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ABSTRACT. We study a fractional differential equation of Caputo type by
first inverting it as an integral equation, then noting that the kernel is com-
pletely monotone, and finally transforming it into another integral equation
with a kernel which supports both contractions and compact maps. That
kernel allows us to use fixed point theory to obtain qualitative properties
of solutions. At the end of Section 4 we give a list of five transformations
which convert challenging problems into simple fixed point problems. We
treat linear, superlinear, and sublinear examples using Krasnoselskii’s fixed

point theorem.
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1. Motivation and Introduction

Krasnoselskii studied a paper by Schauder on partial differential equations
and developed a working hypothesis: The inversion of a perturbed differential
operator yields the sum of a contraction and compact map [10, p. 31]. As we
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2 FRACTIONAL DIFFERENTIAL EQUATIONS: EXAMPLES

all know, sometimes it does and sometimes it does not, but the idea has had a
profound impact on both analysis and fixed point theory. Typical elementary
functions which generate such maps are linear (a(t)x), superlinear (x3), and
sublinear (ml/ 3), together with their obvious generalizations. As we strive to
communicate ideas in this brief paper, we will focus on just such elementary
examples. The inversion of a fractional differential equation of Caputo type
with continuous functions is, in fact, nothing but a well-known integral equa-
tion with a kernel of the form (¢ — s)9~! which we readily recognize to be from
a heat equation when ¢ = 1/2. Thus, we are back to the Schauder problem
of a partial differential equation and our interest in the sum of a contraction
and a compact map is then well-motivated. The initial integral equation is
totally unmanageable as either a contraction or a compact map. All would
fail were it not for the fact that the kernel is completely monotone which
makes it possible to trade that big kernel for R(t — s) with the property that
0 < R(t) and fooo R(s)ds = 1. Moreover, the new integral equations generate
equi-continuous sets. From that good fortune, we now have a kernel which
strongly promotes both contractions and compact maps. A series of trades is
listed at the end of Section 4. In every way, the problem has fallen into the
exact category envisioned by Krasnoselskii in his study of Schauder’s paper.
We consider a fractional differential equation of Caputo type

‘Dir=—u(t,z(t), 0<qg<l, (1)

with a view to establishing qualitative properties of solutions by means of fixed
point theory. When u(t, x) is continuous then (1) is immediately inverted as
the very familiar integral equation ([7, p. 54], [6, pp. 78, 86, 103])

1 t
ot) =2(0) - s [ (69 uls,(s))ds @)
I'(q) Jo
where I' is the gamma function.
The kernel is singular and is not in L![0, c0) and this leads to both difficulties
and great simplifications. For example, if u(t,z) has a term f : [0,00) — R,
then

F(t) = ﬁ /O (t — )7L f(5)ds
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can be unbounded when f is bounded. Our topic here concerns fixed point
methods. Virtually never can (2) be used to define a mapping which is either
a contraction or a compact map because of those properties of the kernel.

On the other hand, if we contrive to write u(t,x) = = + G(t,z), then a
long line of beautiful properties emerge. So much so that the investigator is
tempted to write u(t,x) = x—(z—u(t, x)) regardless of how unsuited the union
x —u(t,x) may prove to be in later investigation. The reason is simple and we
discussed this with full details in [5]. Here is a sketch. If u(t,z) = = + G(¢, z)
then we have

1 t
z(t) =2(0) — =~ / (t = )7 'a(s) + G(s,z(s))]ds (3)
I'(q) Jo
and we can follow Miller [8, pp. 191-192] and decompose this as the linear
part
L[ (= sz (@
z(t) = x(0 ——/ t—s5)?7 "z(s)ds
(1) =#(0) g7y | (1=9)
and

t
z(t) = 2(t) — / R(t — s)G(s,z(s))ds. (5)
0
Here, R(t) is the resolvent solving

_E_L t — ) 1R(s)ds
R) = £~ 7o /0 (t - )7 R(s)ds. (6)

There is then the variation of parameters formula yielding

+(t) = 2(0) — /O Rt — $)2(0)ds. (7)

The fact that the kernel is completely monotone and not in L'[0, o) allows
us to follow Miller [8, pp. 212-3, 221-4] and deduce that

0< R(t) < a1, /OOO R(s)ds =1, (8)

1
I'(q)
and that R(t) is also completely monotone. For reference here, a function,
say R(t), is completely monotone if (—1)¥R¥)(¢) > 0 for k = 0,1,2,... and
0<t<oo0.

Now, when we focus on (5) with (8) holding we readily see that all of our
aforementioned problems with (2) have vanished. There now emerge reasons
that fixed point theory is a natural tool for investigation of this equation.
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The large kernel in (2) quite effectively prevents (2) from defining either a
contraction or a compact map. But (5) supports both.

First, if we want to show that solutions tend to zero, then the z(0) in (3)
is a problem, whereas in (5) we have traded z(0) for z(¢) and from (7) we see
that z(t) — 0.

Next, suppose that G(t,z) = G1(t,z) + Ga(t,z) where Gi(t,x) can define
a contraction mapping while Ga(¢, z) is bounded over some set of functions.

(i) We see that z(t) — fg R(t — s)G1(s,z(s))ds still defines that contraction
on the same set of functions.

(ii) Moreover, we will prove that fg R(t — s)Ga(s,z(s))ds will map that set
of functions into an equicontinuous set.

Finally, G(t, x) itself may contain a large function, say a(t), which prevents
it from defining a contraction. Because t?~! is completely monotone, it is
possible to absorb the average value, say J, of that function a(t) harmlessly
into the kernel with the result that a(t) is replaced by a value smaller than
one (a contraction constant) and all the other terms in G are also divided by
J.

These are the properties which we will formally demonstrate in the following
pages. The overall idea of the paper is to develop contractions and compact
maps which we finally combine with Krasnoselskii’s fixed point theorem.

2. THE LINEAR EQUATION

We begin with the scalar equation

Diz = f(t) —a(t)z(t), 0<qg<l1l, z(0)==xo, (9)
inverted as
£(t) = 2(0) ﬁ /0 (t — )7V a(s)(s) — f(s)]ds (10)

where a, f : [0,00) — R are continuous and there are positive numbers € and
M with

0<e<a(t) <M. (11)
We emphasize that (10) would fail to define a contraction on the space of
bounded continuous functions because of the large kernel and because a(t) is
allowed to be arbitrarily large. We will exchange R(t — s) for the kernel, but
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first we will reduce a(t) to a function bounded by o < 1. The proof of this
simple, but fundamental, result will provide the basis for much of the sequel.

Here, BC denotes the Banach space of bounded continuous functions v :
[0,00) — R with the supremum norm, || -||.

Theorem 2.1. Let (11) hold. If f € BC then for every x(0) € R there is
a unique solution x(t) of (10) and it is also in BC. If f € L'[0,00) or if
ft) =0 ast — oo, then z(t) — 0.

Proof. Define J =€+ (1/2)(M — ¢€). Then there is an « with

J>0, 0<a<l, la(t)—J <al (12)
We have
z(t) = z(0) ﬁ/o (t = )7 [Tz (s) + (a(s) = T)a(s) — f(s)]ds

with solution

and

z(t) = 2(t) + %/ R(t—s)f(s)ds — / R(t —s) J —————x(s)ds.

This will define our contraction mapping on BC. For ¢ € BC we define
P: BC — BC by

(Pi)(t) J/ R(t—s)f ds—/o R(t—s)(a(s)%‘])lp(s)ds.

It is clear that the mapping is into BC'. Moreover, it is a contraction because
of (12). Thus, the first conclusion holds. The second conclusion is obtained
by adding to BC' the condition that the ¥ — 0. (]
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3. A ONE-STEP PROBLEM
We now consider
‘Dix = —sinzx(t)+bx(t—r), 0<qg<l, r>0, z9g=0¢ (12)

where ¢ : [—7,0] — R is a continuous initial function so that xop = ¢ means
that z(t) = ¢(t) for —r < t < 0. We seek a solution with z(0) = ¢(0). It
is a non-trivial example of a problem mentioned in the introduction. As the
reader works through the proof it becomes clear that this is one of a great
class of problems which can be solved in this way. The inverted equation is
(1) = 6(0) — —— /t(t _ ) sin2(s) — ba(s — r)]ds

I'(q) Jo

in which there is no chance of a contraction. We simply add and subtract
x(s) to the integrand, decompose into two equations, and we immediately
have a straightforward contraction without any modifications of the original
contraction mapping theorem.

Theorem 3.1. If |b|m/4 + ||¢|| < V2/2 and |b] < \/2/2, then the solution
satisfies |z(t, ¢)| < m/4 fort > 0.

Proof. Let (S, ]| - ||) be the complete metric space with
S =AY :[-r,00) = [=m/4,7/4]|p(t) = ¢(t), —r < T < 0}

with the supremum metric. Also, [|¢|| denotes the supremum of ¢ on [—r,0].
We have

2(t) = 6(0) ﬁ /0 (t — 5)7Vsina(s) — ba(s — r)]ds
=¢(0) — L /t(t — 5)77 [z (s) — (z(s) — sinxz(s)) — bx(s — 7)]ds.
I'(q) Jo
Separate the equation as
= b t — 5)7712(s)ds
£(0) = 0(0) — 5 [ (=9 2(s)ds.

2(t) = 6(0) — /0 R(t - $)6(0)ds, |2l < [l

x(t) = z(t) + /0 R(t — s)[x(s) — sinxz(s) + bx(s — r)]ds.
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Notice that since x — sinz is increasing on [—7 /4, 7/4], if ||¢|| < /4 then
(1) = siny(t)] < 7/4 = V2/2
SO
W(s) — sina(s) + bip(s — )| < 7/4 — V2/2 + [b|m /4.
Define P : S — S by ¢ € S implies that (P)(t) = ¢(t) for —r <t <0 and

(PY)(t) = 2(t) + /0 R(t — s)[th(s) —siny(s) + by(s —7)]ds
for ¢ > 0 with

[(PY)(#)] < [|6]l + (1 + [b)w/4 — V2/2
<m/A+V2/2—V2/2 =74

so Py es.
A contraction constant for z —sin x is 1—+/2 /2, while a contraction constant
for byp(t — r) is |b|. Thus, we need

1—v2/24 b <1

which holds by assumption. Hence, the mapping has a unique fixed point
which solves the problem. O

4. LARGE CONTRACTIONS

A typical superlinear term is 3. That function defines a very nice contrac-
tion for small z, but we need to write it as z — (z — %) so that we will have
the z to bring us to the R integral. However, that leaves us with « — 23 and it
loses its contraction property as x — 0. It turns out that this does not matter.
That function is still a large contraction [1] and it will have a unique fixed
point.

The following definition and theorem are needed for our next result. They
are found in [1].

Definition 4.1. Let (M, p) be a metric space and B : M — M. B is said to
be a large contraction if ¢, ¥ € M, with ¢ # 1 then p(By, BY) < p(p, 1) and
if Ve > 0 30 < 1 such that [p, € M, p(p,¥) > €| = p(Bp, BY) < dp(p, ).
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Theorem 4.2. Let (M, p) be a complete metric space and B be a large con-
traction. Suppose there is an x € M and an L > 0, such that p(z, B"xz) < L
for alln > 1. Then B has a unique fixed point in M.

Theorem 4.3. If |2(0)| < /3/9 then the solution of
°Dig = —z3 (13)
is bounded.

Proof. Invert the equation as

and separate it into
I )
zt:a;O——/ t— )7 2(s)ds
(1) =20) ~ g7 | (= 5"x(s)

(so that |2(t)| < |2(0)] < v/3/9) and
x(t) = z(t) +/0 R(t — s)[z(s) — 23(s)]ds.
A maximum of y = 2 — 23 of 2¢/3/9 occurs at x = 1/v/3. If we define

S ={¢:[0,00) — R|||¢| <V3/3, ¢ continuous} (14)

and P by ¢ € S implies
(Po)(t) = =(t) + /0 R(t = s)[o(s) — ¢°(s)lds (15)
then [(P)(t)] < [2(0)] + (2V3/9) < V3/3 s0 P¢ € 5.

To see that P defines a large contraction in S, consider y = = — 2% with
derivative ¢/ = 1 — 322 which will give us the contraction constant at any value
of z. It is not difficult to see (and it is discussed in [1] with more detail in
[4, p. 23]) that this is a large contraction and that the mapping has a unique
fixed point. O

Theorem 4.4. The zero solution of (13) is stable.
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Proof. We invert (13) as
1

o(t) = 2(0) - 7 /O (t - )7 a(s) — ((s) — 2%(s))]ds

which we write as
£(t) = (0) - /0 Ot — 8)[x(s) — (x(s) — 2%(s))]ds
with
1

CO(t) = @t‘l—l for ¢ > 0. (16)

We separate it into
z(t) = z(0) — /0 C(t — s)z(s)ds
with solution .
() = 2(0)[1 — /0 R(s)ds] (17)
and ,
x(t) = z(t) + / R(t — s)[z(s) — 2°(s)]ds (18)
0

where again the resolvent R(t) satisfies

R(t) =C(t) — /0 C(t — s)R(s)ds (19)
having property (8).

Let 0 < € < /3/3 and choose § > 0 such that § < €3. Let x(t) be a solution
of (13) with |z(0)| < §. We claim that |z(t)| < € for all ¢ > 0. In fact, if there
exists a ¢ > 0 such that |z(¢)] = € with |z(s)| < € for 0 < s < £, we obtain
from (18) that

0] < =01 + [ RlE=s) la(s) —a*(s)] ds
=201+ [ RE=9)[a()] = (s) s

t

< [2(0)] + (e — €9 / R(E— s)ds
0

<d+e—€<e
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which contradicts the definition of z(f). Here we have used the fact that
y = r — 73 is increasing on [0, v/3/3] with a maximum value of 2v/3/9. Thus,
the zero solution of (13) is stable. g

Theorem 4.5. The zero solution of (13) is asymptotically stable.

Proof. 1t is shown in Theorem 4.4 that the zero solution of (13) is stable.
Thus, we need to show here that z(t) — 0 as t — oo for any solution x(t) of
(13) with |z(0)] + (2v/3/9) < +/3/3. Now for S given in (14), we define

So={p€S|o(t) — 0ast— oo}.

Then Sy is a complete metric space with the supremum metric p(z,y) =
|z — y||. Let the mapping P be defined in (15). Then for ¢ € Sy, we have
P¢ € S. We observe that [ R(s)ds = 1 implies that

() = 2(0)[1 — /0 R(s)ds] = 2(0) /t " R(s)ds — 0 as t — oo,

Also, since R € L'(0,00) and ¢(t) — 0 as t — oo, we have

; R(t — 8)[p(s) — #°(s)]ds — 0 as t — oo

and, hence, (P¢)(t) — 0 as t — oo. This yields that P¢ € Sy. By the
proof of Theorem 4.3, we also see that P is a large contraction on Sy and
|P"¢| < V/3/3 for all ¢ € Sy and n > 1. By Theorem 4.2, P has a unique
fixed point ¢ € Sy which is a solution of (13) with ¢(0) = z(0) and ¢(t) — 0
as t — 0o. Thus, the zero solution of (13) is asymptotically stable. O

Remark One may note that this is a general result. Everything would work
for
‘Dig = -zt 0 < g < 1.

In fact, we can consider
‘Dix =—g(x),0<q<1,

where g(0) = 0. We define G(z) = = — g(x) and ask that dG(z)/dzx is con-
tinuous and positive except, possibly, at z = 0 on an interval [—b,b], and
|[dG(z)/dx| < o < 1.
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The work with the linear equation *D? = f(t) — a(t)z(t) with a(t) large was
not restricted to linear equations. It works perfectly on

‘Diy = —a(t)a;g, 0<g<1,

with 0 < € < a(t) < M. In fact, a very interesting addition occurs. We obtain
a large contraction plus an ordinary contraction with contraction constant o <
1 and it is precisely this property which allows us to add the two contractions
together and obtain a large contraction. Here are the details.

Proof. Invert the equation as

z(t) = x(0) — ﬁ/o (t —s)7  a(s)x3(s)ds.

Exactly as in Section 2, we find J > 0, < 1 with |J — a(t)| < aJ. Then

a(s)2’(s) = Ja’(s) = (Ja*(s) — a(s)2’(s))

SO

and

x(t) = 2(t) —I—/O R(t — s)[(z(s) — 23(s)) + w‘ﬁs(s)]d&

That integrand will be a large contraction. The contraction constant for the
first term is obtained from y = x—23 with ¢/ = 1—322, while the x derivative of
Mmi” is bounded by 3az?, yielding the sum 1 — 322+ 3ax?. This will yield

a large contraction on a certain space of bounded continuous functions. O

Summary
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There are a number of trades happening and it is worth listing them here.
Suppose, for example, that we begin with

‘Dz = —a(t)z®
with a(t) as above, and invert it as

(1) = 2(0) — ﬁ /0 (t — 5)7a(s)2% (5)ds.

1. The local contraction properties of 23 are destroyed by a large a(t), so
we exchange a(t) for a function bounded by a constant smaller than 1.

2. The contraction is still destroyed by the large kernel so we must add and
subtract x(s) in order to get a linear part so that we can exchange the large
kernel for R(t — s).

3. But in the process of the last item, the contraction function x
3

3 is replaced

by x — x°, so we exchange the idea of a contraction for the idea of a large
contraction.
4. Now, we exchange the large kernel (t—s)?~! for the small kernel R(t —s).
5. When we want to prove that solutions tend to zero by fixed point meth-
ods, then x(0) can be a problem. But we trade x(0) for z(¢) which tends to
zero as t — oo.

With this series of exchanges we now have a simple fixed point problem.

5. Compact maps: Krasnoselskii’s theorem

We have focused on

z(t) = z(0) — /0 R(t — s)x(0)ds
and
x(t) = 2(t) — /0 R(t — s)G(s,x(s))ds

where G satisfies some type of contraction condition. With a generalization
of Krasnoselskii’s theorem [1] in mind we now investigate the possibility of

treating

(1) = 2(t) — /0 R(t — 8)[G(s,2(5)) + g(s, 2(s))lds
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where G defines a large contraction and

/0 R(t — s)g(s,z(s))ds

defines a compact map. Thus, we are interested in conditions under which an
integral will be equi-continuous.

Theorem 5.1. There is a constant H > 0 so that if 0 < to < t1 < 00, if
x € BC with |g(t,x(t))| < K, and if 0 < g < 1 then
t1 to
L:= / R(t1 — s)g(s,x(s))ds — / R(ta — s)g(s,z(s))ds
0 0

< Hlty — to]9.

Proof. Note that since R(t) is decreasing and there is a constant D with 0 <
R(t) < Dt%~! we have

t1

< /0 “|R(t1 — 5) — R(ta — 5)l|g(s, 2(s))ds + / |R(tr = 5)l[g(s, (s))|ds

2

to t1
< K[R(ta — s) — R(t; — s)]ds + K R(t1 — s)ds
0 to
12 to t1
= K/ R(ty — s)ds — K/ R(ty — s)ds + K R(t1 — s)ds
0 0 t2
to t1 t1
=K R(s)ds — K R(s)ds + K R(t; — s)ds
0 t1—1to to
to t1 t1
_K / R(s)ds — K / R(s)ds + 2K | R(t — s)ds
0 0 to

the sum of the first two terms is negative

t1

<2DK [ (t; —s)? tds
to

t1

= —2(KD/q)(t1 — 5)*

to

= (2KD/q)(t1 — t2)".
O

Krasnoselskii combined the contraction mapping theorem with Schauder’s
theorem. We extended it in [1], replacing contraction by large contraction, as
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follows. See also [2] for different conditions in (i). Krasnoselskii’s result differs
in asking that A,B: M — §S.

Theorem 5.2. Let (S, ||-||) be a Banach space, M a closed, bounded, convez,
nonempty subset of S. Suppose that A, B : M — M and that

z,y € M = Ax+ By € M, (i)

A is continuous and AM s contained in a compact subset of M,  (ii)

B is a large contraction. (iii)

Then 3 y € M with Ay + By = y.

We will give an example now using only the contraction instead of large
contraction so that there will not be so many details. We could use the term
a(t)z® instead of a(t)z and that would lead us to the large contraction, but
with so many more details. The reason for this theorem is that ¢(t)z!'/3 is not
Lipschitz so the contractions fail.

Investigators have found it difficult to verify (i) in many problems [2]. The
reader may notice that for contractions and sublinear terms, there is an auto-
matic way to show (i).

Theorem 5.3. Let a,¢ : [0,00) — R be continuous, ¢(t) — 0 as t — oo,
0<e<a(t) <M. For J=(1/2)(M +¢), find o < 1 with |J —a(t)| < aJ.
There is a solution of

°DIiz(t) = —a(t)z(t) + ¢()z3(t), 0<q<1, z(0) € R,
which tends to zero as t — 00.

Proof. We invert and decompose our equation just as before and have

t J—

z(t) = 2(t) + / R(t —s) [ﬂx(s) + @1:1/3(8)@}

0 J J
Let (X, ||-]]) be the Banach space of bounded continuous functions ¢ : [0, 00) —
R with the supremum norm. For an H > 1 to be determined, let S be the
subset of X with |[¢| < H and 9(t) — 0 as ¢ — oo. Define P : S — S by
1 € S implies that

Pt = =0+ [ R 9| T pge) + D) as
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Referring to Krasnoselskii’s theorem we define
(Bx)(t /Rt—s J=als) x(s)ds

and
(Az)(t) = /0 R(t — s)@xl/g(s)d&

It follows from our previous theorem that B : S — S is a contraction
mapping and that AS is equicontinuous. Since the functions

(Az)( |</ R(t S‘Hl/?’d

as t — oo for any x € M, we see that AS is also in a compact subset of X.
Notice that B will shrink 4 in the sense that if ¢ € S then

1Byl < 2(0)] + afl¢] < |2(0)] + «H.

Next, notice that when H > 1 then A will shrink ¢ in the sense that if ||| < H
then

chH

ol < e [*ri - oas < 10

and hence,
[y
Ayl < HY?,
Jay) < 1

We need the property (i) so for 1,7 € S we need

4wl -+ 1Byl < ()] + ot + L5 < g

or

Let |z(0)],]|¢|l,J > 0 be fixed. As H increases, this can be satisfied and that
will determine S such that (i) will be satisfied. By Krasnoselskii’s theorem
there is a fixed point, 1, a solution of our equation. As Py — 0 and Py = 1,
the conclusion follows. O
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6. EXTENSIONS

It is possible to prove a more general fixed point theorem so that in Theorem
2.1 we can add to a(t) a continuous function b(t) € L%[0,00) and retain the
boundedness conclusion

In Theorem 5.3 we needed ¢(t) — 0 in order to have a compact map. In
recent years there have been several generalizations of the Krasnoselskii result
which use weaker conditions to achieve the compactness, not the least of which
is weighted norms.

We have said nothing here about LP solutions, but the fixed point methods
will produce them as well.

Finally, there has been much recent interest in the possibility of periodic
solutions generated by periodic forcing functions. The existence of such solu-
tions is now in great doubt, although some controversy surrounds the subject.
But asymptotically periodic solutions are to be expected from periodic per-
turbations and these are readily obtained with fixed point methods.
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