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ABSTRACT. We consider a paper of Banaś and Rzepka which deals with existence
and asymptotic stability of an integral equation by means of fixed point theory and mea-
sures of noncompactness. By choosing a different fixed point theorem we show that the
measures of noncompactness can be avoided and the existence and stability can be proved

under weaker conditions. Moreover, we show that this is actually a problem about a bound
on the behavior of a nonunique solution. In fact, without nonuniqueness, the theorems of
stability are vacuous.
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1. Introduction. Recently, Banaś and Rzepka [1] studied an integral equation by

means of a modification of a fixed point theorem of Darbo using measures of noncompact-
ness. They obtained two interesting results and two examples on existence and stability.

The purpose of this paper is twofold. First, investigators have found that a more
careful selection of a fixed point theorem and mapping set can eliminate the need for

studies of noncompactness; we illustrate that in Theorem 3 and Theorem 6. Along the
same line we eliminate their condition for boundedness and we isolate the function to
which solutions converge. Next, the authors do not mention nonuniqueness and both of
their examples possess unique solutions; yet it will be pointed out that their stability

results are nonvacuous if and only if their equation has a non-unique solution. In the
case of nonuniqueness, those results turn out to be very important for they show that,
while a solution may be nonunique, those solutions branching off will return and approach

the solution from which they diverged. In effect, then, the nonuniqueness may not be
catastrophic, as it is in the case of a differential equation such as x′(t) = x1/3(t) where
solutions break off from the zero solution and go off to infinity. Their work is for a scalar
equation, but ours is for a vector system.

2. Results of stability and boundedness. In [1] Banaś and Rzepka consider
an operator F mapping the space of bounded continuous functions BC(R+) into itself,
R+ = [0,∞), such that

(1) |(Fx)(t) − (Fy)(t)| ≤ k|x(t) − y(t)| + a(t)
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for all x, y ∈ BC , t ∈ R+, where k ∈ [0, 1) and a : R+ → R+ is continuous and
limt→∞ a(t) = 0. They assume that there is an x ∈ BC satisfying

(2) x = Fx.

They then prove the following result which incorporates a non-standard definition.

THEOREM-DEFINITION 1. Under the above conditions, the function x is an
asymptotically stable solution of (2): that is, for any ε > 0 there exists T > 0 such that
for every t ≥ T and for every other solution y of (2), then |x(t) − y(t)| ≤ ε.

The standard definition would ask that solutions starting arbitrarily close to the given
solution remain close and converge to it. But that definition rules out nonuniqueness which
is the very heart of this investigation.

They then consider the integral equation

(3) x(t) = f(t, x(t)) +

∫ t

0

u(t, s, x(s))ds, t ≥ 0,

where they assume that:

(i) f : R+ ×R→ R is continuous and f(t, 0) ∈ BC(R+);
(ii) there is a constant k ∈ [0, 1) with

(4) |f(t, x) − f(t, y)| ≤ k|x− y|

for all t ≥ 0 and all x, y ∈ R;
(iii) u : R+ × R+ × R → R is continuous and there are continuous functions a, b :

R+ → R+ such that

(5) lim
t→∞

a(t)

∫ t

0

b(s)ds = 0

and

(6) |u(t, s, x)| ≤ a(t)b(s)

for all t, s ∈ R+, (s ≤ t) and all x ∈ R.

REMARK 1. Condition (ii) implies that there is one and only one point x0 with
x0 = f(0, x0); every continuous solution x(t) of (3) satisfies x(0) = x0. In the stability
definition there are “other solutions” only in the case of nonuniqueness. See Theorem 3

for details.
They then use fixed point theory to prove
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THEOREM 2. If (i)-(iii) hold then (3) has at least one solution x ∈ BC(R+) and
it is asymptotically stable.

First they show that a bounded continuous solution exists using fixed point theory.

Then they invoke Theorem-Definition 1 to conclude that it is asymptotically stable. This
is followed by the remark that the asymptotic stability will also follow from the properties
of a certain set in the fixed point argument. Finally, they offer two examples;

(7) x(t) =
t

1 + t2
x(t) +

∫ t

0

e−t sx(s)

1 + |x(s)|
ds,

(8) x(t) =
ln(1 + t)

1 + t
sinx(t) +

∫ t

0

s2 arctanx(s)

1 + t4
ds.

REMARK 2. Equation (7) has the zero solution; moreover, it is Lipschitz in x so
that is the only solution. Hence, neither Theorem 1 nor Theorem 2 shed any light on
(7). If we take the principal branch of the arctan function in (8), then it has the unique

zero solution. If we take another branch, then Theorem 2 is useful and yields a bounded
solution; but it is unique and so stability holds by default.

REMARK 3. Hypothesis (i) is critical only if we require a bounded solution. We
later prove that if (3) has a solution and if (ii) and (iii) hold with k replaced by k(t),
then that solution is bounded whenever |f(t, 0)|/(1 − k(t)) is bounded. We can prove the

existence of a solution without assuming boundedness of f(t, 0) and the stability works in
the same way.

3. A parallel theorem. Very early in the study of asymptotic stability by fixed
point theory it was recognized that compactness on an infinite interval presented problems.
A simple solution was to construct a mapping set which degenerated to a curve (usually
the zero solution) as t → ∞. This meant that an equicontinuous subset was, in fact,

contained in a compact set. In a standard integral equation

x(t) = c(t) +

∫ t

0

g(t, s, x(s))ds,

the usual expectation is that the solution will follow c(t) in some sense. In a functional
integral equation like (3), we expect the solution to follow the solutions of

(9) ψ(t) = f(t, ψ(t))

and the boundedness of ψ depends on that of f(t, 0), as we will see.
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We now consider equation (3) in Rn with the Euclidean norm | · |

(3*) x(t) = f(t, x(t)) +

∫ t

0

u(t, s, x(s))ds, t ≥ 0

where x(t) ∈ Rn and assume that:

( i∗) f : R+ × Rn → Rn is continuous and there exist a continuous function k : R+ →
[0, 1] with 0 ≤ k(t) < 1 for t > 0 and a constant x0 ∈ Rn such that x0 = f(0, x0) and

lim
t→0+

(1 − k(t))−1(f(t, x0) − f(0, x0)) = 0,

( ii∗) for each t ∈ R+ and x, y ∈ Rn

|f(t, x) − f(t, y)| ≤ k(t)|x− y|,

( iii∗) u : R+ × R+ × Rn → Rn is continuous and there are continuous functions
a, b : R+ → R+ such that |u(t, s, x)| ≤ a(t)b(s) for all t, s ∈ R+, (s ≤ t) and all x ∈ Rn

with

lim
t→0+

a(t)

1 − k(t)

∫ t

0

b(s)ds = 0

and

lim
t→∞

a(t)

1 − k(t)

∫ t

0

b(s)ds = 0.

REMARK 4. The first part of (i∗) is a necessary condition for equation (3∗) to have

a solution. The equation x = f(0, x) may have more than one solution, but one and only
one x0 satisfies (i∗). It is clear that (i)-(iii) imply (i∗)-(iii∗). We do not assume f(t, 0)
bounded nor do we require a strict contraction condition on f(t, x) for t = 0.

We need the following contraction theorem and are unaware if it is already known.

THEOREM 3. (Generalized Contraction). Suppose f satisfies (i∗) and (ii∗).
Then there is a unique continuous function ψ : R+ → Rn satisfying (9). Moreover,
|ψ(t)| ≤ |f(t, 0)|/(1 − k(t)) for t > 0.

Proof. For each positive integer n we define (Xn, ‖·‖n) as the Banach space of bounded
continuous functions ψ : [ 1

n , n] → Rn with the supremum norm. We then define a mapping
Sn : Xn → Xn by

(10) (Snψ)(t) = f(t, ψ(t)), t ∈ [
1

n
, n]
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for ψ ∈ Xn. This is a contraction with a unique fixed point ψn, a continuous continuation
of ψn−1. The continuation of ψn as n → ∞ is the required function ψ(t) for 0 < t < ∞.
To show that ψ(t) → x0 as t→ 0, where x0 is given in (i∗), we consider for t > 0

|ψ(t) − x0| =|f(t, ψ(t)) − f(0, x0)| ≤ |f(t, ψ(t)) − f(t, x0)| + |f(t, x0) − f(0, x0)|

≤ k(t)|ψ(t) − x0| + |f(t, x0) − f(0, x0)|.

This implies that

|ψ(t) − x0| ≤ (1 − k(t))−1|f(t, x0) − f(0, x0)| → 0

as t→ 0. Thus, if we define ψ(0) = x0, then ψ is continuous on R+ and satisfies (9). Note
that ψ is not necessarily bounded. Note also that

|ψ(t) − f(t, 0)| = |f(t, ψ(t)) − f(t, 0)| ≤ k(t)|ψ(t)|

so that

|ψ(t)| ≤
1

1 − k(t)
|f(t, 0)|

for t > 0. This completes the proof of Theorem 3.

EXAMPLE 1. Consider the function

f(t, x) = e−tg(x) + ν(t)(et − 1)

where g : Rn → Rn, ν : R+ → Rn are continuous with |g(x) − g(y)| ≤ |x − y| for all

x, y ∈ Rn and there exists x0 ∈ Rn such that x0 = g(x0) and ν(0) = g(x0). If we take
k(t) = e−t, then (i∗) and (ii∗) are satisfied, and by Theorem 3, there exists a continuous
function ψ : R+ → Rn satisfying ψ(t) = f(t, ψ(t)) for all t ∈ R+. For n = 1, if we take
g(x) = sin(x+ 1), then x0 is the unique solution of x = sin(x+ 1) on [0, π/2].

REMARK 5. It is clear that if R+ is replaced by a finite interval in (i∗) and (ii∗),
Theorem 3 still holds. Thus, if k(t) = 1 occurs at infinitely many points on R+, we may
apply Theorem 3 on each finite interval to obtain the following corollary.

COROLLARY 1. Suppose that

( i∗∗) f : R+ ×Rn → Rn is continuous and there exist a continuous function k : R+ →
[0, 1] with 0 ≤ k(t) < 1 for t 6∈ E, E = {tn ∈ R+|n = 1, 2, · · ·, tn < tn+1} with tn → ∞
as n→ ∞ and a sequence {xn}, xn ∈ Rn, such that xn = f(tn , xn) with

lim
t→tn

(1 − k(t))−1(f(t, xn) − f(tn , xn)) = 0,
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and (ii∗) holds. Then there is a unique continuous ψ : R+ → Rn satisfying (9).

EXAMPLE 2. Consider the function

f(t, x) = cos t sinx+ µ(t) sin3 t

where µ : R+ → R is continuous. If we take k(t) = | cos t|, tn = nπ (n = 1, 2, · · ·), and

xn = 0 (n = 1, 2, · · ·), then conditions (i∗∗) and (ii∗) are satisfied, and by Corollary 1,
there exists a unique continuous ψ : R+ → R such that ψ(t) = f(t, ψ(t)) for all t ∈ R+.

We need Krasnoselskii’s theorem (See Smart [5; p. 31]) in a more general form.

THEOREM 4 . ([3]) Let M be a closed, convex, and nonempty subset of a Banach

space (S, ‖ · ‖). Suppose that A : M → S and B : S → S such that:
( i) B is a contraction with constant α < 1,

( ii) A is continuous, AM resides in a compact subset of S,
( iii) [x = Bx+ Ay, y ∈M ] ⇒ x ∈M .

Then there is a y ∈M with Ay +By = y.

We use this theorem to prove that every solution of (3∗) is asymptotically stable under
conditions (i∗)-(iii∗) without boundedness of f(t, 0). Every solution converges to ψ.

The following compactness result is used.

THEOREM 5. ([4; pp. 79-80]) (Ascoli-type) Let q : R+ → R+ be a continuous
function such that q(t) → 0 as t → ∞. If {φk(t)} is an equicontinuous sequence of Rn-
valued functions on R+ with |φk(t)| ≤ q(t) for t ∈ R+, then there is a subsequence that

converges uniformly on R+ to a continuous function φ(t) with |φ(t)| ≤ q(t) for t ∈ R+,
where | · | denotes the Euclidean norm on Rn.

THEOREM 6. Suppose that (i∗)-(iii∗) hold. Then Equation (3∗) has at least one
solution. Every solution of (3∗) is asymptotically stable and converges to ψ in (9).

Proof. We will use Theorem 3. To arrive at our mapping set we write (3∗) as

x = y + ψ(t) = f(t, y + ψ(t)) +

∫ t

0

u(t, s, y(s) + ψ(s))ds

or, since ψ(t) = f(t, ψ(t)),

(11) y = f(t, y + ψ(t)) − f(t, ψ(t)) +

∫ t

0

u(t, s, y(s) + ψ(s))ds.
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Our objective is to obtain a solution y(t) as a bounded continuous function; then x =
y + ψ(t) is bounded if and only if ψ is bounded.

For Xn given in the proof of Theorem 3, define

(12) Mn = {φ ∈ Xn

∣

∣|φ(t)| ≤ q(t)}, q(t) =
a(t)

1 − k(t)

∫ t

0

b(s)ds

with q(0) = 0 and define P : Xn → Xn by

(Pφ)(t) = f(t, φ(t) + ψ(t)) − f(t, ψ(t)) +

∫ t

1
n

u(t, s, φ(s) + ψ(s))ds

=: (Bφ)(t) + (Aφ)(t)(13)

where the order is preserved in that A represents the integral and B the contraction.

LEMMA 1. P is a continuous map of Xn into Xn, B is a contraction, A maps Mn

into a compact subset of Mn.

Proof. From (13) we see that φ continuous implies Pφ continuous. For each φ ∈Mn,

(14) |(Aφ)(t)| =
∣

∣

∣

∫ t

1
n

u(t, s, φ(s) + ψ(s))ds
∣

∣

∣

≤ a(t)

∫ t

0

b(s)ds ≤ q(t)

so that A : Mn →Mn. Clearly, B is a contraction.

To show that A is continuous on Mn, let ε > 0 be given. We will find a δ > 0 such
that [φ, η ∈Mn, ‖φ− η‖n < δ, 1

n ≤ t ≤ n] imply |(Aφ)(t) − (Aη)(t)| < ε. Define

H := sup
0≤t≤n

q(t) + sup
0≤t≤n

|ψ(t)|

so that ‖φ‖n ≤ H and ‖η‖n ≤ H. Since u = u(t, s, y) is uniformly continuous on 1

n ≤ s ≤
t ≤ n, |y| ≤ H, we find δ > 0 such that [ 1

n ≤ s ≤ t ≤ n, |φ(s) − η(s)| < δ] imply

|u(t, s, φ(s) + ψ(s)) − u(t, s, η(s) + ψ(s))| <
ε

n
.

Thus,

|(Aφ)(t) − (Aη)(t)| ≤

∫ t

1
n

|u(t, s, φ(s) + ψ(s)) − u(t, s, η(s) + ψ(s))|ds < ε

for all t ∈ [ 1

n , n], and hence A is continuous on Mn.
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We want to show that AMn is in a compact subset of Mn. For y ∈Mn, we have

(Ay)(t) =

∫ t

1
n

u(t, s, y(s) + ψ(s))ds

so that AMn is uniformly bounded. It is a standard argument [2; p. 43] to show that is
an equicontinuous set. Thus, A maps Mn into a compact subset of Mn.

LEMMA 2. P has a fixed point φn ∈Mn.

Proof. For fixed η ∈Mn, consider the mapping D : Xn → Xn

(Dφ)(t) = (Bφ)(t) + (Aη)(t).

If Dφ = φ, then

|φ(t)| ≤ k(t)|φ(t)| + a(t)

∫ t

0

b(s)ds,

from which it follows that φ ∈Mn and P has a fixed point in Mn by Theorem 4.

LEMMA 3. Equation (11) has a solution φ ∈ BC(R+, R
n) satisfying

(15) |φ(t)| ≤ q(t), t > 0

where q(t) is defined in (12).

Proof. Let φn be a fixed point of P in (13) on Mn. We have

φn(t) = f(t, φn(t) + ψ(t)) − f(t, ψ(t)) +

∫ t

1
n

u(t, s, φn(s) + ψ(s))ds.

so that

|φn(t)| ≤ k(t)|φn(t)| + a(t)

∫ t

0

b(s)ds

and

(16) |φn(t))| ≤ q(t) ≤ sup
τ>0

q(τ ) =: γ

for 1/n ≤ t ≤ n. We may extend the domain of φn so that it is continuous on R+ and

satisfies (16) for t ≥ 0. Thus, {φn} is a uniformly bounded sequence on R+ with ‖φn‖ ≤ γ
and φn(0) = 0 for all n.
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Now, we show that {φn} is equi-continuous on R+. For any ε > 0 and t0 ∈ (0,∞),
find n0 > 0 such that t0 ∈ ( 1

n0
, n0). We first choose δ1 = min{ 1

2
(t0 − 1

n0
), 1

2
(n0 − t0)}. If

|t− t0| < δ1, then t ∈ [ 1

n0
, n0] ⊂ [ 1

n , n] for n ≥ n0 and

|φn(t) − φn(t0)|≤ |f(t, φn(t) + ψ(t)) − f(t0, φn(t0) + ψ(t0))| + |f(t, ψ(t)) − f(t0, ψ(t0))|

+|

∫ t

1
n

u(t, s, φn(s) + ψ(s))ds −

∫ t0

1
n

u(t0, s, φn(s) + ψ(s))ds|

≤ |f(t, φn(t) + ψ(t)) − f(t, φn(t0) + ψ(t0))|

+|f(t, φn(t0) + ψ(t0)) − f(t0, φn(t0) + ψ(t0))| + |f(t, ψ(t)) − f(t0, ψ(t0))|

+|

∫ t

1

n

u(t, s, φn(s) + ψ(s))ds −

∫ t0

1

n

u(t0, s, φn(s) + ψ(s))ds|

=: |f(t, φn(t) + ψ(t)) − f(t, φn(t0) + ψ(t0))| +Qn(t, t0).

Let

k0 = sup{k(t)|t0 − δ1 ≤ t ≤ t0 + δ1}

and
H1 = γ + sup{|ψ(t)||0 ≤ t ≤ t0 + δ1}

where γ is given in (16). Since f and u are uniformly continuous on [0, t0 + δ1] × [0, t0 +
δ1] × {x ∈ Rn||x| ≤ H1}, there is a δ2 > 0 such that |t− t0| < δ2 implies

|ψ(t) − ψ(t0)| +Qn(t, t0) < ε(1 − k0)

for all n ≥ n0. Define δ3 = min{δ1, δ2}. If |t− t0| < δ3, then

|φn(t) − φn(t0)| ≤ |f(t, φn(t) + ψ(t)) − f(t, φn(t0) + ψ(t0))| +Qn(t, t0)

≤ k(t)|φn(t) − φn(t0)| + k(t)|ψ(t) − ψ(t0)| +Qn(t, t0)

≤ k0|φn(t) − φn(t0)| + ε(1 − k0).

This implies |φn(t)−φn(t0)| < ε whenever |t−t0| < δ3 and n ≥ n0. Since φk, k = 1, 2, ···, n0,
are continuous at t0, there exists δ4 > 0 such that |t− t0| < δ4 implies |φk(t)− φk(t0)| < ε

for all k ≤ n0. Thus, if we choose δ = min{δ3, δ4}, then |φn(t) − φn(t0)| < ε whenever
|t − t0| < δ. The equicontinuity of {φn} at t0 = 0 follows from the fact that φn(0) = 0
and |φn(t)| ≤ q(t) → 0 as t → 0 by (iii∗). Therefore, {φn} is an equicontinuous sequence

satisfying |φn(t)| ≤ q(t). By Theorem 5, {φn} converges uniformly to a continuous function
φ in R+. It is clear that φ is a solution of (11) and satisfies (15).

Finally, let x(t) = φ(t) + ψ(t). Then x is a solution of (3∗). If y1 and y2 are any two
solutions of (3∗), then yi(t) = φi(t) + ψ(t) with φi satisfying (15) for i = 1, 2 and

|y1(t) − y2(t)| ≤ |φ1(t) − φ2(t)| ≤ 2q(t) → 0, t→ ∞.
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Thus, every solution of (3∗) is asymptotically stable and converges to ψ as t→ ∞.

EXAMPLE 3. Consider the scalar equation

(17) x(t) = e−tg(x) + ν(t)(et − 1) +

∫ t

0

β(t, s, x(s))
x1/3(s)

1 + |x1/3(s)|
ds

where g(x) and ν(t) are given in Example 1 with n = 1, and β : R+ × R+ × R → R is
continuous with |β(t, s, x)| ≤ 2t(1 + s)/(1 + t)4 for t ∈ R+. We can verify that (i∗)-(iii∗)
hold, and by Theorem 6, every solution of (17) is asymptotically stable.

REMARK 5. In Theorem 2 the stability came from Theorem 1 or a look at the

proof. Here, the stability is an integral part of the proof since any solution of (11) satisfies
(15). Any solution of (11) tends to zero, so any solution of (3∗) approaches ψ: the integral
in (3∗) is a “harmless perturbation” of the functional equation x(t) = f(t, x(t)).

4. Stability and Nonuniqueness. We have ψ(t) = f(t, ψ(t)) and so any solution
of (3∗) satisfies x(0) = ψ(0). If solutions are uniquely determined by the initial value then

there is only one solution and the problem does seem uninteresting. Banaś and Rszepka [1]
mention nothing about uniqueness and their two examples have only unique solutions. But
the significance of this study centers squarely on nonuniqueness. To say that a solution of
(3∗) is asymptotically stable is to say that if two solutions exist through the unique point

x(0) = ψ(0) then the maximum distance between them is

2a(t)
∫ t

0
b(s)ds

1 − k(t)

and that this distance tends to zero as t → ∞. In practical terms, that bound can be

almost as good as uniqueness.
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