
PERIODIC SOLUTIONS OF A NEUTRAL

INTEGRO-DIFFERENTIAL EQUATION

T.A. Burton Tetsuo Furumochi
Department of Mathematics Department of Mathematics
Southern Illinois University Shimane University
Carbondale, IL 62901 Matsue, Japan 690

1. Introduction. This paper is devoted to the study of a neutral functional differential

equation of the form

x′(t) = u(t, x′(·)) +

∫ t

−∞

f(t, s, x(s)) ds(1)

+

∫

∞

t

g(t, s, x(s))ds + p(t)

in which u, f , g, and p are periodic in a sense to be described later. The object is to give

conditions to ensure that (1) has a periodic solution. It is supposed that u defines a con-

traction mapping, while the integral terms define compact mappings so that an application

of Krasnoselskii’s fixed point theorem yields the desired periodic solution.

The novelty here is that we use the right-hand-side of (1) itself to define the fixed point

mapping rather than convert (1) to an integral equation which would be difficult to treat

when u 6= 0.

Both integral and integrodifferential equations having a right-hand-side of the form of

(1) occur frequently in the study of unstable manifolds. An example of an integral equation

with u = 0 is found in Coddington and Levinson [2; pp. 330–332] and it is of arbitrary

dimensions. A neutral predator-prey system is readily converted to an integral equation

of this type.
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But one of the most interesting problems occurs in the study of the common equation

x′′ − x = g(t, x, x′, x′′).

When we invert that differential operator we obtain two scalar equations of the form of

(1); one is an integral equation, the other is an integrodifferential equation. Seeing the

details is a very worthwhile motivational study and we devote Section 2 to it.

2. An example. The scalar equation x′′ − x = sin t has a general solution x(t) =

c1e
t + c2e

−t − 1
2

sin t; there is a periodic solution.

Equation (1) is a neutral equation. Neutral equations may have delays in the derivative

of a solution, as well as in the solutions (cf. Hale [2; pp. 24–32], Lakshmikantham et al

[2]). Thus, a simple example is

(E1) x′′(t) − x(t) = g(t, x(t), x′(t− h), x′′(t − h))

where h is a positive constant. This equation is readily transformed into (1) and is then

well suited to application of fixed point theory. With suitable restrictions it will also have

a periodic solution. In particular, we will need T > 0 with g(t + T, x, y, z) = g(t, x, y, z)

and

g(t, x, y, z) = p(t) + r(t, x) + βy + γz

where |β−γ|+2|γ|+ |β+γ| < 2,
∫ T

0
p(s)ds = 0, and r to be monotone, as described later.

To prove that (E1) has a T -periodic solution we set up a mapping with a fixed point

ϕ in the Banach space of continuous T -periodic functions (PT , ‖ · ‖) with the supremum

norm. The first theorem gives us two choices for mappings.

Theorem 1. Let

x(t) = −
1

2

[
∫

∞

t

et−sg(s, x(s), x′(s − h), x′′(s − h)) ds(E2)

+

∫ t

−∞

e−(t−s)g(s, x(s), x′(s − h), x′′(s− h))ds

]
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and

x′(t) = 1
2

[

∫ t

−∞
e−(t−s)g(s, x(s), x′(s − h), x′′(s − h))ds(E3)

−

∫

∞

t

et−sg(s, x(s), x′(s − h), x′′(s − h))ds

]

.

If ϕ ∈ PT satisfies either (E1), (E2), or (E3), then ϕ also satisfies the other two. Moreover,

if ϕ ∈ PT with mean value 0, so is
∫

∞

t
et−sϕ(s)ds +

∫ t

−∞
e−(t−s)ϕ(s)ds.

Proof. Change (E1) to a system (x′ = y, y′ = x + G(t)) where G(t) := g(t, x(t), x′(t −

h), x′′(t − h)).

Express the system in vector notation as

X ′ =

(

x

y

)

′

=

(

0 1
1 0

)

X +

(

0

G(t)

)

=: AX + Γ(t).

Let

J =

(

1 −1
1 1

)

and transform X ′ = AX + Γ(t) by X = JY so that

Y ′ = J−1AJY + J−1Γ(t)

or

(y′1 = y1 + 1
2G(t), y′2 = −y2 + 1

2G(t)).

If Y (t) is any bounded solution on (−∞,∞), then

y1(t) = −
1

2

∫

∞

t

et−sG(s)ds

and

y2(t) =
1

2

∫ t

−∞

e−(t−s)G(s)ds.

Taking X = JY now gives (E2) and (E3) as the coordinates for X. Thus, any bounded

solution of any of the three equations also satisfies the others. The last statement of the

theorem requires only a simple calculation.
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If g is independent of x′ and x′′, then (E2) is a standard integral equation which can

define a fixed point mapping. We now fix (E3) up into the form of (1). Recall that

g(t, x, x′, x′′) = p(t) + r(t, x) + βx′(t− h) + γx′′(t− h).

Note that

∫ t

−∞

e−(t−s)γx′′(s− h)ds =

γx′(t− h) − γ

∫ t

−∞

e−(t−s)x′(s − h)ds.

The function u(t, x′(·)) in (1) can now be identified as

1
2

[
∫ t

−∞

e−(t−s)(β − γ)x′(s− h)ds + 2γx′(t− h)

−

∫

∞

t

et−s(β + γ)x′(s − h)ds

]

.

Since |β − γ| + 2|γ| + |β + γ| < 2, u(t, ϕ) defines a contraction mapping on PT . If ϕ has

mean value zero, so does u(t, ϕ).

3. Periodic solutions. Let T > 0, R := (−∞,∞), (PT , ‖ · ‖) be the Banach space of

continuous T -periodic functions ϕ : R→ R with the supremum norm, ∆− := {(t, s)|s ≤ t},

and ∆+ := {(t, s)|s ≥ t}. Suppose that f, g, u, and p are continuous with f : ∆−×R→ R,

g : ∆+ ×R→ R, p : R→ R, and u : R× PT → R.

Consider the equation

x′(t) = u(t, x′(·))+

∫ t

−∞

f(t, s, x(s))ds +

∫

∞

t

g(t, s, x(s))ds(1)

+ p(t), t ∈ R.

where

p(t+ T ) = p(t),

∫ T

0

p(s)ds = 0, u(t+ T, ϕ) = u(t, ϕ),(2)

‖u(t, ϕ)− u(t, ψ)‖ ≤ α‖ϕ− ψ‖ for α < 1, u(t, 0) = 0,
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and

(3) f(t + T, s + T, x) = f(t, x) and g(t+ T, s + T, x) = g(t, x).

Moreover, for any J > 0 there are continuous functions FJ : ∆− → R+ := [0,∞) and

GJ : ∆+ → R+ such that:

(3i) FJ (t+ T, s + T ) = FJ(t, s) if (t, s) ∈ ∆−,

(3ii) |f(t, s, x)| ≤ FJ (t, s) if (t, s) ∈ ∆− and |x| ≤ J,

(3iii) GJ (t + T, s + T ) = GJ (t, s) if (t, s) ∈ ∆+,

and

(3iv) |g(t, s, x)| ≤ GJ (t, s) if (t, s) ∈ ∆+ and |x| ≤ J.

Also, assume that

(4)

∫ t−τ

−∞

FJ (t, s)ds +

∫

∞

t+τ

GJ (t, s)ds → 0

uniformly for t ∈ R as τ → ∞.

Recall that (PT , ‖ ·‖) is the Banach space of continuous T -periodic scalar functions with

the supremum norm and we now let (P 0
T , ‖ ·‖) be that subspace whose elements have mean

value zero.

For any J > 0,

PT (J) = {ϕ ∈ PT | ‖ϕ‖ ≤ J}

and

P 0
T (J) = {ϕ ∈ P 0

T | ‖ϕ‖ ≤ J}.
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Next, define a map A = Ak on P 0
T by ϕ ∈ P 0

T implies that

(Aϕ)(t) =

∫ t

−∞

f(t, s, k +

∫ s

0

ϕ(u)du)ds(5)

+

∫

∞

t

g(t, s, k +

∫ s

0

ϕ(u)du)ds + p(t), t ∈ R,

where k is a constant chosen so that Aϕ ∈ P 0
T . The following proposition gives conditions

ensuring the existence of such a k.

Proposition 1. Let (2) – (4) hold, suppose that ∂f
∂x

(t, s, x) and ∂g
∂x

(t, s, x) are continuous,

and that

(6) f(t, s, 0) ≡ 0 and g(t, s, 0) ≡ 0,

(7)
∂f

∂x
(t, s, x)

∂g

∂x
(t, s, x) > 0 if 0 < |x| ≤ JT

for some J > 0. Then for any ϕ ∈ P 0
T (J) there is a unique k with |k| ≤ T

2
‖ϕ‖ so that Aϕ

defined in (5) satisfies Aϕ ∈ P 0
T and |k +

∫ t

0
ϕ(s)ds| ≤ T‖ϕ‖ for all t.

Proof. It is easy to see that ϕ ∈ P 0
T implies that |

∫ t

0 ϕ(s)ds| ≤ T
2 ‖ϕ‖. (The continuous

function |
∫ t

0
ϕ(s)ds| has a maximum at t1 ∈ (0, T ); thus, |

∫ t1

0
ϕ(s)ds| = |

∫ T

t1
ϕ(s)ds| and

either t1 ≤ T/2 or T − t1 < T/2.) This, together with (6) and (7), implies that

{

f(t, s,
T‖ϕ‖

2
+

∫ s

0

ϕ(u)du) ≥ 0( or ≤ 0) and

g(t, s,
T‖ϕ‖

2
+

∫ s

0

ϕ(u)du) ≥ 0( or ≤ 0)

}

and

{

f(t, s,−
T‖ϕ‖

2
+

∫ s

0

ϕ(u)du) ≤ 0( or ≥ 0) and

g(t, s,−
T‖ϕ‖

2
+

∫ s

0

ϕ(u)du) ≤ 0( or ≥ 0)

}

for all t and s. Now
∫ T

0

∫ t

−∞

f(t, s, k +

∫ s

0

ϕ(u)du)ds dt+

∫ T

0

∫

∞

t

g(t, s, k +

∫ s

0

ϕ(u)du)ds dt

+

∫ T

0

p(t)dt
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is a continuous increasing (or decreasing) function of the constant k on [−T‖ϕ‖/2, T‖ϕ‖/2].

Thus, the required k with |k| ≤ T‖ϕ‖/2 is uniquely assured, yielding Aϕ ∈ P 0
T and

|k +
∫ t

0
ϕ(s)ds| ≤ T‖ϕ‖ for all t.

Now we have the following two propositions.

Proposition 2. Let the conditions of Proposition 1 hold and for each ϕ ∈ P 0
T (J) pick

that unique k and define A by (5). Then A is continuous on P 0
T (J).

Proof. We will show that if ϕ ∈ P 0
T (J) is fixed, if {ϕi} ⊂ P 0

T (J), and if ϕi → ϕ, then

Aϕi → Aϕ. By way of contradiction, if Aϕi 6→ Aϕ then there is a subsequence, say ϕi

again, and δ > 0 with ‖Aϕi−Aϕ‖ ≥ δ. As ϕi → ϕ, it is clear that
∫ t

0 ϕi(s)ds →
∫ t

0 ϕs)ds;

thus, if k and ki are the unique constants in the definition of Aϕ and Aϕi, then ki 6→ k.

In particular, there is a subsequence, say ki again, and a µ > 0 with |ki − k| ≥ µ. Thus,

for each s ∈ [0, T ] there are ξ(s) and η(s) with

0 =

∫ T

0

∫ t

−∞

[

f

(

t, s, k +

∫ s

0

ϕ(u)du

)

− f

(

t, s, ki +

∫ s

0

ϕi(u)du

)]

ds dt

+

∫ T

0

∫

∞

t

[

g

(

t, s, k +

∫ s

0

ϕ(u)du

)

− g

(

t, s, ki +

∫ s

0

ϕi(u)du

)]

ds dt

=

∫ T

0

∫ t

−∞

∂f

∂x
(t, s, ξ(s))

[

k − ki +

∫ s

0

(ϕ(u) − ϕi(u))du

]

ds dt

+

∫ T

0

∫

∞

t

∂g

∂x
(t, s, η(s))

[

k − ki +

∫ s

0

(ϕ(u) − ϕi(u))du

]

ds dt.

This is a contradiction since the right-hand-side is not zero when |
∫ t

0
(ϕ(u) − ϕi(u))du| <

µ/2 for all t.

Proposition 3. Under the assumptions of Proposition 2, there is a continuous increasing

positive function δ = δJ (ε) : (0,∞) → (0,∞) with

(8) |(Aϕ)(t1) − (Aϕ)(t2)| ≤ ε if ϕ ∈ P 0
T (J) and t1 < t2 < t1 + δ.

Proof. First we prove that there is a continuous increasing positive function δ− = δ−J (ε) :

(0,∞) → (0,∞) with

(9) |(A−ϕ)(t1) − (A−ϕ)(t2)| ≤ ε/3 if ϕ ∈ P 0
T (J) and t1 < t2 < t1 + δ−,
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where A− is defined by

(A−ϕ)(t) =

∫ t

−∞

f

(

t, s, k +

∫ s

0

ϕ(u)du

)

ds, t ∈ R.

From (4), for any ε > 0 there is a τ > 0 such that

(10)

∫ t−τ

−∞

FJT (t, s)ds ≤ ε/12 if t ∈ R.

For any ϕ ∈ P 0
T (J), t1 and t2 with t1 < t2 we have

|(A−ϕ)(t1) − (A−ϕ)(t2)|

=

∣

∣

∣

∣

∫ t1

−∞

f

(

t1, s, k +

∫ s

0

ϕ(u)du

)

ds −

∫ t2

−∞

f

(

t2, s, k +

∫ s

0

(ϕ(u)du

)

ds

∣

∣

∣

∣

≤

∫ t1

t1−τ

∣

∣

∣

∣

f

(

t1, s, k +

∫ s

0

ϕ(u)du

)

− f

(

t2, s, k +

∫ s

0

ϕ(u)du

)
∣

∣

∣

∣

ds

+

∫ t1−τ

−∞

FJT (t1, s)ds +

∫ t1−τ

−∞

FJT (t2, s)ds +

∫ t2

t1

FJT (t2, s)ds

≤

∫ t1

t1−τ

∣

∣

∣

∣

f

(

t1, s, k +

∫ s

0

ϕ(u)du

)

− f

(

t2, s, k +

∫ s

0

ϕ(u)du

)
∣

∣

∣

∣

ds

+

∫ t2

t1

FJT (t2, s)ds +
ε

6
.(11)

Since f(t, s, x) is uniformly continuous on U = {(t, s, x)|t−τ −1 ≤ s ≤ t and |x| ≤ JT},

for the ε there is a δ1 such that 0 < δ1 < 1 and |f(t1 , s, x) − f(t2 , s, x)| ≤ ε/(12τ ) if

(t1, s, x), (t2 , s, x) ∈ U and |t1 − t2| < δ1.

From this, if t1 < t2 < t1 + δ1, then we obtain

(12)

∫ t1

t1−τ

∣

∣

∣

∣

f

(

t1, s, k +

∫ s

0

ϕ(u)du

)

− f

(

t2, s, k +

∫ s

0

ϕ(u)du

)
∣

∣

∣

∣

ds ≤ ε/12.

Now let F = sup{FJT (t, s)|t − 1 ≤ s ≤ t}. Then, for the ε there is a δ2 such that

0 < δ2 < min(ε/F, 1) and

(13)

∫ t2

t1

FJT (t2, s)ds ≤ ε/12 if t1 < t2 < t1 + δ2.
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Thus, from (11) – (13), for the δ3 = min(δ1, δ2) we have (9) with δ− = δ3. Since we

may assume that δ3(ε) is nondecreasing, we can easily conclude that there is a continuous

increasing function δ− = δ−J : (0,∞) → (0,∞) which satisfies (9).

In the same way we can prove that there is a continuous increasing function δ+ = δ+J (ε) :

(0,∞) → (0,∞) with

(14) |(A+ϕ)(t1) − (A+ϕ)(t2)| ≤ ε/3 if ϕ ∈ P 0
T (J) and t1 < t2 < t1 + δ+,

where A+ is defined by

(A+ϕ)(t) =

∫

∞

t

g

(

t, s, k +

∫ s

0

ϕ(u)du

)

ds, t ∈ R.

Finally, it is clear that there is a continuous increasing function δ4 = δ4(ε) : (0,∞) →

(0,∞) with

(15) |p(t1) − p(t2)| ≤ ε/3 if t1 < t2 < t1 + δ4.

It now follows from (9), (14), and (15) that (8) holds for δ = min(δ−, δ+, δ4).

Here is our main result.

Theorem 2. Let the conditions of Proposition 1 hold. Suppose there is an α < 1 such

that

(16)











ϕ, φ ∈ P 0
T imply that ‖u(t, ϕ) − u(t, φ)‖ ≤ α‖ϕ− φ‖,

u(t, ϕ) ∈ P 0
T , u(t, 0) = 0,

(17) αJ +

∫ t

−∞

FJT (t, s)ds +

∫

∞

t

GJT (t, s)ds + ‖p‖ ≤ J.

Then (1) has a T -periodic solution.

Proof. Let S = P 0
T (J) and define a map B on S by ϕ ∈ S implies that (Bϕ)(t) =

u(t, ϕ(·)).
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Then S is a closed convex non-empty subset of a Banach space P 0
T . Proposition 1 and

(17) imply that A and B are well-defined and map S into S, while ϕ and ψ in S yield

Aϕ+Bψ ∈ S. By Proposition 2 the function A is continuous. Proposition 3 shows that the

set {Aϕ|ϕ ∈ S} is equicontinuous. Since B is a contraction the conditions of Krasnoselskii’s

result (cf. Smart [3; p. 31]) are satisfied and there exists ϕ ∈ S with Aϕ+Bϕ = ϕ. Thus,

Φ = k +
∫ t

0
ϕ(s)ds ∈ PT is a T -periodic solution of (1) and the proof is complete.

EQUATION (E1) revisited. We focus again on

x′(t) =
1

2

[
∫ t

−∞

e−(t−s)g(s, x(s), x′(s − h), x′′(s − h))ds(E3)

−

∫

∞

t

et−sg(s, x(s), x′(s − h), x′′(s − h))ds

]

and

g(t, x, x′, x′′) = p(t) + r(t, x) + βx′(t− h) + γx′′(t− h).

Take T = 2π, p(t + 2π) = p(t),

(E4) |β − γ| + 2|γ|+ |β + γ| < 2

and

(E5) r(t, x) = Arctan x.

The conditions of the Theorem 2 are readily satisfied since the function A maps P 0
2π into

a bounded set. Thus, (E1), (E2), and (E3) all have a 2π-periodic solution.

We turn now to two more direct examples of the theorem, one linear and one nonlinear.

EXAMPLE 1. Consider the scalar linear equation

x′(t) = αx′(t− h) + β

∫ t

−∞

es−t(2 + cos t)x(s)ds(18)

+ γ

∫

∞

t

et−s(2 + sin t)x(s)ds + p(t), t ∈ R,
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where α, β, and γ are constants such that βγ > 0 and |α|+ 6π|β + γ| < 1, and p : R→ R

is a continuous 2π-periodic function with
∫ 2π

0
p(s)ds = 0. Equation (18) is obtained from

(1) taking T = 2π, f(t, s, x) = βx(2 + cos t)es−t and g(t, s, x) = γx(2 + sin t)et−s. Let J

be a number satisfying ‖p‖ ≤ (1− |α| − 6π|β + γ|)J . For this J we can take the following

functions as FJ and GJ :

FJ (t, s) = 3|β|Jes−t, (t, s) ∈ ∆−

and

GJ (t, s) = 3|γ|Jet−s, (t, s) ∈ ∆+.

It is easy to see that (2) – (4), (6), (7), and (17) with T = 2π are satisfied. Thus, by

Theorem 2, (18) has a 2π-periodic solution in P2π(2πJ).

EXAMPLE 2. Corresponding to (18), consider the scalar nonlinear equation

x′(t) = αx′(t − h) + β

∫ t

−∞

es−t(2 + cos t)x3(s)ds(19)

+ γ

∫

∞

t

et−s(2 + sin t)x3(s)ds + p(t), t ∈ R,

where α, β, and γ are constants and p : R → R is a continuous 2π-periodic function. Let

βγ > 0 and |α|J+24π3|β+γ|J3+‖p‖ ≤ J for some J > 0. Equation (19) is obtained from

(1) by taking T = 2π, f(t, s, x) = βx3(2+cos t)es−t and g(t, s, x) = γx3(2+sin t)et−s. For

the J we can take the following functions as FJ and GJ :

FJ (t, s) = 3|β|J3es−t, (t, s) ∈ ∆−

and

GJ (t, s) = 3|γ|J3et−s, (t, s) ∈ ∆+.

Clearly, (2) – (4), (6), (7), and (17) are satisfied when T = 2π. By Theorem 2, (19) has a

2π-periodic solution.
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