
THE NONLINEAR WAVE EQUATION AS A LIÉNARD EQUATION

T.A. Burton

1. Introduction

The equation

(1.1) u′′ + f(u)u′ + g(u) = 0, ′ = d/dt,

with

(1.2) f(u) > 0 and ug(u) > 0 for u 6= 0

and

(1.3) f and g continuous

has been the subject of much interest for about sixty years and it can now be said that

qualitative properties are well known. Writing (1.1) as the system

(1.4)

{

u′ = y

y′ = −f(u)y − g(u),

the main questions were:

(A) Determine conditions under which all solutions (u(t), y(t)) are bounded.

(B) Determine conditions under which all solutions (u(t), y(t)) → (0, 0) as t→ ∞.

Much of the investigation was carried out by means of Liapunov’s direct method and the

natural Liapunov function for (1.4) is an energy expression (which goes back to Lagrange)

(1.5) V1(u, y) = 2

∫ u

0

g(s)ds + y2.

Then along a solution of (1.4) we have V1(u(t), y(t)) = V1(t) satisfying

(1.6) V ′
1(t) = −2f(u)y2 ≤ 0.
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Thus, for any solution (u(t), y(t)), both V (t) and y(t) are bounded. From the bound on y

it follows readily that solutions can be defined for all future time.

But this Liapunov function has two deficiencies:

(C) If G(u) =

∫ u

0

g(s)ds is bounded either for u > 0 or for u < 0, then the fact that

V1(t) is bounded does not imply that u(t) is bounded.

(D) Since V ′
1
(t) is not negative definite, it is not clear that a bounded solution (u(t), y(t))

tends to zero as t→ ∞.

Problem (D) was resolved by a result of Barbashin [3] (obtained independently by

LaSalle [11]) which states that if M = {(u, y)|V ′
1 (u, y) = 0} and if E is the largest invariant

set in M , then every bounded solution approaches E as t→ ∞. Here, M = {(0, 0)}.

While this is a very useful result, it is still highly advantageous to find a Liapunov

function having a negative definite derivative when questions of added perturbations or

delays are considered.

Both difficulties (C) and (D) were resolved by noting that the Liénard plane

(1.7)







u′ = z −

∫ u

0

f(s)ds

z′ = −g(u)

can utilize the same general form of Liapunov function

(1.8) V2(u, z) = 2

∫ u

0

g(s)ds + z2

with derivative along a solution satisfying

(1.9) V ′
2(t) = −2g(u)

∫ u

0

f(s)ds ≤ 0.

Thus, by defining

(1.10) V (u, y) = V1 + V2 = 4

∫ u

0

g(s)ds + y2 +

(

y +

∫ u

0

f(s)ds

)2

we have (along solutions of (1.4))

(1.11) V ′(t) = −2

[

g(u)

∫ u

0

f(s)ds + f(u)y2

]

which is negative definite. Using these ideas, we showed [4] that all solutions of (1.4) are

bounded if and only if

(1.12)

∫ ±∞

0

[f(u) + |g(u)|]du = ±∞.



THE NONLINEAR WAVE EQUATION AS A LIÉNARD EQUATION 3

Numerous authors have considered the wave equation (and related problems) in one or

more spatial dimensions with some sort of damping. It is both interesting and useful to

note that there is a “Liénard plane” for many of these equations and that there is a second

natural Liapunov function which results in analysis parallel to the foregoing.

2. First order damping

The problem to be considered here is

(2.1) utt = (a(x)g(ux))x − f(u)ut, u(t, 0) = u(t, 1) = 0,

where

(2.2) xg(x) > 0 if x 6= 0, a and f are positive

and

(2.3) a, f, and g are continuous on R .

Such equations, as well as perturbed forms, are considered in ([1], [7], [16]), for example,

although usually as

utt = uxx − f(u)ut, u(t, 0) = u(t, 1) = 0.

In the generality considered here, no claim is being made concerning existence of so-

lutions. This study centers on forms of a priori bounds, a usual first step in proving

existence. These results here concern boundedness and stability of solutions so long as

they exist. Methods of proving existence are found in [6] and [16], for example.

The usual system for (2.1) is

(2.4)

{

ut = v

vt = (a(x)g(ux))x − f(u)v

and it has a well-known Liapunov function for a given solution (u(t, x), v(t, x)) given by

(2.5) V1(t) =

∫

1

0

[

2

∫ ux

0

a(x)g(s)ds + v2

]

dx.

Then

V ′
1
(t) =

∫ 1

0

[2a(x)g(ux)uxt + 2vvt]dx

= 2a(x)g(ux)ut |
1

0

+

∫ 1

0

{−2(a(x)g(ux))xut + 2ut[(a(x)g(ux)x − f(u)ut]}dx
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(by the induced boundary conditions ut(t, 0) = ut(t, 1) = 0)

=

∫ 1

0

−2f(u)u2

tdx

so that

(2.6) V ′
1
(t) = −2

∫

1

0

f(u)v2dx,

closely analogous to (1.6).

Problems (C) and (D) of Section 1 arise here as well. Results analogous to that of

Barbashin are applied to show that bounded solutions approach certain sets where V ′ is

zero ([2], [7], [9], [16], [17]).

But no one seems to have noticed that there is an effective “Liénard plane”

(2.7)











ut = z −

∫ u

0

f(s)ds

zt = (a(x)g(ux))x

with Liapunov function of the same form

(2.8) V2(t) =

∫ 1

0

[

2

∫ ux

0

a(x)g(s)ds + z2

]

dx

having derivative

V ′
2(t) =

∫

1

0

[

2a(x)g(ux)uxt + 2

(

ut +

∫ u

0

f(s)ds

)

(a(x)g(ux))x

]

dx

= 2a(x)g(ux)ut |
1

0

+

∫

1

0

[

− 2(a(x)g(ux))xut + 2ut(a(x)g(ux))x

+ 2(a(x)g(ux))x

∫ u

0

f(s)ds

]

dx

= 2

∫ 1

0

(a(x)g(ux))x

∫ u

0

f(s)ds dx

(a form analogous to (1.9) when we realize that (a(x)g(ux))x with the stated boundary

conditions is a negative operator)

= 2a(x)g(ux)

∫ u

0

f(s)ds |10 −2

∫ 1

0

a(x)g(ux)f(u)uxdx
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or

(2.9) V ′
2
(t) = −2

∫ 1

0

a(x)g(ux)uxf(u)dx ≤ 0.

When we form V (t) = V1(t) + V2(t) we obtain

(2.10) V (t) =

∫

1

0

[

4

∫ ux

0

a(x)g(s)ds + u2

t +

(

ut +

∫ u

0

f(s)ds

)2
]

dx

with

(2.11) V ′(t) = −2

∫

1

0

[f(u)u2

t + a(x)g(ux)uxf(u)]dx.

These results can be summarized as follows.

THEOREM 1. Suppose that u(t, x) is a solution of (2.1) for 0 ≤ t < ∞ and let (2.2)

and (2.3) hold. Then for V (t) defined by (2.10), V (t) is nonnegative and satisfies (2.11).

Various conclusions can be drawn depending on the properties ascribed to a, f , and g;

while Liapunov’s direct method is well-known for such problems, it seems most worthwhile

to make explicit consequences of (2.10) and (2.11) by presenting a simple stability analysis

for the linear case. In the nonlinear case, Jensen’s inequality is very effective in V ′ (see

[13]).

EXAMPLE 1. Let g(s) = s, f(u) = α > 0, a(x) = 1. Then

V (t) =

∫

1

0

[2u2

x + v2 + (v + αu)2]dx

so there is a K > 0 with

|u(t)|2H1 + |v(t)|2H0 ≤ V (t) ≤ K
(

|u(t)|2H1 + |v(t)|2H0

)

and

V ′(t) = −2α
(

|u(t)|2H1 + |v(t)|2H0

)

with H1 and H0 being the standard Sobolev norms. Incidentally, according to Pazy [14;

p. 220] the spaces H1 and H0 are appropriate here.

We now show that the zero solution of this linearized (2.4) is uniformly asymptotically

stable in |u(t)|2H1 + |v(t)|2H0 . An abstract proof using dynamical system theory is found in

Henry [9; pp. 82–97].
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PROOF. Given ε > 0 we must find δ > 0 such that

|u(0)|2H1 + |v(0)|2H0 < δ implies that

|u(t)|2H1 + |v(t)|2H0 < ε for t > 0;

as the system is autonomous, there is uniform stability. Take Kδ = ε. Then V ′(t) ≤ 0

implies that

|u(t)|2H1 + |v(t)|2H0 ≤ V (t) ≤ V (0) ≤ K(|u(0)|2H1 + |v(0)|2H0) < Kδ = ε,

as required.

Next, for a given L > 0 and µ > 0 we must find T > 0 such that |u(0)|2H1 + |v(0)|2H0 < L

and t ≥ T imply that |u(t)|2H1 + |v(t)|2H0 < µ.

Pick η = µ/K and let |u(0)|2H1 + |v(0)|2H0 < L. Next, note that

(a) if there is a t1 > 0 with |u(t1)|
2

H1 + |v(t1)|
2

H0 < η, then for t ≥ t1 we have |u(t)|2H1 +

|v(t)|2H0 ≤ V (t) ≤ V (t1) < Kη = µ;

(b) as long as |u(t)|2H1+|v(t)|2H0 ≥ η then V ′(t) ≤ −2αη and so 0 ≤ V (t) ≤ V (0)−2αηt <

KL− 2αηt, a contradiction if t > KL/2αη =: T .

This completes the proof.

A wealth of results parallel to those of the example can be obtained under various

assumptions on the functions. The fact that no reference need be made to invariant sets

means that geneal perturbations can be considered. In the last section we perturb the

equation with a delay term u(t− 1, x)c(t) and get a type of asymptotic stability.

3. Third order damping

Greenberg, MacCamy, and Mizel [6] consider the equation

ρ0utt = (σ(ux))x + λuxtx, u(t, 0) = u(t, 1) = 0,

using the term λuxtx as damping. This type of problem can also be treated in the “Liénard

plane”.

Consider the equation

(3.1) utt = (g(ux))x + (h(ux))xt, u(t, 0) = u(t, 1) = 0,

with

xg(x) > 0 if x 6= 0,(3.2)

g′(x) and h′(x) positive and continuous on R .(3.3)
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Let

(3.4)

{

ut = v

vt = (g(ux))x + (h(ux))xt

and define

(3.5) V1(t) =

∫

1

0

[

2

∫ ux

0

g(s)ds + v2

]

dx

so that

V ′
1
(t) =

∫ 1

0

{2g(ux)uxt + 2ut[(g(ux))x + (h(ux))xt]}dx

= 2g(ux)ut |
1

0 +

∫ 1

0

{−2(g(ux))xut + 2ut[(g(ux))x + (h(ux))xt]}dx

=

∫ 1

0

2ut(h(ux))xtdx

= 2ut(h(ux))t |
1

0
−2

∫

1

0

h(ux)tutxdx

so that

(3.6) V ′
1(t) = −2

∫ 1

0

h′(ux)u2

txdx.

Next, let

(3.7)

{

ut = z + (h(ux))x

zt = (g(ux))x

and define

(3.8) V2(t) =

∫ 1

0

[

2

∫ ux

0

g(s)ds + z2

]

dx

with

V ′
2(t) =

∫ 1

0

[2g(ux)uxt + 2zzt]dx

= 2g(ux)ut |
1

0
+

∫

1

0

{−2(g(ux))xut + 2[ut − (h(ux))x](g(ux))x}dx

= −2

∫ 1

0

(h(ux))x(g(ux))xdx
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so that

(3.9) V ′
2
(t) = −2

∫ 1

0

h′(ux)g′(ux)u2

xxdx.

Forming V (t) = V1(t) + V2(t) we have

(3.10) V (t) =

∫

1

0

{

4

∫ ux

0

g(s)ds + u2

t + [ut − (h(ux))x]2
}

dx

with

(3.11) V ′(t) = −2

∫ 1

0

[h′(ux)u2

tx + h′(ux)g′(ux)u2

xx]dx.

It is noted in [6; p. 717] that if φ ∈ C2 on [0,∞) × [0, 1], φ(t, 0) = φ(t, 1) = 0 for t ≥ 0

then

|φ(t)|L2 ≤ |φ(t)|∞ ≤ |φx(t)|L2 ≤ |φx(t)|∞

≤ |φxx(t)|L2 ≤ |φxx(t)|∞

(all of these norms are with respect to x). Thus, if

(3.12) h′(r) ≥ c1 > 0 and h′(r)g′(r) ≥ c2 > 0 for −∞ < r <∞

then there is a β > 0 with

(3.13) V ′(t) ≤ −β

∫

1

0

[u2

t + u2 + u2

x + u2

xx]dx.

From (3.10) we have

V (t) =

∫

1

0

{

4

∫ ux

0

g(s)ds + u2

t + [ut − (h(ux))x]2
}

dx

=

∫ 1

0

{

4

∫ ux

0

g(s)ds + u2

t + [ut − h′(ux)uxx]2
}

dx

=

∫

1

0

{

4

∫ ux

0

g(s)ds + 2

[

ut −
1

2
h′(ux)uxx

]2

+
1

2
h′(ux)2u2

xx

}

dx

≥
1

4

∫

1

0

{u2

t + c2
1
u2

xx}dx

≥ c3

∫ 1

0

{u2 + u2

t + u2

x + u2

xx}dx.
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These results are summarized as follows.

THEOREM 2. Let u(t, x) satisfy (3.1) on 0 ≤ t < ∞. If (3.2), (3.3), and (3.12) hold,

then V (t) defined in (3.10) is positive definite and satisfies (3.13).

4. A three dimensional problem

Webb [16] generalizes the problem of Section 3 to three spatial dimensions for the linear

case, but adds a nonlinear perturbation. He considers

wtt − α∆wt − ∆w = f(w)

where α > 0 and w(x, t) = 0 for x ∈ ∂Ω, t ≥ 0 with Ω a smooth bounded domain in

Rn for n = 1, 2, 3. Webb assumes that f ′(x) ≤ c0 for all x ∈ R with c0 ≥ 0, while

lim sup
|x|→∞

f(x)/x ≤ 0 and f(0) = 0.

The Liénard type transformation yields positive results for

utt = g1(ux)x + g2(uy)y + g3(uz)z + h1(ux)xt + h2(uy)yt + h3(uz)zt,

but in our discussion here we restrict attention to

(4.1) utt = ∆u+ α∆ut, u = 0 on ∂Ω.

Define

(4.2)

{

ut = v

vt = ∆u+ α∆v

and

V1(t) =

∫

Ω

1

2
[∇2u+ v2]dxdy dz

so that

V ′
1(t) =

∫

Ω

[uxuxt + uyuyt + uzuzt + ut(∆u+ α∆ut)]dw.

Here, dw = dxdy dz; subsequently, dS is the differential of surface on ∂Ω.

Using the divergence theorem and taking into account that u = 0 on ∂Ω, we have

(4.3) V ′
1
(t) = −α

∫

Ω

(u2

tx + u2

ty + u2

tz)dw.

More detail will be given for the more complicated case of V2.
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Next, use the Liénard transformation

(4.4)

{

ut = p+ α∆u

pt = ∆u

with

(4.5) V2(t) =

∫

Ω

1

2
[∇2u+ p2]dw

so that

V ′
2
(t) =

∫

Ω

[uxuxt + uyuyt + uzuzt + p(uxx + uyy + uzz)]dw.

Now the divergence theorem is

∫

Ω

∇ · F dw =

∫

∂Ω

n · F dS

where dw = dxdy dz, n is the normal, and dS is the surface differential. If we take

F = φ∇ψ then ∇ · F = φ∇ · ∇ψ + ∇φ · ∇ψ. Letting u = ψ and ut = φ we have

∇ · F = ut∇ · ∇u+ ∇ut · ∇u = ut∆u+ (utxux + utyuy + utzuz). Thus,

∫

Ω

ut∆u dw+

∫

Ω

(utxux + utyuy + utzuz)dw =

∫

∂Ω

n · φ∇ψdS = 0

and so
∫

Ω

(utxux + utyuy + utzuz)dw =

∫

Ω

−ut(uxx + uyy + uzz)dw.

Hence,

V ′
2(t) =

∫

Ω

[−ut∆u+ (ut − α∆u)∆u]dw

so that

(4.6) V ′
2(t) = −α

∫

Ω

(∆u)2dxdy dz.

Taking V (t) = V1(t) + V2(t) we get

(4.7) V (t) =

∫

Ω

[∇2u+ u2

t + (ut − α∆u)2]dxdy dz

with

(4.8) V ′(t) = −α

∫

Ω

[u2

tx + u2

ty + u2

tz + (∆u)2]dxdy dz.
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Under the conditions here, it is shown in Simpson and Spector [15; p. 26] that there is a

γ > 0 with

γ

∫

Ω

(u2

x + u2

y + u2

z)dw ≤

∫

Ω

(∆u)2dw.

Also, Hale [7; p. 136] notes that if φ ∈ H1
0
(Ω), then |φ|2L2 ≤ |∇φ|2L2/λ1 where λ1 is the

first eigenvalue of −∆ on H1
0 . Apply this to φ = ut and to φ = u. All of this shows that

there is a β > 0 with

(4.9) V ′(t) ≤ −β

∫

Ω

[u2 + u2

t + u2

x + u2

y + u2

z]dxdy dz.

These results are summarized as follows.

THEOREM 3. Let u satisfy (4.1) for 0 ≤ t < ∞ and let α > 0. Then V (t) defined by

(4.7) is nonnegative and V ′(t) satisfies (4.9).

5. A vector equation

Kato [10] considers a forced version of the vector equation

u′′ + f(u)u′ + g(u) = 0

and supposes that there is a vector function F (u) with f(u) = grad F (u), and a scalar

function G(u) for which grad G(u) = g(u). Here, f(u) is an n × n matrix, u and g are

n-vectors. Kato assumes variants of uT g(u) > 0, gT (u)F (u) > 0, uT f(v)u > 0 for u 6= 0

and all v. As he seeks boundedness, he usually asks that these conditions hold for |u| ≥ a,

a ≥ 0. The equation may be written as

{

u′ = v

v′ = −f(u)v − g(u)

or as the Liénard system
{

u′ = z − F (u)

z′ = −g(u)

and utilize the natural (energy) Liapunov functions

V1(u, v) = G(u) +
1

2
vT v

or

V2(u, z) = G(u) +
1

2
zT z.

Parallel to this, we consider

(5.1) utt = −f(u)ut + g(ux)x
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where u = u(t, x), u = (u1, ..., un), u(t, 0) = u(t, 1) = 0, t and x are scalars, there are F

and G with

f(u) = grad F (u), g(u) = grad G(u),(5.2)

{

uT g(u) > 0, gT (u)F (u) > 0, gT (u)f(v)u > 0

uT f(v)u > 0, if u 6= 0.
(5.3)

Write (5.1) as

(5.4)

{

ut = v

vt = −f(u)v + g(ux)x

and define

(5.5) V1(t) =

∫ 1

0

[

G(ux) +
1

2
vT v

]

dx

so that

V ′
1
(t) =

∫ 1

0

[gT (ux)uxt + vT vt]dx

= gT (ux)ut |
1

0 +

∫ 1

0

[−gT (ux)xut + vT (−f(u)v + g(ux)x)]dx

and therefore

(5.6) V ′
1(t) = −

∫ 1

0

vT f(u)v dx ≤ 0.

Next, write (5.1) as

(5.7)

{

ut = z − F (u)

zt = g(ux)x

and define

V2(t) =

∫ 1

0

[

G(ux) +
1

2
zT z

]

dx

with

V ′
2(t) =

∫ 1

0

[gT (ux)uxt + zT zt]dx

= gT (ux)ut |
1

0 +

∫ 1

0

[−gT (ux)xut + zT g(ux)x]dx

=

∫

1

0

[−gT (ux)xut + gT (ux)x(ut + F (u))]dx

=

∫ 1

0

gT (ux)xF (u)dx = gT (ux)F (u) |10 −

∫ 1

0

gT (ux)f(u)uxdx
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or

(5.9) V ′
2
(t) = −

∫ 1

0

gT (ux)f(u)uxdx.

Taking V (t) = V1(t) + V2(t) we have

(5.10) V (t) =

∫ 1

0

[

2G(ux) +
1

2
uT

t ut +
1

2
(ut + F (u))T (ut + F (u))

]

dx

and

(5.11) V ′(t) = −

∫

1

0

[uT
t f(u)ut + gT (ux)f(u)ux]dx.

These results are summarized as follows.

THEOREM 4. Let u(t, x) satisfy (5.1) for 0 ≤ t < ∞ and let (5.3) hold. Then V (t)

defined by (5.10) is nonnegative and satisfies (5.11).

6. Applications

Boundedness of solutions and asymptotic stability of an unperturbed equation can fre-

quently be proved using a Liapunov function whose derivative is negative semi-definite.

But when arbitrary (bounded) perturbations or delays are added, then the same Liapunov

function will generally not yield boundedness. The book by Hale [7] shows numerous exam-

ples of the type displayed here using only the V1; he can even deal with large perturbations

so long as they are of a very special type. But on pp. 132–3 he notes that when a periodic

perturbation is added, then changes in the Liapunov function must be made. He follows

the changes made by Ghidaghlia and Témam [5], Babin and Vishik [2], Haraux [8], and

Lopes and Ceron [12] which are largely exercises in desperation that work to a degree for

quadratic forms. The Liénard transformation is a formal solution to achieving a negative

definite derivative as well as providing Liapunov functions which are radially unbounded.

Moreover, the form of V1 + V2 has proved to be fundamental in that for the ODE

case, the zero solution is globally asymptotically stable if and only if V1 + V2 is radially

unbounded. For these PDE’s, owing to the far more complex spaces, it remains to be seen

whether or not the V1 + V2 will prove to be so fundamental. That is a question which will

require much time, space, and effort to resolve.

The examples presented here do not show the power of the foregoing results; instead,

they show only the types of consequences.

EXAMPLE 2. Every solution u(t, x) of

(6.1) utt = (uxe
−u2

x)x − ut, u(t, 0) = u(t, 1) = 0,
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which exists on 0 ≤ t <∞ is bounded in the sense that

∫ 1

0

[u2(t, x)+u2

t (t, x)]dx is bounded.

PROOF. The equation is of the form of (2.1) with a(x) = 1, g(x) = xe−x2

, and f(x) = 1.

Using (2.10) we have
∫

1

0

[u2

t + (ut + u)2]dx ≤ V (t) ≤ V (0)

since V ′(t) ≤ 0. The required inequality is now immediate.

Note that boundedness from V1 does not seem to follow.

EXAMPLE 3. Consider the equation

(6.2) utt = g(ux)x − f(u)ut + e(t), u(t, 0) = u(t, 1) = 0

with xg(x) > 0 if x 6= 0, xg(x) ≥ α1x
2 − β1, α2x

2 − β2 ≤

∫ x

0

g(s)ds ≤ α3x
2 + β3,

1 ≤ f(x) ≤ β4 for all x and some positive constants αi and βi, e(t) is bounded and

continuous. Then there is an M > 0 such that any solution of (6.2) on [0,∞) satisfies

|u(t, x)| +

∫ 1

0

[u2(t, x) + u2

t (t, x) + u2

x(t, x)]dx ≤M

for all large t.

PROOF. From (2.10) we have

V (t) =

∫

1

0

[

4

∫ ux

0

g(s)ds + u2

t +

(

ut +

∫ u

0

f(s)ds

)2
]

dx

so that

V ′(t) =

∫ 1

0

[

4g(ux)uxt + 2ututt + 2

(

ut +

∫ u

0

f(s)ds

)

(utt + f(u)ut)

]

dx

=

∫ 1

0

{

− 4g(ux)xut + 2ut[g(ux)x − f(u)ut + e(t)]

+ 2

(

ut +

∫ u

0

f(s)ds

)

[g(ux)x − f(u)ut + e(t) + f(u)ut]

}

dx

=

∫ 1

0

{

− 2g(ux)xut − 2f(u)u2

t + 2ute(t) + 2g(ux)xut

+ 2ute(t) + 2g(ux)x

∫ u

0

f(s)ds + 2e(t)

∫ u

0

f(s)ds

}

dx

=

∫

1

0

{

− 2f(u)u2

t + 4ute(t) − 2f(u)g(ux)ux + 2e(t)

∫ u

0

f(s)ds

}

dx

≤

∫ 1

0

{

−2u2

t + 4|ut||e(t)| − 2g(ux)ux + 2|e(t)|

∣

∣

∣

∣

∫ u

0

f(s)ds

∣

∣

∣

∣

}

dx

≤

∫ 1

0

{

−2u2

t + 4|ut||e(t)| − 2α∞u
2

x + 2β∞ + 2|e(t)|

∣

∣

∣

∣

∫ u

0

f(s)ds

]}

dx.
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Now there exist M1,M2 with 4|ut||e(t)| ≤ u2
t +M1 and |e(t)|

∣

∣

∣

∣

∫ u

0

f(s)ds

∣

∣

∣

∣

≤ (α1/2)u2+M2,

while

∫ 1

0

u2

xdx ≥ π2

∫ 1

0

u2dx. Thus, there are positive constants γ and M with

V ′(t) ≤ −γ

∫ 1

0

[u2 + u2

x + u2

t ]dx+M.

Now V (t) ≤

∫ 1

0

[

4(α3u
2

x + β3) + 3u2

t + 2

(
∫ u

0

f(s)ds

)2
]

dx ≤

∫ 1

0

[4α3u
2

x+3u2

t+2β2

4u
2]dx

+4β3 and so there are positive constants c1 and c2 with V ′(t) ≤ −c1V +c2. The conclusion

now follows from standard arguments.

EXAMPLE 4. Consider the equation

(6.3)
utt = (ux + u3

x)x − αut + c(t)u(t− 1, x),

u(t, 0) = u(t, 1) = 0,

where c(t) is continuous on [0,∞), |c(t)| ≤ 1 < α, α constant. Then each solution defined

on [0,∞) satisfies

|u(t, x)| +

∫ 1

0

[u2 + u2

x + u4

x + u2

t ]dx→ 0 as t→ ∞.

PROOF. There is, of course, an implied initial condition on [−1, 0]. We add the usual

term in such problems to the V defined in (2.10) and have

V (t) =

∫ 1

0

[

4

∫ ux

0

g(s)ds + u2

t + (ut + αu)2 + α

∫ t

t−1

|c(s+ 1)|u2

x(s, x)ds

]

dx
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where g(x) = x+ x3. Then an integration by parts yields

V ′(t) =

∫

1

0

[−4g(ux)xut + 2ututt + 2(ut + αu)(utt + αut)

+ α|c(t+ 1)|u2

x(t, x) − α|c(t)|u2

x(t− 1, x)
]

dx

=

∫ 1

0

{−4g(ux)xut + 2ut[g(ux)x − αut + c(t)u(t− 1, x)]

+ 2(ut + αu)[g(ux)x + c(t)u(t − 1, x)]

+ α|c(t+ 1)|u2

x(t, x) − α|c(t)|u2

x(t− 1, x)
}

dx

=

∫ 1

0

{

−2g(ux)xut − 2αu2

t + 2c(t)utu(t− 1, x)

+ 2utg(ux)x + 2utc(t)u(t− 1, x) + 2αug(ux)x

+ 2αc(t)uu(t− 1, x) + α|c(t+ 1)|u2

x(t, x) − α|c(t)|u2

x(t− 1, x)
}

dx

=

∫ 1

0

{

−2αu2

t + 4c(t)utu(t− 1, x) + 2αc(t)uu(t− 1, x)

− 2αg(ux)ux + α|c(t+ 1)|u2

x(t, x) − α|c(t)|u2

x(t− 1, x)
}

dx

≤

∫

1

0

{

−2αu2

t + 2|c(t)|[u2

t + u2(t− 1, x)]

+ α|c(t)|[u2 + u2(t− 1, x)] − 2αu2

x − 2αu4

x

+ α|c(t+ 1)|u2

x(t, x) − α|c(t)|u2

x(t− 1, x)
}

dx

≤

∫

1

0

{

−2(α− |c(t)|)u2

t + α
[

− 2 + (|c(t)|/π2) + |c(t+ 1)|
]

u2

x

− 2αu4

x + (−α+ [(α+ 2)/π2]/|c(t)|u2

x(t − 1, x)
}

dx

≤

∫

1

0

{

2(−α+ 1)u2

t − α[1 − (1/π2)]u2

x − 2αu4

x

− (1/2)|c(t)|u2

x(t − 1, x)
}

dx.

If we integrate V ′ from 0 to ∞, we see that

∫ 1

0

∫ t

t−1

u2

x(s, x)ds dx → 0 as t → ∞. Since

V ′(t) ≤ 0, V (t) → c ≥ 0. If c > 0, then for large t,

∫

1

0

[(1/2)u2

x + (1/4)u4

x + u2

t ]dx ≥ c/2

and so V ′(t) ≤ −γ < 0 for large t. This means that c = 0 and the conclusion follows from

a Sobolev inequality.
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