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Abstract. We study a fractional differential equation of Caputo
type by first transforming it into an integral equation with an
L1[0,∞) kernel and then applying fixed point theory of Banach
and Schauder type using a weighted norm to avoid stringent com-
pactness conditions. It becomes clear that tedious construction
of mapping sets and boundedness conditions can be avoided if we
use fixed point theorems of Schaefer and Krasnoselskii type. The
weighted norm then produces open sets so large that it is difficult
to show that mappings are compact. This then leads us to general-
ize both Schaefer’s and Krasnoselskii’s fixed point theorems which
yield simple and direct qualitative results for the fractional differ-
ential equations. The weight, g, yields compactness, but it does
much more. The generalized fixed point theorems now yield growth
properties of the solutions of the fractional differential equations.

1. Introduction

In the study of fractional differential equations we arrive at an inte-
gral equation of the form

x(t) = F (t) +

∫ t

0

R(t− s)[u(s, x(s)) + v(s, x(s))]ds

where u(t, x) satisfies a contraction condition while

(Ax)(t) =

∫ t

0

R(t− s)v(s, x(s))ds

maps bounded sets into equicontinuous sets. We wish to set up a
fixed point mapping of the Krasnoselskii type so we need A to map
a closed, bounded, convex set into a compact set. That can be very
difficult using the supremum norm unless we find that there is a fixed
function φ : [0,∞) → <, φ(t) → 0 as t → ∞, and for ψ ∈ M then
|(Aψ)(t)| ≤ φ(t).

That is a severe condition. If we change to a weighted norm then
it is simple to show that A maps M into a compact set. In order to
use that weighted norm we must verify that all of our continuity and
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contraction properties hold using the weighted norm. This paper shows
how to put all of this together and then apply it to a concrete example.

That method works well for local results, particularly when we are
dealing with highly nonlinear terms, such as x3, where one would expect
to see solutions with finite escape time if we were to allow arbitrary
initial conditions. But if our problems are mildly nonlinear, if we want
to allow unbounded forcing functions, and if we want a global solution,
then fixed point theorems of the Schaefer type immediately come to
mind. There is a big problem with such theorems because they ask that
bounded sets map into compact sets. The problem is that bounded sets
in that norm can be absolutely enormous. The task of the investigator
is to trim those sets so that compactness will be as easily proved as it
was in the problems mentioned above.

A major part of this paper, then, is to extend both Schaefer’s fixed
point theorem (see [18] or [19, pp. 29]) and Krasnoselskii’s fixed point
theorem (see [12] or [19, pp. 31]) to cover problems of this type.

2. Preparation

We consider a fractional differential equation of Caputo type

(1) cDqx(t) = −a(t)x + v(t, x(t)) + f(t), 0 < q < 1, x(0) ∈ <

where v : [0,∞)×< → <, a, f : [0,∞) → < are all continuous. Under
these conditions (1) can be inverted as

(2) x(t) = x(0) +
1

Γ(q)

∫ t

0

(t− s)q−1[−a(s)x(s) + v(s, x(s)) + f(s)]ds.

For the inversion see [13, p. 54], [14], or [9, pp. 78, 86, 103], for
example. Conditions on f will be stated later, but generally we expect
f ∈ Lp[0,∞) or f ∈ BC where (BC, ‖·‖) will always denote the Banach
space of bounded continuous functions with the supremum norm. It is
assumed that there are positive constants ε and L with

(3) 0 < ε ≤ a(t) ≤ L.

It is then possible to find α < 1 and J > 0 with

(4) J = ε+ (1/2)(L− ε), |a(t) − J | ≤ αJ.

Having determined J we rewrite (2) as
(5)

x(t) = x(0)+
J

Γ(q)

∫ t

0

(t−s)q−1

[
−x(s)+x(s)−a(s)x(s)

J
+
v(s, x(s))

J
+
f(s)

J

]
ds.

We come now to a highly technical part of the paper. The following
formulation was given with detailed references in [4] and it all comes
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from parts of [15, pp. 205-224, 189-192]. We define the completely
monotone function

(6) C(t) =
Jtq−1

Γ(q)

and write the linear part of (5) as

(7) z(t) = x(0) −
∫ t

0

C(t− s)z(s)ds

having resolvent equation

(8) R(t) = C(t) −
∫ t

0

C(t− s)R(s)ds

with solution satisfying

(9) 0 < R(t) ≤ C(t),

∫ ∞

0

R(t)dt = 1,

and R is also completely monotone. Moreover, the variation of para-
meters formula yields

(10) z(t) = x(0)

[
1 −

∫ t

0

R(s)ds

]
.

In case it is needed, we mention that earlier we showed in [7] that for
x(0) nonzero then

(11) z ∈ Lp ⇐⇒ p > 1/q.

We can now use the nonlinear variation of parameters formula (see
[15, pp. 189-192]) to write (5) as

(12) x(t) = z(t) +

∫ t

0

R(t− s)

[
J − a(s))

J
x(s) +

v(s, x(s))

J

]
ds+ F (t)

where

(13) F (t) =
1

J

∫ t

0

R(t− s)f(s)ds.

We finish this section with a theorem from [6]. In this result, the
constant D depends only on the fixed function R(t) and the constant
S. The theorem is still true when the functions are restricted to any
interval [0, K].

Theorem 2.1. There is a constant D > 0 so that if 0 < t2 < t1 <∞,
if x ∈ BC with |v(t, x(t))| ≤ S, and if 0 < q < 1 given in (1), then

L : =

∣∣∣∣
∫ t1

0

R(t1 − s)v(s, x(s))ds

−
∫ t2

0

R(t2 − s)v(s, x(s))ds

∣∣∣∣ ≤ D|t1 − t2|q.



4 T. A. BURTON AND BO ZHANG

While it is easy to see that the function f is smoothed in passing to
F , this is the first significant result indicating that the transformation
from (5) to (12) has greatly smoothed the equation. We will show that
by using a different norm the transformed function v(t, x) will actually
map bounded sets into compact sets. But if we are to use the new norm
then we must show that our operations are still continuous in the new
norm and that the contraction from [(J − a(t))/J ]x in the supremum
norm will remain a contraction in the new norm. That is the task of
the next section.

3. A weighted norm

We will define a certain Banach space (B, | · |g) and then from (12)
defined a mapping by φ ∈ B implies that

(14) (Pφ)(t) = (Aφ)(t) + (Bφ)(t)

where

(15) (Aφ)(t) =
1

J

∫ t

0

R(t− s)v(s, φ(s))ds

and

(16) (Bφ)(t) = z(t) + F (t) +

∫ t

0

R(t− s)

[
(J − a(s))

J
φ(s)

]
ds.

As noted above, B is a contraction in the supremum norm in BC when
F is bounded. We mention that if f is bounded, then F is bounded.

It turns out that continuity and compactness of the operator A on
a bounded set M is greatly enhanced by working in the Banach space
(B, | · |g) where g : [0,∞) → [1,∞) is continuous, g(0) = 1, g ∈↑ ∞ as
t ↑ ∞, and φ ∈ B if φ : [0,∞) → < is continuous and

(17) |φ|g := sup
t≥0

|φ(t)|
g(t)

<∞.

See [3, pp. 172-3] for properties of this space. We already know that
if M is a set bounded in the supremum norm and if A : M → BC and
is bounded in the supremum norm, then AM will be equicontinuous.
If A is continuous on M in the supremum norm, then we change to
the weighted norm. We now show that A is continuous on M in the
weighted norm. Following that, we will refer to [3, pp. 172-3] to see
that AM is contained in a compact set in that space.

Theorem 3.1. Let K > 0 be given and let M ⊂ B be the closed set
in (B, | · |g) of continuous functions φ : [0,∞) → < with ‖φ‖ ≤ K,
M = {φ ∈ B|‖φ‖ ≤ K}. If A : M → BC and is bounded in the
supremum norm, say ‖AM‖ ≤ K∗, then A is continuous on M in the
norm | · |g.
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Proof. We actually prove uniform continuity. Thus, to say that A is
continuous on M is to say that for each ε > 0 there is a δ > 0 such
that φ, η ∈ M and |φ− η|g < δ implies that |Aφ− Aη|g < ε. To show
this continuity, let ε > 0 be given.

There are two distinct parts. Notice that with φ, η ∈ M then
‖Aφ‖, ‖Aη‖ ≤ K∗ so for T > 0 with g(T ) > 2K∗/ε we have

sup
t≥T

|(Aφ)(t) − (Aη)(t)|
g(t)

≤ 2K∗

g(T )
< ε.

Thus, we need only work on 0 ≤ t ≤ T .
Now v(t, x) is continuous for −K ≤ x ≤ K and 0 ≤ t ≤ T so it

is uniformly continuous. Thus, for each ε > 0 there is a δg(T ) > 0
such that |x|, |y| ≤ K and |x− y| < δg(T ) and 0 ≤ t ≤ T implies that
|v(t, x) − v(t, y)| < ε. Denote by | · |[0,T ] the supremum on [0, T ].

If φ, η ∈M and |φ− η|g < δ, then |φ(t) − η(t)|[0,T ] < δg(T ) and

|v(t, φ(t)) − v(t, η(t))|[0,T ] < ε.

Hence,

sup
0≤t≤T

|(Aφ)(t) − (Aη)(t)|
g(t)

= sup
0≤t≤T

1

g(t)

∫ t

0

R(t− s)|v(s, φ(s))− v(s, η(s))|ds

≤ sup
0≤t≤T

1

g(t)

∫ t

0

R(t− s)εds ≤
∫ t

0

R(t− s)εds < ε,

as required. �

If we change norm for the compact part of the mapping, then we
must change it for the contraction part.

Theorem 3.2. If u(t, x) = [(J − a(t))/J ]x satisfies a contraction con-
dition for α < 1 in the supremum norm (i.e., |J − a(t)| ≤ αJ), then B
satisfies a contraction condition for the same constant α with respect
to the g-norm.
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Proof. Let φ, ψ ∈ B and let t > 0 be arbitrary but fixed. Then∣∣∣∣
(Bφ)(t) − (Bψ)(t)

g(t)

∣∣∣∣

=

∣∣∣∣
∫ t

0

R(t− s)[u(s, φ(s))− u(s, ψ(s))]

g(t)
ds

∣∣∣∣

≤
∫ t

0

R(t− s)|u(s, φ(s)) − u(s, ψ(s))|
g(s)

ds

≤
∫ t

0

R(t− s)ds sup
0≤s≤t

|u(s, φ(s)) − u(s, ψ(s))|
g(s)

≤
∫ t

0

R(t− s)ds sup
0≤s≤t

α|φ(s) − ψ(s)|
g(s)

≤
∫ t

0

R(t− s)ds sup
t≥0

α|φ(t) − ψ(t)|
g(t)

≤ α|φ− ψ|g.
This shows that we have a fixed upper bound so we can go back and

take the supremum at each step. We have

sup
t≥0

∣∣∣∣
(Bφ)(t) − (Bψ)(t)

g(t)

∣∣∣∣

= sup
t≥0

∣∣∣∣
∫ t

0

R(t− s)[u(s, φ(s)) − u(s, ψ(s))]

g(t)
ds

∣∣∣∣

≤ sup
t≥0

∫ t

0

R(t− s)|u(s, φ(s)) − u(s, ψ(s))|
g(s)

ds

≤ sup
t≥0

α|φ(t) − ψ(t)|
g(t)

= α|φ− ψ|g
as required. �

Our final theorem for this section can be found in [3, pp. 172-3],
Example 3.1.6, but the proof is given here for convenience.

Theorem 3.3. Let M be a closed, bounded, subset of BC and let AM
be bounded in BC. The set AM is contained in a compact subset of
(B, | · |g).

Proof. We want to show that if {φn} is any sequence residing in AM
then there is a subsequence converging to a continuous function ψ in the
closure of AM in (B, | · |g). By repeated application of Ascoli’s theorem
there is a continuous function ψ contained in the closure of AM and
there is a subsequence which converges uniformly to ψ on compact
subsets of [0,∞). To see this, there is a subsequence denoted by {φ1

n}
converging uniformly to a continuous function ψ on [0, 1] since {φn}
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is uniformly bounded and equi-continuous on [0, 1] by Theorem 2.1.
There is then a subsequence of this one, denoted by {φ2

n}, converging
uniformly to a continuous function ψ on [0, 2] which coincides with the
first named ψ on [0, 1]. Continuing, we get a subsequence of each of
the previous subsequences denoted by {φk

k} which converges uniformly
on compact subsets to a continuous function which we call ψ on all of
[0,∞).

Now, we want to show that {φk
k} converges to ψ in the g-norm. Let

ε > 0 be given and find N such that 2K∗ < εg(N) where ‖AM‖ < K∗.
Next, {φk

k} converges to ψ uniformly on [0, N ] since for k > N this is
a subsequence of {φN

k }. Also t ≥ N implies that for any n we have

|φn
n(t) − ψ(t)|
g(t)

≤ 2K∗

g(N)
< ε.

Thus we consider {φn
n} converging uniformly to ψ on [0, N ] and we take

n large enough that

|φn
n(t) − ψ(t)|
g(t)

≤ |φn
n(t) − ψ(t)| < ε.

This completes the proof. �

4. An example

We first consider the sublinear case which can never be a contraction
and, at the same time, illustrate the “built-in” perturbation. Notice
that we ask |x(0)| < 1 − (2/3

√
3). In fact, it is understood that there

is a perturbation, D(t, x), so that the equation is actually cDqx(t) =
−x1/3(t) +D(t, x). Once the set M is established for the unperturbed
problem, then the same conclusion holds for the perturbed problem
provided that for all φ ∈M we have

|x(0)| + |D(t, φ(t))| < 1 − 2

3
√

3
.

We are working with

cDqx(t) = −x1/3(t) + f(t), 0 < q < 1, ‖f‖ ≤ 1 − 2

3
√

3
, f ∈ C.

The system is in equilibrium at t = 0, but there is the persistent
perturbation, f(t), disturbing the equilibrium. Here are the details.

We will start out with J = 1 and then note that as J → 0, we can
pick up any x(0) or bounded perturbation.

Example 4.1. If |x(0)| < 1 − 2
3
√

3
then there is a solution of

cDqx = −x1/3(t), 0 < q < 1,

satisfying |x(t)| < 1 on [0,∞).
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Proof. The equation corresponding to (12) is

x(t) = z(t) +

∫ t

0

R(t− s)[x(s) − x1/3(s)]ds

and we need to find the maximum, say Q, of |x−x1/3| on some interval
[−L, L] with the property that Q < L. If we take

M = {φ : [0,∞) → <|‖φ‖ ≤ L}
and take |x(0)| ≤ L−Q, it will then be true that φ ∈ M implies that
Pφ ∈M . If we take L = 1, then we find the maximum to be Q = 2

3
√

3
.

And that solves the problem for J = 1. �

But the reader intuitively believes that we should obtain bounded-
ness for any x(0) and the intuition is correct. The solution resides in
a choice of J and we proceed as follows. For an arbitrary J > 0 our
equation (12) will have the integrand

x− (1/J)x1/3

and that function vanishes at x = 0 and x = J−3/2 with a maximum
absolute value of

Q =
2

3
√

3J3/2
.

on [−L, L] with L = J−3/2. We then need

|x(0)| ≤ J−3/2

(
1 − 2

3
√

3

)
.

As J ↓ 0, this value tends to ∞. In other words, any bounded pertur-
bation will yield a bounded solution.

The interested reader may consult [6] for an example with x1/3 re-
placed by x3. That type of problem would not yield the kind of global
results which we will seek in the coming sections.

5. An extension of Schaefer’s theorem

The mappings we used in the foregoing examples are very effective
for local results with highly nonlinear terms such as v(t, x) = x3. But
finding the mapping set M can be very tedious and restrictive; we
could not, for example, allow F to be unbounded. If we seek global
results with unbounded functions then Schaefer’s fixed point theorem
avoids all of that trouble, but adds something that is virtually never
satisfied unless we trivialize the problem. If we work in (B, | · |g) and
invoke Schaefer’s theorem we are forced to ask that the mapping maps
bounded sets into compact sets. But bounded sets in this space are
enormous and so is their image under the mappings with which we are
working.

Here is the idea we are developing. The setting is the Banach space
(B, | · |g) where | · |g is defined in (17) and φ ∈ B if φ : [0,∞) → < is
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continuous and |φ|g exists. A bounded set is contained in a ball of the
form

{φ ∈ B| |φ|g ≤ D}
for some D > 0. But if we restrict those functions to an arbitrary
interval [0, K] and map them according to Theorem 2.1 by a function

∫ t

0

R(t− s)v(s, φ(s))ds,

that truncated ball will be mapped into an equi-continuous set.
We are going to extend Schaefer’s theorem to a general situation

patterned after this mapping and we will use | · |g to be definite, but
many other norms would also work. Moreover, we will use contrac-
tions, but large contractions [2] can often be substituted so long as the
nonlinearities are not too large.

Lemma 5.1. Let η : [0,∞) → [0,∞) be continuous with η(t) → 0 as
t → ∞. If {φn} is a sequence in (B, | · |g) with |φn(t)|/g(t) ≤ η(t),
and if {φn} is equi-continuous on any interval [0, K], then there exists
a subsequence {φnk

} of {φn} that converges to a function φ ∈ B, i.e.,
|φnk

− φ|g → 0 as k → ∞, with |φ(t)|/g(t) ≤ η(t) for all t ≥ 0.

Proof. We first observe that |φn(t)|/g(t) ≤ η(t) for all t ≥ 0 implies that
{φn} is uniformly bounded on any compact subset of [0,∞). Since {φn}
is equi-continuous on any interval [0, K], we may repeatedly use As-
coli’s theorem on intervals [0, 1], [0, 2], ... to obtain a subsequence {φnk

}
converging uniformly on any compact subsets of [0,∞) to a continuous
function φ, i.e., |φnk

(s) − φ(s)|[0,`] → 0 as k → ∞ for each fixed ` > 0.
For each t ≥ 0 letting k → ∞ in the following inequality

|φ(t)|/g(t) ≤ |φ(t) − φnk
(t)|/g(t) + |φnk

(t)|/g(t)
≤ |φ(t) − φnk

(t)|/g(t) + η(t)

we obtain |φ(t)|/g(t) ≤ η(t) and so, φ ∈ B. Now let ε > 0 and choose
T > 0 so that η(t) < ε/2 for all t ≥ T . This yields

|φ(t) − φnk
(t)|/g(t) ≤ 2η(t) < ε for t ≥ T.

Since |φnk
(s) − φ(s)|[0,T ] → 0 as k → ∞, there exists N > 0 such that

k ≥ N implies that |φ(t) − φnk
(t)| < ε for 0 ≤ t ≤ T and thus,

|φ(t) − φnk
(t)|/g(t) ≤ |φ(t) − φnk

(t)| < ε

for all 0 ≤ t ≤ T and k ≥ N . Combining the two inequalities above,
we see that

|φnk
− φ|g < ε for k ≥ N.

This shows |φnk
− φ|g → 0 as k → ∞, and the proof is complete. �
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In the proof of the next result we introduce sets denoted by Gn.
Contrary to our geometrical intuition, it is true that they are closed,
bounded, and convex which are necessary properties as we apply Schauder’s
theorem. The proof begins by following two lemmas of Rothe [17] and
then follows the ideas of Schaefer [18] which are conveniently displayed
in the book by Smart [19, pp. 26-32].

Theorem 5.2. Let T : B → B be continuous and suppose that if
H ⊂ B is bounded then TH is equi-continuous when the functions in
H are restricted to any interval [0, K]. If, in addition, there exists a
continuous function η : [0,∞) → [0,∞) with η(t) → 0 as t → ∞ such
that |(Tφ)(t)|/g(t) ≤ η(t) for all φ ∈ H, then either

(i) x = λTx has a solution for λ = 1, or
(ii) the set of all such solutions, 0 < λ < 1, is unbounded.

Proof. For any n > 0 let

Gn = {φ ∈ B| |φ|g ≤ n}.
First, there is a continuous map rn : B → B with rnTB ⊂ Gn. Indeed,
let n > 0 and G = Gn be fixed. We denote by Go the interior of G and
by ∂G the boundary of G. Define the radial retraction r : B → G by
[19, pp. 26]

rx =

{
x if x ∈ G
nx/|x|g if x 6∈ G

It is then true that
(i) r is a continuous retraction of B onto G,
(ii) if rx ∈ Go then rx = x,
(iii) if x /∈ G then rx ∈ ∂G.

From the definitions of rx and | · |g, we also see that |(rx)(t)| ≤ |x(t)|
for all x ∈ B and t ≥ 0.

With this in hand we go directly to the proof of Schaefer’s theorem
[19, pp. 29-30]. For any n > 0, if we choose rn as the radial retraction
of B onto Gn defined above, then the mapping rnT maps B into Gn.
We drop the subscripts and call them r and G.

To see that rT is a compact map on G, let {φm} be any sequence
in rTG, and let φm = rTxm with xm ∈ G. Now, {Txm} is uniformly
bounded and equi-continuous on every interval [0, K]. By the continu-
ity of r, we see that {rTxm} is also equi-continuous on [0, K] and

|φm(t)|/g(t) = |rTxm(t)|/g(t) ≤ |Txm(t)|/g(t) ≤ η(t)

for all t ≥ 0. By Lemma 5.1, there exists a subsequence of {φm} that
converges to a function φ ∈ B. Thus, the mapping rT is compact on
G.

By Schauder’s second theorem rT has a fixed point, x, in G. Either
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(i) |Tx|g ≤ n, in which case Tx = rTx = x, or
(ii) |Tx|g > n, in which case |x|g = |rTx|g = n so x = rTx implies

that x = n
|Tx|gTx = λTx with 0 < λ < 1.

Thus, for some (possibly large) n we get Tx = x or the set of solutions
x = λTx is unbounded. �

The following example shows how the function η can be determined
when T is in the form of mapping A in (15).

Example 5.3. Let T : B → B be defined by

(Tφ)(t) =

∫ t

0

R(t− s)φ1/3(s)ds.

For φ ∈ B and |φ|g ≤ L, we have

|(Tφ)(t)|/g(t) ≤
∫ t

0

R(t− s) [|φ(s)|/g(s)]1/3 ds/g2/3(t)

≤ L1/3/g2/3(t) =: η(t).

6. A Krasnoselskii-Schaefer fixed point theorem

Krasnoselskii studied a paper by Schauder on partial differential
equations and formulated the following hypotheses for systems which
are, in some sense, stable: The inversion of a perturbed differential
operator yields the sum of a contraction and compact map. Accord-
ingly he formulated a fixed point theorem taking both mappings into
account. It was a combination of Banach’s contraction mapping prin-
ciple and Schauder’s fixed point theorem. For Krasnoselskii’s result,
the aforementioned difficulty of setting up a self-mapping set, M , was
even more pronounced than in the case of Schauder’s theorem. There
was certainly a need to avoid that difficulty and one way was given in
[5] as follows.

Theorem 6.1. Let (B, | · |) be a Banach space, A, B : B → B, B a
contraction with constant α < 1, and A continuous with A mapping
bounded sets into compact sets. Either

(i) x = λB(x/λ) + λAx has a solution in B for λ = 1, or
(ii) the set of all such solutions 0 < λ < 1 is unbounded.

At this point it would be possible to relate the proof of that theorem
and give a simple proof of an advance to the g-norm as a corollary to
Theorem 5.2. However, it turns out that we can take ideas from [10]
and remove the λ from the operator B. Here are the details.

Theorem 6.2. Let (B, |·|g) be a Banach space, A, B : B → B, B a con-
traction with contraction constant α < 1, and A continuous. Assume
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that if H ⊂ B is bounded then AH is equi-continuous when the func-
tions in H are restricted to any interval [0, K]. Finally, assume that
there exists a continuous function η : [0,∞) → [0,∞) with η(t) → 0 as
t→ ∞ such that |(Aφ)(t)|/g(t) ≤ η(t) for all φ ∈ H. Either

(i) x = Bx + λAx has a solution in B for λ = 1, or
(ii) the set of all such solutions, 0 < λ < 1 is unbounded.

Proof. For each positive integer n, let Gn and rn be defined in the proof
of Theorem 5.2. We choose n sufficiently large so that B∅ ∈ Gn where
∅ is the zero element of B. Now consider the mapping (I − B)−1rnA.
For each φ ∈ B, we have rnAφ ∈ Gn. Moreover, if y = (I −B)−1rnAφ,
then y = By + rnAφ. We write y = By − B∅ +B∅ + rnAφ, and so

|y|g ≤ |By −B∅|g + |B∅|g + |rnAφ|g ≤ α|y|g + 2n.

Thus, |y|g ≤ 2n/(1 − α) =: n∗. Define

Gn∗ = {φ ∈ B| |φ|g ≤ n∗}.
Since (I − B)−1 is continuous, we see that (I − B)−1rnA : Gn∗ → Gn∗
is also continuous. Moreover, (I − B)−1rnA is compact on Gn∗ by
the proof of Theorem 5.2 and the continuity of (I − B)−1. Thus, by
Schauder’s second theorem it has a fixed point, x, in Gn∗, i.e., x =
Bx + rnAx (x depends on n). For some (possibly large) n, we have
either

(i) |Ax|g ≤ n, in which case Ax = rnAx and x = Bx + Ax, or
(ii) |Ax|g > n for all n, in which case |rnAx|g = n and

rnAx =
n

|Ax|g
Ax =: λAx.

This yields x = Bx+ λAx and moreover

n = |rnAx|g = |x− Bx|g ≤ (1 + α)|x|g + |B∅|g.
Denote x by xn. If (i) does not hold, then |xn|g → ∞ as n→ ∞. This
completes the proof. �

7. Examples

It may be disquieting to see the introduction of g in these problems
without seeing it related to any of the terms in (2). We are now going
to work through a series of three simple examples which are chosen
to show easily and clearly what has been gained and the various roles
that g can play in a problem and how the properties of g can be closely
dictated by F and v. First, we will consider

(12) x(t) = z(t) +

∫ t

0

R(t− s)

[
J − a(s))

J
x(s) +

v(s, x(s))

J

]
ds+ F (t)

with F (t) bounded. We will quickly show that there is a bounded
solution and we will see that there is no need to specify | · |g except
to say g is continuous, g(0) = 1, and g ∈↑ +∞. When no g need
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be specified we get boundedness of solutions in the supremum norm.
As we move to the next problems, g must be specified and it plays a
central role.

Next, we will modify (12) by allowing F (t) to become unbounded.
This will force us to select a very definite g(t) which will work into the
equation in such a way that the boundedness work which we did in the
first case will give us a solution which is bounded in the g-norm.

We start out with v(t, x) = x1/3 in the first two problems, but for
the third problem we take v(t, x) = h(t)x1/3 where h(t) is continuous
and unbounded. Then a new g will be worked into the equation so that
again we will use exactly the same argument to get a solution bounded
in the new g-norm. We will also see that the modified v(t, x) will map
bounded sets into equi-continuous sets on truncated intervals [0, K].

In these problems,

(Bx)(t) = z(t) + F (t) +

∫ t

0

R(t− s)

[
(J − a(s))

J

]
x(s)ds.

The remainder of the map defines the operator (Ax)(t) with v(t, x) be-
ing specified above. A few words should be said about the compactness
of A. We discuss it for the third problem since it is most complicated.
A bounded set H ⊂ B is typified by

{φ ∈ B||φ(t)| ≤ Lg(t), 0 ≤ t <∞}.
The set AH is

AH = {Aφ ∈ B|(Aφ)(t) =

∫ t

0

R(t− s)h(s)φ1/3(s)ds, φ ∈ H}.

This is a set of functions bounded in the supremum norm when we
truncate it by 0 ≤ t ≤ K. Theorem 2.1 applies to it very well and it is
equi-continuous when the functions in H are restricted to [0, K].

By Theorem 6.2, to show that B +A has fixed point in B it suffices
to establish the existence of an a priori bound for all possible fixed
points of B + λA, 0 < λ < 1. We illustrate this in three cases.

First case

First, if F is bounded, if v(t, x) maps bounded sets in (B, | · |g)
into bounded sets in this space, then the equi-continuity conditions of
Theorem 6.1 are satisfied using Theorem 2.1. Specifically, suppose as
we did earlier that v(t, x) = x1/3 so that by the contraction condition in
(4) and for arbitrary x(0) we obtain an a priori bound on the solution
of x = Bx+ λAx as follows. We have

|x(t)| ≤ |z(t)| +
∫ t

0

R(t− s)[α|x(s)|ds+ λ|x1/3(s)|]ds+ |F (t)|

≤ |x(0)| +
∫ t

0

R(t− s)[α|x(s)| + |x1/3(s)|]ds+ |F (t)|(I)
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and both |x(0)| and |F | are fixed. Thus, we need only show that
any solution of this inequality is bounded for a fixed bound which is
independent of λ.

For the given α ∈ (0, 1) there is a number M > 0 so that

|x1/3| ≤M +
(1 − α)

2
|x|.

If we let C1 = |x(0)|+M +‖F‖ then we have the fundamental relation
which we will see three times

(II) |x(t)| ≤ C1 +
1 + α

2

∫ t

0

R(t− s)|x(s)|ds.

It is then elementary to show that x(t) is bounded and if X is either
the maximum on an arbitrary interval [0, U ] or the supremum on [0,∞)
of |x| then

X ≤ C1 +
1 + α

2
X

or

(III) X ≤ C1
2

1 − α
.

This is the a priori bound and it is a bound in the supremum norm.
That is the bound uniform in λ.

Now we consider (Aφ)(t) where φ ∈ H and H is bounded. This
means that there is a positive number L and if φ ∈ H then |φ(t)| ≤
Lg(t). Thus,

|(Aφ)(t)|/g(t) ≤
∫ t

0
R(t− s)|φ(s)/g(s)|1/3ds

g2/3(t)

≤ L1/3

g2/3(t)
=: η(t).

Thus, by Theorem 6.2, there is a solution of (12) on [0,∞) which is
bounded as indicated with the bound depending only on α, |x(0)|, ‖F‖.
Any g will suffice. It is only used in the compactness argument for Ax
and that argument was described above concerning the third problem
which is the most complicated.

Both of the other problems will be reduced to (I), (II), and (III)
but x will be replaced by x(t)/g(t) and the same bound will be in the
g-norm.

Second case

We consider again the same equation with the only change being
that F (t) is unbounded. Clearly, no solution could be bounded in the
supremum norm; if so, then the integral in (12) is bounded, leaving
F (t) free to be unbounded and taking x(t) with it. But g(t) will give
us a growth condition on the solution. None of our work in Section 4
would handle such problems.
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The weighting function g will be chosen as a continuous strictly in-
creasing function g(t) with g(0) = 1 and |F (t)/g(t)| ≤ K for some
positive number K. With |x(0)| fixed and x being the solution of
x = Bx+ λAx, 0 < λ < 1, we form

|x(t)|
g(t)

≤ |x(0)| +K +

∫ t

0

R(t− s)

[
α|x(s)|
g(s)

+

∣∣∣∣
x(s)

g(s)

∣∣∣∣
1/3 ]

ds

which is parallel to (I) and we obtain an exact parallel to both (II) and
(III). Our conclusion is that

|x(t)|
g(t)

≤ C1
2

1 − α
or

|x|g ≤ C1
2

1 − α
.

The same η argument works here.
Remark Now we see that our choice for g was arbitrary as far as

the mapping T is concerned, just as in the former case. However, it is
the forcing function now which demands that g be chosen so that F/g
is bounded and, as F is unbounded, that will automatically select a g
taking care of the mapping T .

Third case

Continue with the second case, but give x1/3(s) a coefficient h(t)
which is unbounded. Choose g(t) as in the Second case except that

|F (t)/g(t)| + |h(t)/g2/3(t)| ≤ Γ

for some positive number Γ. Let x be the solution of x = Bx+λAx, 0 <
λ < 1, and form the inequality as before

|x(t)|
g(t)

≤ |x(0)| + Γ +

∫ t

0

R(t− s)

[
α|x(s)|
g(s)

+
|h(s)x1/3(s)|

g(s)

]
ds.

Notice that

h(s)x1/3(s)

g(s)
=

h(s)x1/3(s)

g2/3(s)g1/3(s)
≤ Γ

∣∣∣∣
x(s)

g(s)

∣∣∣∣
1/3

.

Thus, our inequality becomes

|x(t)|
g(t)

≤ |x(0)| + Γ +

∫ t

0

R(t− s)

[
α|x(s)|
g(s)

+ Γ

∣∣∣∣
x(s)

g(s)

∣∣∣∣
1/3]

ds

which is again a perfect copy of (I) so that (II) and (III) will follow
with a slight change in constants.

For the η argument, now go back and make g just a bit larger. Let
H ⊂ B be bounded with φ ∈ H implying that |φ|g ≤ L. We then have

|φ(s)|[0,K] ≤ g(K)L.

and
|h(s)φ1/3(s)|[0,K] ≤ |h(s)|[0,K][g(K)L]1/3 =: L∗.



16 T. A. BURTON AND BO ZHANG

By Theorem 2.1, AH is equi-continuous when the functions in H are
restricted to [0, K].

The conditions of Theorem 6.2 are satisfied and we have global ex-
istence of a solution with a growth condition g.

Remark This is the first time we have seen the need for g based
on the growth of the operator T . Thus, this g is doing double duty.
It is providing a definite rate of growth to yield compactness and it is
providing a growth rate for the solution. Again, our work in Section 4
would never have handled this kind of problem. Our new fixed point
theorems have added a definite dimension to the scope of problems
which can be treated.

8. Literature

Both Schaefer’s and Krasnoselskii’s results have been widely used
for many decades. Recently there have been a number of contribution
which relate to our work here.

We would first mention Park [16] who gives a very good summary
of work related to Krasnoselskii’s theorem and concludes with a con-
tribution of his own which seems to be very general.

Our work has centered on fractional differential equations and weak-
ening the compactness requirement. The examples show that the power
of the results stems from the particular properties of the resolvent,
R(t). We have focused on the fact that weakening compactness de-
mands strengthening continuity which is achieved mainly through the
nice properties of R(t). There are two papers which deal in depth with
very general continuity and compactness questions. First, we would
point to Barroso [1] and, more recently, Garcia-Falset [11].

All three of the aforementioned papers list numerous other references
to Krasnoselskii’s theorem. We are unaware of work in this context
which has so completely focused on a weighted norm to achieve the
compactness.
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