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Abstract. In this paper we consider a nonlinear perturbation of an asymptotically
stable linear differential equation. The standard perturbation theory using Gronwall type
inequalities or Liapunov’s direct method do not seem to yield asymptotic stability of the
perturbed equation. Our purpose here is to give an example of a stability result using
fixed point theory.

0. Introduction

Consider a system

(a) x′ = A(t)x + B(t, x)

where solutions of

(b) y′ = A(t)y

are known to be bounded and, perhaps, tend to zero as t → ∞, while B(t, x) is small

compared to x in some sense for small x. There is a large classical theory concerning the

asymptotic behavior of solutions of (a). An early account is found in Chapters 2 and 3

of Bellman [1], with progressive treatments in Coddington and Levinson [2], Hartman [4],

Yoshizawa [7], and Hale [3], to name just a few. Frequently it is assumed that either:

i) The zero solution of (b) is uniformly asymptotically stable,
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or

ii) A is constant or periodic and all solutions of (b) are bounded.

Then the additional assumption that |B(t, x)|/|x| ≤ g(t) where
∫

∞

0
g(t)dt < ∞ can often

be used to conclude that the zero solution of (a) is stable and, possibly, that small solutions

tend to zero. If B is independent of t, much more can be said.

To place our work here in perspective, the reader might consider the following result

found in Bellman [1;p. 91].

THEOREM. Let A be a constant n× n matrix, f(t, x) be continuous, all solutions of

y′ = Ay be bounded, and let

|f(t, x)|/|x| ≤ c1g(t) where

∫

∞

0

g(t)dt < ∞.

Then the zero solution of x′ = Ax + f(t, x) is stable.

Methods of proof usually involve Liapunov functions or Gronwall type inequalities

which depend so much on properties i) and ii) above.

In a series of projects we are investigating ways in which fixed point theory can be

used to obtain stability results which have eluded investigators using the above mentioned

methods. Thus, we are particularly interested in examples and fine detail. Here, we

consider an equation

(1) x′′ + 2f(t)x′ + x + g(t)x2 = 0, t ∈ R+,

with a prototype being f(t) = g(t) = 1/(t + 1). The linear part is asymptotically stable,

but not uniformly asymptotically stable; and this makes it difficult to obtain asymptotic

stability for a perturbed system. Moreover, g(t) is too big for most results since it is not

integrable to infinity.

The question we propose to answer here is: ”How can we effectively use fixed point

theory to prove that the zero solution of (1) is asymptotically stable?”
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1. Asymptotic Stability

Consider the scalar equation

(1) x′′ + 2f(t)x′ + x + g(t)x2 = 0, t ∈ R+,

where R+ := [0,∞), f(t) and g(t) are continuous, f(t) > 0, f(t) → 0 as t → ∞,
∫ t

0
f(s)ds → ∞ as t → ∞, and

(2) |f ′(t) + f2(t)| ≤ Kf(t), t ∈ R+,K < 1,

(3) |g(t)| ≤ Mf(t), t ∈ R+,

and where K and M are constant. The linear part of equations such as (1) has been

extensively studied, as may be seen in Hatvani [5], for example.

Change (1) to a system

x′ =y − f(t)x

y′ =(f ′(t) + f2(t) − 1)x − f(t)y − g(t)x2

and write it as

X ′ =

(

−f(t) 1
−1 −f(t)

)

X +

(

0 0
f ′(t) + f2(t) 0

)

X +

(

0
−g(t)x2

)

,

or

(4) X ′ = A(t)X + B(t)X + F (t,X).

Notice that

A(t)

∫ t

0

A(s)ds = (

∫ t

0

A(s)ds)A(t).
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Hence, the principal matrix solution of z′ = A(t)z is

exp(

∫ t

0

A(s)ds) = exp(−
∫ t

0

f(s)ds)

(

cos t sin t
− sin t cos t

)

.

If U(t) = (uij(t)), then we define the norm by the maximum of the row sums of

(|uij(t)|) and we denote that norm by ‖U(t)‖. We then see that the norms of the matrices

in (4) satisfy

(5) ‖ exp(

∫ t

s

A(u)du)‖ ≤
√

2 exp(−
∫ t

s

f(s)ds), t ≥ s ≥ 0

and

‖B(t)‖ = |f ′(t) + f2(t)| ≤ Kf(t), t ∈ R+.

Now the solution X(t) of (4) with X(0) = X0 is

X(t) = e

∫

t

0
A(s)ds

(X0 +

∫ t

0

e
−

∫

s

0
A(u)du

(B(s)X(s) + F (s,X(s))ds).

We will use Schauder’s first theorem to prove that for each small X0, a solution

through X0 tends to zero as t → ∞. A statement of Schauder’s theorem can be found in

Smart [6;p.15]. For reference it may be stated as follows.

THEOREM. Let (C, ‖·‖) be a normed space, and let S be a compact convex nonempty

subset of C . Then every continuous mapping of S into S has a fixed point.

Here, we will take C to be the Banach space of bounded and continuous functions

φ : R+ → R2 with the supremum norm, ‖φ‖ (which will cause no confusion with the

matrix norm given above).

Let a be a number with 0 < a < (1 − K)/M and let |x0| ≤ a, and define

S0 := {φ : R+ → R2|φ(0) = x0, |φ(t)| ≤ q(t) on R+, φ ∈ C},

where | · | denotes the Euclidean norm on R2 and

q(t) := (1 − K)a/(Ma + (1 − K − Ma) exp((1 − K)

∫ t

0

f(s)ds)).
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Define a map P on S0 by

(Pφ)(t) := e

∫

t

0
A(s)ds

(x0 +

∫ t

0

e
−

∫

s

0
A(u)du

(B(s)φ(s) + F (s, φ(s))ds),

and maps Pi for i = 1, 2, 3 by

(P1φ)(t) := e

∫

t

0
A(s)ds

x0,

(P2φ)(t) := e

∫

t

0

A(s)ds

∫ t

0

e
−

∫

s

0

A(u)du
B(s)φ(s)ds,

and

(P3φ)(t) := e

∫

t

0
A(s)ds

∫ t

0

e
−

∫

s

0
A(u)du

F (s, φ(s))ds.

Note that (P1φ)(0) = x0 and (P2φ)(0) = (P3φ)(0) = 0.

Next, we have the following two results.

LEMMA 1. If φ ∈ S0 then |(Pφ)(t)| ≤ q(t), t ∈ R+.

Proof. Let φ(t) =

(

x(t)
y(t)

)

. Then, for t ∈ R+ we have

|(P1φ)(t)| =|e
∫

t

0
A(s)ds

φ(0)| =

∣

∣

∣

∣

e
−

∫

t

0
f(s)ds

(

x(0) cos t + y(0) sin t
−x(0) sin t + y(0) cos t

)
∣

∣

∣

∣

=e
−

∫

t

0

f(s)ds|φ(0)|

≤ae
−

∫

t

0
f(s)ds

.

Next, for t ∈ R+ we obtain

|(P2φ)(t)| =

∣

∣

∣

∣

∫ t

0

e

∫

t

s

A(u)du
B(s)φ(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0

e

∫

t

s

A(u)du

(

0
1

)

(f ′(s) + f2(s))x(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0

e
−

∫

t

s

f(u)du

(

sin(t − s)
cos(t − s)

)

(f ′(s) + f2(s))x(s)ds

∣

∣

∣

∣

≤K

∫ t

0

e
−

∫

t

s

f(u)du
f(s)|x(s)|ds.
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Similarly, for t ∈ R+ we have

|(P3φ)(t)| =

∣

∣

∣

∣

∫ t

0

e

∫

t

s

A(u)du
F (s, φ(s))ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0

e
−

∫

t

s

f(u)du

(

sin(t − s)
cos(t − s)

)

g(s)x2(s)ds

∣

∣

∣

∣

≤M

∣

∣

∣

∣

∫ t

0

e
−

∫

t

s

f(u)du
f(s)x2(s)ds

∣

∣

∣

∣

.

Recall that x(t) is the first component of φ(t) and in the definition of S0 we have

|φ(t)| ≤ q(t) so |x(t) ≤ |φ(t)| ≤ q(t), and this will now be used.

For t ∈ R+ we obtain

|(Pφ)(t)| ≤ae
−

∫

t

0

f(s)ds
+ K

∫ t

0

e
−

∫

t

s

f(u)du
f(s)|x(s)|ds + M

∫ t

0

e
−

∫

t

s

f(u)du
f(s)x2(s)ds

≤ae
−

∫

t

0
f(s)ds

+ K

∫ t

0

e
−

∫

t

s

f(u)du
f(s)q(s)ds + M

∫ t

0

e
−

∫

t

s

f(u)du
f(s)q2(s)ds

= : r(t).

It is easily verified that q(t) is the unique solution of the initial value problem

x′ = f(t)(K − 1 + Mx)x, x(0) = a,

and q(t) satisfies q′(t) = −f(t)q(t) + f(t)q(t)(K + Mq(t)). Thus, we have

r(t) =e
−

∫

t

0

f(s)ds
+

∫ t

0

e
−

∫

t

s

f(u)du
(Kf(s)q(s) + Mf(s)q2(s))ds

=ae
−

∫

t

0

f(s)ds
+

∫ t

0

e
−

∫

t

0

f(u)du
(q′(s) + f(s)q(s))ds

from the equation for q′. If we integrate
∫ t

0
e
−

∫

t

0
f(u)du

q′(s)ds by parts we get r(t) = q(t)

on R+, which gives the desired inequality.

LEMMA 2. There is a continuous increasing function δ = δ(ε) : (0, 2a) → (0,∞) with

(6) |q(t0) − q(t1)| ≤ ε if 0 ≤ t0 < t1 < t0 + δ
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and

(7) |(Pφ)(t0) − (Pφ)(t1)| ≤ ε if φ ∈ S0 and 0 ≤ t0 < t1 < t0 + δ.

Proof. First, it is easy to see that for any ε with 0 < ε < 2a there is a δ1 > 0 such

that

(8) |q(t0) − q(t1)| ≤ ε if 0 ≤ t0 < t1 < t0 + δ1.

Next, for any φ ∈ S0 we have

(P1φ)′(t) = A(t)e

∫

t

0

A(s)ds
x0.

Let G be a number with 0 < f(t) ≤ G on R+. Then from (5) with s = 0 we obtain

|(P1φ)′(t)| ≤‖A(t)‖‖e
∫

t

0
A(s)ds‖|x0|

≤
√

2(1 + G)e
−

∫

t

0
f(s)ds

a

≤
√

2(1 + G)a.

Thus, for any ε with 0 < ε < 2a there is a δ2 > 0 such that

(9) |(P1φ)(t0) − (P1φ)(t1)| ≤ ε if 0 ≤ t0 < t1 < t0 + δ2.

Now let T > 1 be a number such that

q(t) ≤ ε/6 if t ≥ T − 1.

Then, since we have |(Piφ)(t)| ≤ q(t), (i = 2, 3), it is easy to see that

(10i) |(Piφ)(t0) − (Piφ)(t1)| ≤ ε/3 if T − 1 ≤ t0 < t1.

For any t0 and t1 with 0 ≤ t0 < t1 ≤ T we have

|(P2φ)(t0) − (P2φ)(t1)|
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=|
∫ t0

0

e

∫

t0

s

A(u)du
B(s)φ(s)ds −

∫ t1

0

e

∫

t1

s

A(u)du
B(s)φ(s)ds|

≤|
∫ t0

0

(e

∫

t0

s

A(u)du − e

∫

t1

s

A(u)du
)B(s)φ(s)ds| + |

∫ t1

t0

e

∫

t1

s

A(u)du
B(s)φ(s)ds|

≤
∫ t0

0

‖e
∫

t0

s

A(u)du − e

∫

t1

s

A(u)du‖‖B(s)‖|φ(s)|ds +

∫ t1

t0

‖e
∫

t1

s

A(u)du‖‖B(s)‖|φ(s)|ds

≤Ka

∫ t0

0

‖e
∫

t0

s

A(u)du − e

∫

t1

s

A(u)du‖f(s)ds +
√

2Ka

∫ t1

t0

e
−

∫

t1

s

f(u)du
f(s)ds

≤GKa

∫ t0

0

‖e
∫

t0

s

A(u)du − e

∫

t1

s

A(u)du‖ds +
√

2GKa|t0 − t1|.

For any η with 0 < η < T , let

d(η) := sup{‖e
∫

t0

s

A(u)du − e

∫

t1

s

A(u)du‖|0 ≤ s ≤ t0 < t1 ≤ T and t1 ≤ t0 + η}.

It is clear that d(η) → 0+ as η → 0 + . Let δ3 be a number such that 0 < δ3 < 1, and that

d(δ3) ≤ ε/(6GKTa) and δ3 ≤ ε/(6
√

2GKa). Then we have

|(P2φ)(t0) − (P2φ)(t1)| ≤ ε/3 if 0 ≤ t0 < t1 ≤ T and t1 < t0 + δ3,

which, together with (102), yields

(11) |(P2φ)(t0) − (P2φ)(t1)| ≤ ε/3 if 0 ≤ t0 < t1 < t0 + δ3.

Similarly, for any t0 and t1 with 0 ≤ t0 < t1 ≤ T we have

|(P3φ)(t0) − (P3φ)(t1)|

=|
∫ t0

0

e

∫

t0

s

A(u)du
F (s, φ(s))ds −

∫ t1

0

e

∫

t1

s

A(u)du
F (s, φ(s))ds|

≤
∫ t0

0

‖e
∫

t0

s

A(u)du − e

∫

t1

s

A(u)du‖|g(s)|x2(s)ds +

∫ t1

t0

‖e
∫

t1

s

A(u)du‖|g(s)|x2(s)ds

≤GMa2

∫ t0

0

‖e
∫

t0

s

A(u)du − e

∫

t1

s

A(u)du‖ds +
√

2Ma2

∫ t1

t0

e
−

∫

t1

s

f(u)du
f(s)ds

≤GMa2

∫ t0

0

‖e
∫

t0

s

A(u)du − e

∫

t1

s

A(u)du‖ds +
√

2GMa2 |t0 − t1|.
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Finally, let δ4 be a number such that 0 < δ4 < 1, and that

d(δ4) ≤ ε/(6GMTa2) and δ4 ≤ ε/(6
√

2GMa2).

Then we obtain

|(P3φ)(t0) − (P3φ)(t1)| ≤ ε/3 if 0 ≤ t0 < t1 ≤ T and t1 ≤ t0 + δ4,

which together with (10)3 yields

(12) |(P3φ)(t0) − (P3φ)(t1)| ≤ ε/3 if 0 ≤ t0 < t1 < t0 + δ4.

Thus, from (8), (9), (11) and (12), for δ5 := min{δi : 1 ≤ i ≤ 4}, we have (6) and (7)

with δ = δ5. Since we may assume that δ5(ε) is nondecreasing, we can easily conclude that

there is a continuous increasing function δ : (0, 2a) → (0,∞) which satisfies (6) and (7).

Let S be a set of functions φ ∈ S0 such that for the function δ in Lemma 2,

|φ(t0) − φ(t1)| ≤ ε if 0 ≤ t0 < t1 < t0 + δ.

Then we have the following two lemmas.

LEMMA 3. The set S is a compact convex nonempty subset of C .

Proof. Since the function φ(t) := (q(t)/a)x0 is contained in S, S is nonempty. Clearly

S is a convex subset of C . In order to prove the compactness of S, let {φk} be uniformly

bounded and equicontinuous on R+. Thus, considering intervals [0, n], n a positive integer,

and using a diagonalization process there is a subsequence, say {φk} again, converging

uniformly on any compact subset of R+ to some φ ∈ S. Because φk(t) → 0 as t → ∞, it

will now be possible to show that ‖φk −φ‖ → 0 as k → ∞. From the definition of q(t), for

any ε > 0 there is a T > 0 with

q(t) < ε/2 if t ≥ T,
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which yields

(13) |φk(t) − φ(t)| ≤ 2q(t) < ε if k ∈ N and t ≥ T,

where N denotes the set of positive integers. On the other hand, since {φk(t)} converges

to φ(t) uniformly on [0, T ] as k → ∞, for the ε there is a κ ∈ N with

|φk(t) − φ(t)| < ε if k ≥ κ and 0 ≤ t ≤ T,

which together with (13) implies that ‖φk−φ‖ < ε if k ≥ κ. This shows that ‖φk−φ‖ → 0

as k → ∞, proving the compactness of S.

LEMMA 4. The map P : S → S is continuous.

Proof. For any φ ∈ S, let ξ := Pφ. Clearly we have ξ(0) = x0 and ξ ∈ C . Next, from

Lemma 1 we obtain

|ξ(t)| ≤ q(t), t ∈ R+.

Thus, we have ξ ∈ S0, which together with Lemma 2 implies that ξ ∈ S. Hence, P maps

S into S. We need to prove that P is continuous. For any φi ∈ S (i = 1, 2) and t ∈ R+

we have

|(Pφ1)(t) − (Pφ2)(t)|

≤|
∫ t

0

e

∫

t

s

A(u)du
(B(s)(φ1(s) − φ2(s)) + (F (s, φ1(s)) − F (s, φ2(s)))ds|

≤
√

2

∫ t

0

e
−

∫

t

s

f(u)du|Kf(s) + 2ag(s)||φ1(s) − φ2(s)|ds

≤
√

2(K + 2Ma)‖φ1 − φ2‖
∫ t

0

e
−

∫

t

s

f(u)du
f(s)ds

≤
√

2(K + 2Ma)‖φ1 − φ2‖,

which implies that P is continuous.

In view of Schauder’s first theorem we have the following result.
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THEOREM. Under assumptions (2) and (3), let a be a number with 0 < a < (1 −

K)/M , and let |x0| ≤ a. Then the solution x(t, x0) of (4) satisfies

|x(t, x0)| ≤ (1 − K)a/[Ma + (1 − K −Ma) exp((1 − K)

∫ t

0

f(s)ds)].

We conclude with an example.

EXAMPLE. Consider the equation

(14) x′′ + [2/(t + 1)]x′ + x + x2/(t + 1) = 0, t ∈ R+.

(Thus, f(t) = g(t) = 1/(t + 1).) Clearly, f(t) → 0 as t → ∞,
∫

∞

0 f(s)ds = ∞. Moreover,

it is easy to see that (2) holds with K ∈ (0, 1), and that (3) holds with M = 1. Change

(14) to a system X ′ = F (t,X) as before. Let a be a number with 0 < a < 1 − K, and let

|X0| ≤ a. By our result, the solution X(t,X0) satisfies

|X(t,X0)| ≤ (1 − K)a/[a + (1 − K − a)(t + 1)1−K ].
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