3}, L_{4}$ so that if $X_{i} \in R^{2}$ then

$$
\begin{equation*}
\left|b\left(X_{1}\right)-b\left(X_{2}\right)\right| \leq L_{1}\left|X_{1}-X_{2}\right|, L_{4} \geq f(x) \geq L_{2}, \text { and } g(x) \int_{0}^{x} f(s) d s \geq L_{3} x^{2} \tag{30}
\end{equation*}
$$

Now, for J, α to be determined, let

$$
M=\left\{\psi:[0, \infty) \rightarrow R^{2}\left|\psi \in C,|\psi(t)| \leq J e^{-\alpha t}\right\}\right.
$$

and for each $\psi \in M$ consider the system

$$
\begin{align*}
& x^{\prime}=y \\
& y^{\prime}=-f(x) y-g(x)+e(t) \tag{31}
\end{align*}
$$

where $e(t)=K h(t, \psi(t))$.
LEMMA. If (27)-(30) hold and if we define

$$
\begin{equation*}
V(x, y)=(1 / 2) y^{2}+2 \int_{0}^{x} g(s) d s+(1 / 2)\left(y+\int_{0}^{x} f(s) d s\right)^{2} \tag{32}
\end{equation*}
$$

then there is an $\eta>0$ so that the derivative of V along a solution of (31) satisfies

$$
\begin{equation*}
V^{\prime}(x(t), y(t)) \leq-\eta V(x, y)+2 \sqrt{V(x, y)}|e(t)| \tag{33}
\end{equation*}
$$

and there is a $k_{1}>0$ with

$$
\begin{equation*}
k_{1}\left(x^{2}+y^{2}\right) \leq V(x, y) \tag{34}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
& V^{\prime}(x, y)=2 g(x) y-f(x) y^{2}-y g(x)+y e(t)+\left(y+\int_{0}^{x} f(s) d s\right)(f(x) y-f(x) y-g(x)+e(t)) \\
&=-f(x) y^{2}+y e(t)-g(x) \int_{0}^{x} f(s) d s+\left(y+\int_{0}^{x} f(s) d s\right) e(t) \\
& \leq-f(x) y^{2}-g(x) \int_{0}^{x} f(s) d s+|y||e(t)|+\left|y+\int_{0}^{x} f(s) d s\right||e(t)| \\
& \leq-L_{2} y^{2}-L_{3} x^{2}+\left[\sqrt{2}(|y| / \sqrt{2})+\sqrt{2}\left(\left|y+\int_{0}^{x} f(s) d s\right|\right) / \sqrt{2}\right]|e(t)|
\end{aligned}
$$

$$
\leq-L_{2} y^{2}-L_{3} x^{2}+2|e(t)| \sqrt{V(x, y)}
$$

But if we use (30), in particular g is Lipschitz, then we have

$$
\begin{aligned}
V(x, y) \leq & (1 / 2) y^{2}+\left(L_{1}\right) x^{2}+y^{2}+\left(\int_{0}^{x} f(s) d s\right)^{2} \\
& \leq(3 / 2) y^{2}+\left(L_{1}\right) x^{2}+L_{4}^{2} x^{2}
\end{aligned}
$$

and so there is an $\eta>0$ with

$$
V^{\prime}(x, y) \leq-\eta V(x, y)+2|e(t)| \sqrt{V(x, y)}
$$

To find k_{1}, we have

$$
L_{3} x^{2} \leq g(x) \int_{0}^{x} f(s) d s \leq|g(x)| L_{4}|x|
$$

or

$$
|g(x)| \geq L_{3}|x| / L_{4}
$$

and so

$$
\int_{0}^{x} g(s) d s \geq L_{3} x^{2} /\left(2 L_{4}\right)
$$

From these we can find k_{1}.
THEOREM 2. Suppose there are α, β, J, and S with $0<\alpha \leq \beta<\eta / 2$ so that

$$
\begin{equation*}
|\psi(t)| \leq J e^{-\alpha t} \Longrightarrow|h(t, \psi(t))| \leq S e^{-\beta t}, t \geq 0 \tag{35}
\end{equation*}
$$

and

$$
J((\eta / 2)-\beta) \sqrt{k_{1}}>S K
$$

If

$$
M=\left\{\psi:[0, \infty) \rightarrow R^{2}\left|\psi \in C,|\psi(t)| \leq J e^{-\alpha t}\right\}\right.
$$

and if $\left|\left(x_{0}, y_{0}\right)\right|$ is small, then the solution of (31) through $\left(x_{0}, y_{0}\right)$ for any $t_{0} \geq 0$ is in M.
Proof. Select $\psi \in M$ and $\left(x_{0}, y_{0}, t_{0}\right)$ so that $(x(t), y(t))$ is fixed, and hence, $V(t):=$ $V(x(t), y(t))$ is determined in (32). In

$$
V^{\prime}(t) \leq-\eta V(t)+2|e(t)| \sqrt{V(t)}
$$

we first obtain

$$
V(t) \leq V(0) e^{-\eta t}+2 \int_{0}^{t} e^{-\eta(t-s)}|e(s)| \sqrt{V(s)} d s
$$

or

$$
e^{\eta t} V(t) \leq V(0)+2 \int_{0}^{t} e^{(1 / 2) \eta s}|e(s)| \sqrt{e^{\eta s} V(s)} d s
$$

which we write as

$$
u(t) \leq u(0)+2 \int_{0}^{t} e^{(1 / 2) \eta s}|e(s)| \sqrt{u(s)} d s
$$

By Bihari's inequality ([2] and [5; p. 29]) we have $u(t) \leq w(t)$ where $w(t)$ is the maximal solution of

$$
w(t)=u(0)+2 \int_{0}^{t} e^{(1 / 2) \eta s}|e(s)| \sqrt{w(s)} d s
$$

Thus, letting $v(t)=\sqrt{w(t) e^{-\eta t}}$ we obtain $2 v^{\prime}(t)+\eta v(t)=2|e(t)|$ or $v^{\prime}+(\eta / 2) v=|e(t)|$.
We then have

$$
\begin{gathered}
v(t)=v_{0} e^{-(\eta / 2) t}+\int_{0}^{t} e^{-(\eta / 2)(t-s)}|e(s)| d s \\
\leq v_{0} e^{-(\eta / 2) t}+\int_{0}^{t} S K e^{-(\eta / 2)(t-s)-\beta s} d s \\
=v_{0} e^{-(\eta / 2) t}+\left.S K e^{-(\eta / 2) t}[(\eta / 2)-\beta]^{-1} e^{[(\eta / 2)-\beta] s}\right|_{0} ^{t} \\
\leq\left(v_{0}+[(\eta / 2)-\beta]^{-1} S K\right] e^{-\beta t}
\end{gathered}
$$

Hence,

$$
\begin{gather*}
\sqrt{k_{1}\left(x^{2}(t)+y^{2}(t)\right)} \leq \sqrt{V(t)} \\
\leq\left[\sqrt{V\left(x_{0}, y_{0}\right)}+[(\eta / 2)-\beta]^{-1} S K\right] e^{-\beta t} . \tag{36}
\end{gather*}
$$

Thus, $(x(t), y(t))$ is in M provided that

$$
\begin{equation*}
J_{0}:=\sqrt{V\left(x_{0}, y_{0}\right) / k_{1}}+\left[((\eta / 2)-\beta) \sqrt{k_{1}}\right]^{-1} S K<J, \tag{37}
\end{equation*}
$$

as required.
REMARK. Notice that (35) is an interesting relation. For example, let $h(t, x, y)=$ $K p(t) x^{n}$. Thus, if $|\psi(t)|<J e^{-\alpha t}$, then

$$
|h(t, \psi(t))| \leq K J p(t) e^{-\alpha n t}<S e^{-\alpha t}
$$

provided that

$$
p(t)<(S / K J) e^{-\alpha(1-n) t}:
$$

(i) If $n=1, p(t)$ must be bounded.
(ii) If $n>1$, then $p(t)$ can be exponentially unbounded.
(iii) If $n<1$, then $p(t)$ must tend to 0 exponentially.

Now for a local result we look at (36) and (37). Let D be the set of $\left(x_{0}, y_{0}\right)$ for which (37) holds. For any such $\left(x_{0}, y_{0}\right)$ and any $t_{0} \geq 0$, the solution $(x(t), y(t))$ remains in a set

$$
\Omega\left(J_{0}\right)=\left\{(x, y) \mid x^{2}+y^{2} \leq J_{0}^{2}\right\}
$$

THEOREM 3. If (30) holds in $\Omega\left(J_{0}\right)$ and if (x_{0}, y_{0}) satisfies (37) then the solution of (31) through $\left(x_{0}, y_{0}\right)$ for $t_{0} \geq 0$ is in M and the corresponding solution of (26) is in M.

Proof. Notice that $\Omega\left(J_{0}\right)$ is convex. Write (31) as

$$
\begin{equation*}
x^{\prime}=F(X)+E(t) \tag{31}
\end{equation*}
$$

with $E(t)=(0, K h(t, \psi(t)))^{T}$ and define a new system

$$
\begin{equation*}
X^{\prime}=G(X)+E(t) \tag{*}
\end{equation*}
$$

by $G(X)=F(X)$ for $X \in \Omega\left(J_{0}\right)$ and if X is in the complement of $\Omega\left(J_{0}\right)$ then the line from $(0,0)$ to X intersects the boundary of $\Omega\left(J_{0}\right)$ at a unique point X^{*}. In the latter case, define $G(X)=F\left(X^{*}\right)$. Then G is continuous and globally Lipschitz. Any solution of (31*) with initial values in $\Omega\left(J_{0}\right)$ lies in M. Krasnoselskii's theorem will now say that (27) has a solution in M.

References

[1] Bellman, R. (1953) Stability Theory of Differential Equations, McGraw-Hill, New York.
[2] Bihari, I. (1956) A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta. Math. Sci. Hungar. 7, pp. 71-94.
[3] Burton, T. (1998) A fixed-point theorem of Krasnoselskii, Appl. Math. Lett. 11, 85-88.
[4] Coddington, E. A. and Levinson, N. (1955) Theory of Ordinary Differential Equations, McGraw-Hill, New York.
[5] Hartman, P. (1964) Ordinary Differential Equations, Wiley, New York.
[6] Lakshmikantham, V. and Leela, S. (1969) Differential and Integral Inequalities, Vol. I, Academic Press, New York.
[7] Perron, O. (1929) Uber Stabilitat und asymptotisches verhalten der Integrale von Differentialgleichungssystemen, Math. Zeit. 29, 129-160.

