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Abstract. In this paper we are led to the conjecture that if
there is a T > 0 with a(t + T ) = a(t) and D(t + T, s + T, x) =
D(t, s, x) and if D is fairly smooth then the integral equation
x(t) = a(t) +

∫ t

−∞ D(t, s, x)ds has a T -periodic solution. Several
results are offered in defense of the conjecture, but the problem
is far from being solved. We use Schaefer’s fixed point theorem
and a variety of Liapunov functionals to prove the results. The
most striking feature of the paper is the fact that we can prove
that there is a periodic solution either by differentiating D or by
integrating D. It is a very attractive problem for further study.

1. Introduction

Numerous problems in ordinary and partial differential equations
lead us to seek a periodic solution of the scalar equation

(1) x(t) = a(t) +

∫ t

−∞
D(t, s, x(s))ds

with T > 0 so that

(2) a(t + T ) = a(t), D(t + T, s + T, x) = D(t, s, x),

and with a continuous. All of the results will be easily illustrated from
the single function

D(t, s, x) = m[(t − s) + 1]−kg(x)

and the algebra is simple. We have studied this problem in [1-7] under
considerably stronger assumptions.

The literature is replete with differential and integral equations re-
lated to (1) with proofs of the existence of periodic solutions which
usually require extensive sign and growth conditions of a very detailed
nature. Our conjecture here is that if

∫ t

−∞ D(t, s, x(s))ds converges for
any continuous and periodic function x and if D is reasonably smooth,
then there always is a periodic solution. This is suggested in an old
result, which we offer as Theorem 1.1. But it is offered more strongly
in Theorem 3.1 in which we do ask that the equation be of sublinear
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type; however, once the periodic solution is established, then all the
action is taking place in a strip of |x| ≤ K for some K > 0. It is then
totally immaterial what the behavior of D is with respect to x outside
that strip.

We study this problem by looking at examples when D is globally
Lipschitz, locally Lipschitz, and non-Lipschitz. In Section 5 we place
it in a general framework and offer the details of the first of two steps
which would be required for a general solution.

Let (PT , ‖ · ‖) denote the Banach space of continuous scalar T -
periodic functions with the supremum norm and assume that for φ ∈
PT then

(3)

∫ t

−∞
D(t, s, φ(s))ds ∈ PT .

This will allow problems with mild singularities.
The following simple result is well-known.

Theorem 1.1. Let (2) and (3) hold. Suppose there is a function B(t, s)
with

(4) |D(t, s, x) − D(t, s, y)| ≤ B(t, s)|x − y|
for −∞ < s ≤ t < ∞, x, y ∈ � and α < 1 with

∫ t

−∞ B(t, s)ds defined
and

(5)

∫ t

−∞
B(t, s)ds ≤ α.

Then (1) has a solution in PT .

Proof. Define a mapping P : PT → PT by φ ∈ PT implies that

(Pφ)(t) = a(t) +

∫ t

−∞
D(t, s, φ(s))ds

and notice that by (3) it is well-defined, while by (4) if φ, η ∈ PT then

|(Pφ)(t) − (Pη)(t)| ≤
∫ t

−∞
B(t, s)|φ(s) − η(s)|ds ≤ α‖φ − η‖

by (5). Thus, P is a contraction and there is a unique fixed point in
PT . �

Notice that there is no sign condition; everything depends on a
global Lipschitz condition, (4), and smallness condition, (5). We will
write D(t, s, x) = C(t, s)g(x), drop the global Lipschitz condition, let∫ t

−∞ |C(t, s)|ds be large, and show that by either making C smooth or
g small we can still conclude that there is a periodic solution.

Notice that if g satisfies a global Lipschitz condition and if C is
continuous with

a(t + T ) = a(t), C(t + T, s + T ) = C(t, s)
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then we could use a weighted norm, |φ|k = sup0≤s≤T e−ks|φ(s)|, on

(Pφ)(t) = a(t) −
∫ t

t−T

C(t, s)g(φ(s))ds

and have a contraction with periodic solution regardless of the magni-
tude of C(t, s). Thus, if there are nice convergence conditions then we
can write

x(t) = a(t) −
∫ t

−∞
C(t, s)g(x(s))ds

= a(t) −
∞∑

n=0

∫ t−nT

t−(n+1)T

C(t, s)g(x(s))ds

= a(t) −
∞∑

n=0

∫ t

t−T

C(t, s − nT )g(x(s − nT ))ds

which has a periodic solution if

x(t) = a(t) −
∞∑

n=0

∫ t

t−T

C(t, s − nT )g(x(s))ds

does. But under strict convergence conditions we can interchange the
order of summation and integration to obtain

x(t) = a(t) −
∫ t

t−T

∞∑
n=0

C(t, s − nT )g(x(s))ds

=: a(t) −
∫ t

t−T

H(t, s)g(x(s))ds.

This suggests that with a global Lipschitz condition and a nice kernel
then the magnitude of the integral of the kernel is immaterial. Thus,
we proceed to work on reduction of the Lipschitz condition.

2. Schaefer’s theorem: local Lipschitz

We now investigate whether loss of the global Lipschitz condition
will affect the result. Consider

(6) x(t) = a(t) −
∫ t

−∞
C(t, s)xn(s)ds

where n is an odd positive integer and let

(7) a(t + T ) = a(t), C(t + T, s + T ) = C(t, s).

Assume that for φ ∈ PT then

(8)

∫ t

−∞
|C(t, s)φn(s)|ds is continuous.
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Our work will be based on a Liapunov functional working together
with the fixed point theorem of Schaefer [9] (see also Smart [10; p.
29]). Indeed, our main interest is in showing how fixed point theory
and Liapunov’s direct method work together in solving these problems
for integral equations. The Liapunov functionals will satisfy very weak
conditions and might more correctly be called guiding functions since
we will work only with the derivative of the Liapunov functional and
often not use the usual positive definite property.

Theorem 2.1. (Schaefer) Let (X, ‖ · ‖) be a normed space, P a con-
tinuous mapping of X into X which is compact on each bounded subset
of X. Then either

(i) the equation x = λPx has a solution in X for λ = 1, or
(ii) the set of all such solutions x, for 0 < λ < 1, is unbounded.

CONSTRUCTION OF LIAPUNOV FUNCTIONALS I

We first give a Liapunov functional requiring much smoothness, but
yields an exact fit with no inequalities required. In the classical theory
of integral equations, if

x(t) = a(t) −
∫ t

−∞
C(t, s)g(s, x(s))ds

has a well-behaved kernel and if g has the sign of x, then the solution
follows a(t) in some broad sense. Thus, we write

(x(t) − a(t))2 =

(
−

∫ t

−∞
C(t, s)g(s, x(s))ds

)2

and we strive to prove that the left-hand-side remains small, in ac-
cordance with the classical theory. We now show how we arrive at a
Liapunov functional, although the conditions here are stronger than
will subsequently be needed. Assume that Cs ≥ 0, that there is an
M > 0 with

∫ t

−∞ Cs(t, s)ds ≤ M , and that C(t, s)(t − s) → 0 as
s → −∞. Our goal is to obtain a bound on periodic solutions.

If we integrate the right-hand-side by parts, use the Schwarz inequal-
ity, and assume that g(t, x(t)) ∈ PT then we have

(x(t) − a(t))2 =

(
C(t, s)

∫ t

s

g(u, x(u))du

∣∣∣∣
t

−∞

−
∫ t

−∞
Cs(t, s)

∫ t

s

g(u, x(u))du

)2

≤
∫ t

−∞
Cs(t, s)ds

∫ t

−∞
Cs(t, s)

(∫ t

s

g(u, x(u))du

)2

ds,

≤ M

∫ t

−∞
Cs(t, s)

(∫ t

s

g(u, x(u))du

)2

ds.



INTEGRAL EQUATIONS, PERIODICITY, AND FIXED POINTS 5

We have arrived at the Liapunov functional

V (t, x(·)) =

∫ t

−∞
Cs(t, s)

(∫ t

s

g(u, x(u))du

)2

ds.

Notice that there is something of a “wedge” under V in the form of
(1/M)(x(t)−a(t))2. Moreover, if Cs ≥ 0, then for a(t) = 0 the function
V becomes a positive definite Liapunov functional in the classical sense.
But here, we will ask much less and still obtain very good bounds on
solutions in terms of Lp.

We specialize the above work and use the Liapunov functional

(9) V (t) = λ

∫ t

−∞
Cs(t, s)

(∫ t

s

xn(u)du

)2

ds

to prove that there is an a priori Lp[0, T ] bound on the norm of the
solution of

(10) x(t) = λ

[
a(t) −

∫ t

−∞
C(t, s)xn(s)ds

]

and then parlay that into a supremum norm bound. For our mapping,
define P in the usual way of φ ∈ PT implies that

(11) (Pφ)(t) = λ

[
a(t) −

∫ t

−∞
C(t, s)φn(s)ds

]
.

Very roughly, the next two results say that if
∫ t

−∞ |C(t, s)s|ds exists
and Cst ≤ 0, then there is a periodic solution. So we need a bit more
convergence than desired and the smoothness is a bit more pointed
than hoped for, but it gets closer to the long term goal. It allows
unlimited growth with xn. We are surprised that we need n to be odd,
yet place no sign condition on C; thus, we feel that the oddness of n
can be reduced. In the next section we need n = 1/m where m is odd,
but that is to avoid questions of complex solutions.

We will see many derivatives of C here, but that can be misleading
as examples will show. If we take C(t, s) = C(t−s) with C(t) = t(t−1)
for 0 ≤ t ≤ 1 and C(t) = 0 for t ≥ 1, then the limits on the integral
of the Liapunov functional will change and problems with derivatives
will vanish. In this case, we would see Cs change sign and that is a
property in which we will always be interested. To leave open a number
of possibilities of the type just mentioned we will refrain from placing
strict conditions on C, but ask that V can always be differentiated
by Leibnitz rule. In later sections differentiability is reduced and even
eliminated.

Theorem 2.2. Let (7) and (8) hold. Assume that

(12)

∫ t

−∞
Cs(t, s)(t − s)2ds is continuous,
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as is

(13)

∫ t

−∞
Cst(t, s)(t − s)2ds,

and that

(14) C(t, s)(t − s) → 0 as s → −∞.

If, in addition,

(15) Cst(t, s) ≤ 0,

then for any fixed point x of (11) in PT we have

(16)

∫ T

0

xn+1(s)ds ≤
∫ T

0

an+1(s)ds.

Proof. Use the fixed point x and define V (t) in (9) so that

V ′(t) = λ

∫ t

−∞
Cst(t, s)

(∫ t

s

xn(u)du

)2

ds

+ 2λxn(t)

∫ t

−∞
Cs(t, s)

∫ t

s

xn(u)duds.

We integrate the last term by parts obtaining

2λxn(t)

[
C(t, s)

∫ t

s

xn(u)du

∣∣∣∣
t

−∞
+

∫ t

−∞
C(t, s)xn(s)ds

]

so that by (14) the first term is zero and we then have

V ′(t) ≤ 2λxn(t)

[∫ t

−∞
C(t, s)xn(s)ds

]

by Leibnitz rule without any reference to the integral equation. But
now we use the integral equation, (10), and write

V ′(t) ≤ 2xn(t)[λa(t) − x(t)]

≤ 2

n + 1
[an+1(t) − xn+1(t)].

Next, it is readily verified that since x ∈ PT , so is V . Thus, V (T ) =
V (0) and

0 = V (T ) − V (0) ≤ 2

n + 1

(∫ T

0

an+1(s)ds −
∫ T

0

xn+1(s)ds

)

or ∫ T

0

xn+1(s)ds ≤
∫ T

0

an+1(s)ds,

as required. �
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We will use the Lp bound and (6), the integral equation, to obtain a
supremum norm bound. Here, (16) is the crucial condition. One readily
supposes that there are many conditions which can replace (18) and
we will see other possibilities as we proceed.

Theorem 2.3. Let (7), (8), and (16) hold, suppose there is a constant
Q such that

(17)

∫ t1

−∞
|C(t1, s) − C(t2, s)|ds ≤ Q|t1 − t2| if 0 ≤ t1 ≤ t2 ≤ T,

and suppose that

(18) sup
0≤t≤T

∞∑
j=0

(∫ t

t−T

Cn+1(t + jT, s)ds

) 1
n+1

< ∞.

Then (6) has a solution in PT .

Proof. In (11) we defined P : PT → PT . We will find a number L such
that if x ∈ PT is a fixed point of that mapping then ‖x‖ < L, where
‖ · ‖ is the supremum norm.

Condition (17) readily shows that bounded sets are mapped into
equicontinuous sets. Let the bounded set be fixed and let φ be any
point in that set. There are positive constants J and Y with ‖φ‖ ≤ J
and ‖φn‖ ≤ Y . Thus, if 0 ≤ t1 ≤ t2 ≤ T , then

|(Pφ)(t2) − (Pφ)(t1)| ≤ |a(t2) − a(t1)|

+

∣∣∣∣
∫ t1

−∞
[C(t2, s) − C(t1, s)]φ

n(s)]ds

∣∣∣∣
+

∣∣∣∣
∫ t2

t1

C(t2, s)φ
n(s)ds

∣∣∣∣
≤ |a(t2) − a(t1)| + (Y Q + Y E)||t1 − t2|

where E = sup0≤s≤T,0≤t2≤T |C(t2, s)|.
Continuity of P follows from (8) and the uniform continuity of φn

when φn ∈ PT and φn → φ.
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For x ∈ PT a solution of (10) we have

|x(t) − λa(t)| ≤
∣∣∣∣
∫ t

−∞
C(t, s)xn(s)ds

∣∣∣∣
=

∣∣∣∣
∞∑

j=0

∫ t−jT

t−(j+1)T

C(t, s)xn(s)ds

∣∣∣∣

=

∣∣∣∣
∞∑

j=0

∫ t

t−T

C(t, s − jT )xn(s)ds

∣∣∣∣

=

∣∣∣∣
∞∑

j=0

∫ t

t−T

C(t + jT, s)xn(s)ds

∣∣∣∣

≤
∞∑

j=0

(∫ t

t−T

Cn+1(t + jT, s)ds

) 1
n+1

(∫ t

t−T

an+1(s)ds

) n
n+1

,

which has a finite bound independent of λ. Referring now to Schae-
fer’s theorem we see that the second alternative is ruled out and the
conclusion holds. �

In the next section we will use x1/m where m is an odd positive
integer instead of xn and the same Liapunov functional would work in
that case. But we opt for a different method of proof and move from
the requirement of two derivatives on C to the condition that C be
“twice” integrable on the whole line.

3. A sublinear problem

We have seen that absence of a global Lipschitz condition offers no
difficulties. We now examine an example lacking a local Lipschitz con-
dition. Consider the equation

(19) x(t) = a(t) −
∫ t

−∞
C(t, s)x1/m(s)ds

where m is an odd positive integer, m > 1, and where (7), periodicity,
holds. We will first suppose that Cs(t, s) exists and later suppose that
C(t, s) is bounded by a function, E(t, s), for which Es(t, s) exists. A
far stronger result will be proved in the first case.

CONSTRUCTION OF LIAPUNOV FUNCIONALS II

If we want to bound x(t) in (19) then we write

|x(t)| ≤ |a(t)| +
∫ t

−∞
|C(t, s)||x1/m(s)|ds.

We would like to exchange the functional on the right for a function so
that we could get an algebraic relation and solve for x(t). Such a tech-
nique may be found in the literature for integrodifferential equations
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as long ago as the 1970’s. We define

V (t) :=

∫ t

−∞

∫ ∞

t−s

|C(u + s, s)|du|x1/m(s)|ds

and throughout the remainder of the paper we suppose that for x ∈ PT

then this can be differentiated by Leibnitz rule yielding

V ′(t) =

∫ ∞

0

|C(u + t, t)|du|x1/m(t)| −
∫ t

−∞
|C(t, s)||x1/m(s)|ds.

Hence, if x solves (19) then we have

V ′(t) ≤
∫ ∞

0

|C(u + t, t)|du|x(t)| − |x(t)| + |a(t)|,
a totally algebraic relation which we exploit throughout the remainder
of the paper.

We now come to a very interesting situation. In order to get an Lp

bound we had asked that Cst(t, s) ≤ 0. We now see that integrating
C can be just as effective. In the next result we ask that the integral
of C(t, s) with respect to t be bounded. Then we differentiate C(t, s)
with respect to s, but partially restore it by multiplying by (t − s);
finally, then, we ask that the integral of |Cs(t, s)|(t − s) with respect
to s be bounded. A bounded integral with respect to both coordinates
will do the same for us as asking that Cst(t, s) ≤ 0. Moreover, both
sets of conditions are used to make a Liapunov functional effective.

Consider the conditions of the following theorem. First, in order for
(19) to be a well-defined problem we would expect

(*)

∫ t

−∞
|C(t, s)|ds < ∞;

thus, we would expect C(t, s) → 0 as s → −∞ a bit faster than 1/s.
Hence, (20) is expected.

Moreover, in the convolution case, the first part of (21) would say
that

∫ ∞
0

|C(u)|du < ∞, which is just (*) again. It is less than Theorem
1.1 asks since the integral can be large and a Lipschitz condition is
not required. The second part of (21) would ask that

∫ ∞
t

|C(u)|du ∈
L1[0,∞) and that is so much more than Theorem 1.1 asks; but this is
only to make the Liapunov functional defined, so it may be completely
extraneous.

Finally, with (20) holding we have∫ t

−∞
Cs(t, s)(t−s)ds = C(t, s)(t−s)

∣∣∣∣
t

−∞
+

∫ t

−∞
C(t, s)ds =

∫ t

−∞
C(t, s)ds

which is periodic and, hence, bounded if it is continuous.
For smooth kernels, this next result says essentially that if (21) holds

and (19) is well-defined, then it has a periodic solution. That periodic
solution lies in a strip |x| ≤ K, for some K > 0, so the fact that (19) is
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sublinear is a device in the proof, but apparently it is not part of the
essential nature of the problem.

Theorem 3.1. Suppose that n = 1/m and that (7), (8), and (17) hold.
In addition, suppose that

(20) C(t, s)(t − s) → 0 as s → −∞ for fixed t,

that there is an α < ∞ with

(21)

∫ ∞

0

|C(u + t, t)|du ≤ α and

∫ t

−∞

∫ ∞

t−s

|C(u + s, s)|duds exists,

and that

(22)

∫ t

−∞
|Cs(t, s)|[(t − s) + 1]ds is bounded.

Then (19) has a solution in PT .

Proof. With a view to using Schaefer’s theorem we start with

(19λ) x(t) = λ

[
a(t) −

∫ t

−∞
C(t, s)x1/m(s)ds

]
,

define the corresponding mapping P from it, and then define the new
Liapunov functional

V (t) = λ

∫ t

−∞

∫ ∞

t−s

|C(u + s, s)|du|x1/m(s)|ds.

The derivative along the solution in PT of the integral equation (19λ)
satisfies

V ′(t) = λ

∫ ∞

0

|C(u + t, t)|du|x1/m(t)| − λ

∫ t

−∞
|C(t, s)x1/m(s)|ds

≤ α|x1/m(t)| − λ

∫ t

−∞
|C(t, s)x1/m(s)|ds

≤ α|x1/m| + |a(t)| − |x(t)|
≤ −β|x1/m(t)| + (γ + |a(t)|)

for some positive constants β and γ since m > 1.
As x is supposed to be a solution in PT we see that V ∈ PT . Thus,

0 = V (T ) − V (0) ≤ −β

∫ T

0

|x1/m(s)|ds +

∫ T

0

(γ + |a(t)|)dt

so ∫ T

0

|x1/m(s)|ds ≤ (1/β)

∫ T

0

(γ + |a(t)|)dt =: J.

Moreover, if t is chosen so that V (t) is the maximum of that periodic
function, V , then for s < t we have

0 ≤ V (t) − V (s) ≤
∫ t

s

(γ + |a(u)|)du − β

∫ t

s

|x1/m(u)|du.
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For any t and for s < t it follows that

∫ t

s

|x1/m(u)|du ≤ (1/β)

∫ t

s

(γ + |a(u)|)du + J.

Thus, there is a constant K > 0 with

∫ t

s

|x1/m(u)|du ≤ J + (t − s)K.

An integration by parts in (19λ) yields

x(t) = λa(t)+λC(t, s)

∫ t

s

x1/m(u)du

∣∣∣∣
t

−∞
−λ

∫ t

−∞
Cs(t, s)

∫ t

s

x1/m(u)duds

or by (20)

|x(t)| ≤ |a(t)| +
∫ t

−∞
|Cs(t, s)|

∫ t

s

|x1/m(u)|duds

≤ |a(t)| +
∫ t

−∞
|Cs(t, s)|[K(t − s) + J ]ds

By (22) this is bounded. The compactness follows from (17) and the
continuity follows from (8). By Schaefer’s theorem the mapping has a
fixed point. �

We now suppose that Cs(t, s) fails to exist and that there is a con-
tinuous function E(t, s) and a positive constant M with

|C(t, s)| ≤ E(t, s),

∫ t

−∞
E(t, s)ds ≤ M,

∫ t

−∞
Es(t, s)[1 + (t − s)]2ds is bounded, and

E(t, s)(t − s) → 0 as s → −∞ for fixed t,(23)

Notice that this will still not allow a mild singularity in C; that must
wait for the next section.

Theorem 3.2. Let (23) hold. If x(t) is a bounded solution of (19λ)
then

(24) (x(t) − λa(t))2 ≤ M

∫ t

−∞
Es(t, s)

(∫ t

s

|x1/m(u)|du

)2

ds.
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Proof. We have

(x(t) − λa(t))2 =

∣∣∣∣
∫ t

−∞
C(t, s)x1/m(s)ds

∣∣∣∣
2

≤
∣∣∣∣
∫ t

−∞
E(t, s)|x1/m(s)|ds

∣∣∣∣
2

=

(
−E(t, s)

∫ t

s

|x1/m(u)|du

∣∣∣∣
t

−∞

+

∫ t

−∞
Es(t, s)

∫ t

s

|x1/m(u)|duds

)2

≤
∫ t

−∞
Es(t, s)ds

∫ t

−∞
Es(t, s)

(∫ t

s

|x1/m(u)|du

)2

ds

≤ M

∫ t

−∞
Es(t, s)

(∫ t

s

|x1/m(u)|du

)2

ds

proving the result. �
Theorem 3.3. For n = 1/m let (7), (8), (17), (21) and (23) hold.

(i) If x ∈ PT solves (19λ) then there is a β > 0, a γ > 0, and a
t ∈ [0, T ] such that for −∞ < s < t we have

(25)

∫ t

s

|x1/m(u)|du ≤ (1/β)

∫ t

s

(γ + |a(u)|)du.

(ii) If (23) holds so that (24) is satisfied then (19) has a solution in
PT .

Proof. Following the proof of Theorem 3.1 we again start with

x(t) = λ

[
a(t) −

∫ t

−∞
C(t, s)x1/m(s)ds

]

and define

V (t) = λ

∫ t

−∞

∫ ∞

t−s

|C(u + s, s)|du|x1/m(s)|ds

whose derivative was shown to satisfy

V ′(t) ≤ −β|x1/m(t)| + (γ + |a(t)|).
As x is supposed to be a solution in PT we see that V ∈ PT . Again,

for V (t) the maximum of that periodic function and for s < t we have

0 ≤ V (t) − V (s) ≤
∫ t

s

(γ + |a(u)|)du− β

∫ t

s

|x1/m(u)|du

as in the proof of Theorem 3.1 so that∫ t

s

|x1/m(u)|du ≤ (1/β)

∫ t

s

(γ + |a(u))du
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and then we argued that there are fixed positive constants J and K
with ∫ t

s

|x1/m(u)|du ≤ J + (t − s)K

for any pair (s, t) with s < t. Using this in (24) yields

(x(t) − λa(t))2 ≤ M

∫ t

−∞
Es(t, s)(J + (t − s)K)2ds,

and the right-hand-side is bounded by (23). Thus, the boundedness
of a(t) yields a suitable a priori bound on x. The equicontinuity and
continuity of P are exactly as before. �

4. No derivatives of C(t, s)

One of our objectives is to consider problems originating as partial
differential equations (See Miller [8; p. 60, p. 172, and p. 208].) which
were then parlayed into integral equations and then into infinite delay
problems by means of limiting processes. In some such problems we find
mild singularities and, at least in the convolution case for the limiting
process, C is to be an L1-function. We now show how Theorem 3.1 can
be changed to cover just such problems.

In case of mild singularities, (17) would not hold and the proof of
equicontinuity given in the proof of Theorem 2.3 would not work. How-
ever, there are alternative methods as one readily sees in the case of

C(t, s) = e−(t−s)(t − s)−1/2

when we work out the left-hand-side of (17). Thus, in our result below
we simply ask for the compactness.

Theorem 4.1. Suppose that (7), (8), and (21) hold for n = 1/m and
that the mapping P defined by

(Pφ)(t) = λ

[
a(t) −

∫ t

−∞
C(t, s)x1/m(s)ds

]

maps bounded subsets of PT into compact subsets and that P is contin-
uous. Moreover, let

(26) sup
0≤t≤T

∞∑
n=0

(∫ t

t−T

C2(t + nT, s)ds

)1/2

< ∞.

Then (19) has a solution in PT .

Proof. We follow the proof of Theorem 3.1 with

x(t) = λ

[
a(t) −

∫ t

−∞
C(t, s)x1/m(s)ds

]
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and define the Liapunov functional

V (t) = λ

∫ t

−∞

∫ ∞

t−s

|C(u + s, s)|du|x1/m(s)|ds.

Then we notice in the differentiation of V the last lines may be changed
and we can have

V ′(t) = λ

∫ ∞

0

|C(u + t, t)|du|x1/m(t)| − λ

∫ t

−∞
|C(t, s)x1/m(s)|ds

≤ α|x1/m(t)| − λ

∫ t

−∞
|C(t, s)x1/m(s)|ds

≤ α|x1/m| + |a(t)| − |x(t)|
≤ −β|x2/m(t)| + (γ + |a(t)|)

for some positive constants β and γ. Recall that m is an odd positive
integer, m > 1, so m ≥ 3. That gives the change

0 = V (T ) − V (0) ≤ −β

∫ T

0

|x2/m(s)|ds +

∫ T

0

(γ + |a(t)|)dt

so ∫ T

0

|x2/m(s)|ds ≤ (1/β)

∫ T

0

(γ + |a(t)|)dt =: H.

Now from (19λ) we have

|x(t)| − |a(t)| ≤
∞∑

n=0

∫ t−nT

t−(n+1)T

|C(t, s)||x1/m(s)|ds

=
∞∑

n=0

∫ t

t−T

|C(t, s − nT )||x1/m(s)|ds

≤
∞∑

n=0

(∫ t

t−T

C2(t + nT, s)ds

)1/2(∫ t

t−T

x2/m(s)ds

)1/2

≤ H1/2
∞∑

n=0

(∫ t

t−T

C2(t + nT, s)ds

)1/2

.

By (26) this yields the required bound and the conclusion follows from
Schaefer’s theorem. �

5. The general case

Let us now consider the general case of

(27) x(t) = a(t) −
∫ t

−∞
C(t, s)g(x(s))ds

where a, C, g are all continuous, xg(x) > 0 for x �= 0, and (7) holds.
First, if we examine common kernels such as (t−s+1)−2 or e−(t−s) then
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we notice that frequently there is a continuous function γ : [0,∞) →
(0,∞) with

(28) Cts(t, s) ≤ −γ(t)Cs(t, s).

If we then define

V (t) = λ

∫ t

∞
Cs(t, s)

(∫ t

s

g(x(u))du

)2

ds

we find that the derivative of V along the solution of the equation

(27λ) x(t) = λ

[
a(t) −

∫ t

−∞
C(t, s)g(x(s))ds

]

will satisfy

(29) V ′(t) ≤ −γ(t)V (t) + 2g(x)[λa(t) − x(t)].

When |x| ≤ 2‖a‖ then 2|g(x)a(t)| ≤ 2‖a‖g∗ when g∗ = sup0≤|x|≤2‖a‖ |g(x)|.
Then for |x| ≥ 2‖a‖ we have 2|g(x)a(t)| ≤ |g(x)||x|. We therefore see
that

(30) V ′(t) ≤ −γ(t)V (t) + 2‖a‖g∗.

Thus, Liapunov functionals for integral equations can satisfy the
same kinds of differential inequalities widely seen for differential equa-
tions. In some cases that differential inequality will yield a bound
suitable for Schaefer’s theorem.

In our work to this point we have always taken two steps. First, we
obtain an integral bound and then parlay it into a supremum bound.
The following will show how the first part can be accomplished in very
general cases. Suppose that we have the form (27) where

Cst(t, s) ≤ 0

and
g(x) =: xF (x)

where F (x) > 0 and continuous. We define V as above and obtain
V ′(t) ≤ 2g(x)[λa(t) − x(t)]. As a ∈ PT we can write

|a(t)| ≤ ‖a‖.
Thus, when |x| ≥ 2‖a‖ we have

2|g(x)a(t)| ≤ 2‖a‖|xF (x)| ≤ x2F (x)

so that
V ′(t) ≤ −x2F (x).

When |x| ≤ 2‖a‖ then for

F ∗ := sup
|x|≤2‖a‖

F (x)

we have
2|a(t)xF (x)| ≤ (2‖a‖)2F ∗.
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In any case, we will have

V ′(t) ≤ −x2F (x) + (2‖a‖)2F ∗.

This will yield ∫ T

0

x2(s)F (x(s))ds ≤ (2‖a‖)2F ∗T.

The second step of our problem is to parlay this into a supremum norm
bound. This is a broad unsolved problem.

6. A choice of hypotheses

We are now going to combine Theorems 2.2, 2.3, and 4.1 in a way
which gives us choices of hypotheses and those choices seem totally
independent.

Theorem 6.1. In Equation (19) take m = 3 and suppose that (7), (8),
(17), and (26) hold. If either (21) or {(12), (13), (14), and (15)} hold
then (19) has a solution in PT .

Proof. First, because (17) holds we can prove that the mapping P in
Theorem 4.1 maps bounded subsets of PT into compact subsets, as we
did in the proof of Theorem 2.3. Thus, if (21) holds then our first
choice becomes exactly Theorem 4.1 so there is a periodic solution.

Next, suppose that (12)–(15) hold. According to the proof of Theo-
rem 2.2 the functional V in (9) will be defined for n = 1/3 and we will
again have

V ′(t) ≤ 2

n + 1

[
an+1(t) − xn+1(t)

]
,

together with (16) which now reads∫ T

0

x4/3(s)ds ≤
∫ T

0

a4/3(s)ds =: K.

But x4/3(s) + 1 ≥ x2/3(s) and so we have

∫ T

0

x2/3(s)ds ≤ K + T =: H

where H will now be used again as the constant in the proof of Theorem
4.1. Thus, the proof of Theorem 4.1 can be completed with that H and
the conclusion holds. �

We are left with an intriguing problem. Perhaps there is a great
array of independent conditions such as the two sets illustrated in the
theorem. On the other hand, it may be that (7), (8), (17), and a con-
vergence condition are all that is needed and the two hypotheses offered
here are totally extraneous. As mentioned earlier, it is interesting that
we need n to be odd, but there is no sign condition on C(t, s). We feel
that this is a reducible condition.
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Finally, compare Theorems 3.3 and 2.3. Theorem 3.3 contains noth-
ing about derivatives of C. Except for (14), everything in Theorem 2.3
rests on derivatives of C. For smooth functions, (14) is closely related
to (8).
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