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1 Introduction — A historical Sketch

In 1892 Liapunov presented a method for establishing stability relations for a system of

ordinary differential equations, denoted by

x′ = f(t, x), (1)

based on the form of f rather than on solutions. It involved finding a Liapunov function,

V (t, x), and certain positive definite functions, Wi(|x|), called wedges, such that the deriva-
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tive of V along solutions of (1), computed by dV (t, x(t))/dt = grad V ·f +(∂V/∂t), satisfied

relations such as

W1(|x|) ≤ V (t, x) ≤ W2(|x|), V ′(t, x) ≤ −W3(|x|).

Even though construction of V is an art, the method has enjoyed great and enduring success.

Excellent accounts of the standard theory from two different points of view are found in

Lakshmikantham and Leela [16] and in Yoshizawa [19].

In 1956 Krasovskii (cf. [15; pp. 143–175]) sought to extend the method to functional

differential equations of the form

x′(t) = F (t, xt) (2)

where xt(s) = x(t + s) for −h ≤ s ≤ 0, h a positive constant. His technique was simple in

the extreme. We give a brief sketch here, with more detail in the next section.

A solution of (1) is written as x(t, t0, x0), where (t0, x0) is the initial condition, while a

solution of (2) is written as x(t, t0, φ), where (t0, φ) is the initial condition and φ is an initial

function. Krasovskii mechanically replaced x by xt, (t0, x0) by (t0, φ), V (t, x) by V (t, xt),

and |x| by ‖xt‖, which is the supremum norm. Formally, it worked like a charm; there were

even converse theorems when F was smooth. Moreover, both Krasovskii and his colleagues

were able to construct a substantial collection of Liapunov functionals, but the functionals

seemed incapable of satisfying the fundamental requirements of Krasovskii that

W1(‖xt‖) ≤ V (t, xt) and V ′(t, xt) ≤ −W3(‖xt‖).

Krasovskii [15; p. 151] was the first to point out this difficulty and he then proposed to

substitute theorems asking that

W1(|x(t)|) ≤ V (t, xt) and V ′(t, xt) ≤ −W3(|x|).
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Such inequalities could frequently be verified in the common examples. However, there was

a stiff penalty. Virtually none of the results on asymptotic stability hold unless F (t, xt) is

bounded for xt bounded; moreover, the beautiful and useful results on uniform boundedness

and uniform ultimate boundedness obtained for (1) are difficult to transfer to (2) unless

W1(‖xt‖) ≤ V (t, xt) ≤ W2(‖xt‖). Finally, when F is not bounded for xt bounded, then it is

frequently impossible to establish V (t, xt) ≤ W2(‖xt‖), causing great difficulties.

In this paper we note that, by careful use of Sobolev’s inequality, Jensen’s inequality,

and convexity it is possible to adjust the common Liapunov functionals so that they satisfy

Krasovskii’s original requirements, thereby avoiding severe boundedness restrictions on F .

We illustrate this on a wide variety of examples which have been particularly difficult to

treat using the standard Liapunov theory. Moreover, we show that the troublesome problem

of bounding V from above can be turned to great advantage in establishing both

W1(‖xt‖) ≤ V (t, xt) and V ′(t, xt) ≤ −W3(‖xt‖).

2 Introduction — Some detail

Let D be an open set in Rn with 0 ∈ D and let f : [0,∞) × D → Rn be continuous. Then

for each (t0, x0) ∈ [0,∞)× D there is at least one solution x(t, t0, x0) of

x′ = f(t, x) (1)

satisfying x(t, t0, x0) = x0 and it may be continued for all future t so long as it does not

approach the boundary of D.

Given a continuous function V : [0,∞)×D → [0,∞). It is possible to define its derivative

along a solution of (1), say V ′
(1)(t, x). Details of the derivative definition and its consequences
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are found in Yoshizawa [19]. In the theory of Liapunov’s direct method it is supposed that

there is such a V and continuous functions Wi : [0,∞) → [0,∞) which are strictly increasing

with Wi(0) = 0 and which satisfy some of the following properties:

(ia) W1(|x|) ≤ V (t, x), V (t, 0) = 0,

(iia) V ′
(1)(t, x) ≤ 0,

(iiia) W1(|x|) ≤ V (t, x) ≤ W2(|x|),

(iva) V ′(t, x) ≤ −W3(|x|),

(va) V ′(t, x) ≤ −W3(|x|) + M , M > 0, and W3(U) + M < 0 for some U > 0,

(via) f(t, x) is bounded for |x| bounded.

Definitions of stability terms used below are found in ([5], [16], or [19]), for example. It

is not difficult to prove the following standard stability results.

THEOREM 1. Let V : [0,∞) ×D → [0,∞) be continuous.

(Ia) If (ia) and (iia) hold, then x = 0 is stable.

(IIa) If (iia) and (iiia) hold, then x = 0 is uniformly stable (U.S.).

(IIIa) If (ia), (iva), and (via) hold, then x = 0 is asymptotically stable (A.S.).

(IVa) If (iiia) and (iva) hold, then x = 0 is uniformly asymptotically stable (U.A.S.).

(Va) If (iiia) and (va) hold, if D = Rn, and if W1(r) → ∞ as r → ∞, then solutions
of (1) are uniform bounded (U.B.) and uniform ultimate bounded for bound
B (U.U.B.).

Equation (2) is more complicated. Let h > 0 and let C be the Banach space of continuous

functions φ : [−h, 0] → Rn with the supremum norm: ‖φ‖ sup
−h≤s≤0

|φ(s)|, where | · | is any

norm on Rn. For H > 0, the set CH is contained in C and is defined by φ ∈ CH if ‖φ‖ < H.
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If x : [−h, A) → Rn is continuous and A > 0, then for t ≥ 0 the function xt ∈ C is defined

by xt(s) = x(t + s) for −h ≤ s ≤ 0. If F : [0,∞) × CH → Rn is continuous then

x′ = F (t, xt) (2)

is a system of functional differential equations with finite delay. It is assumed that F takes

bounded sets of [0,∞) × CH into bounded sets in Rn; in no sense does this mean that F

must be bounded for xt bounded.

Under these conditions, if t0 ≥ 0 and φ ∈ CH, then there is a solution x(t0, φ) of (2) on an

interval [t0, t0+γ), having value x(t, t0, φ), with xt0(t0, φ) = φ, and if there is an H1 < H with

|x(t, t0, φ)| ≤ H1, then γ = ∞. If there is a continuous functional V : [0,∞)×CH → [0,∞),

then one may define the derivative of V along solutions of (2) by

V ′
(2)(t, φ) = lim sup

δ→0+

{

V (t + δ, xt+δ(t, φ))− V (t, φ)
}

/δ.

Krasovskii’s first formulation of Liapunov’s direct method for (2) asked that there exists

such a V satisfying some of the following properties:

(ib) W1(‖φ‖) ≤ V (t, φ), V (t, 0) = 0,

(iib) V ′
(2)(t, φ) ≤ 0,

(iiib) W1(‖φ‖) ≤ V (t, φ) ≤ W2(‖φ‖),

(ivb) V ′
(2)(t, φ) ≤ −W3(‖φ‖).

The integral form of (ivb) is worth noticing. To present it in its best light and to lay some

ground work for subsequent results we will make use of convexity and Jensen’s inequality

(see Natanson [18; pp. 36–46]) and Sobolev’s inequality (see Brézis [2] and our Theorem 5).

For reference we note that if W : [a, b] → (−∞,∞) with

W ([t1 + t2]/2) ≤ [W (t1) + W (t2)]/2
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for any t1, t2 ∈ [a, b], then W is convex downward. Moreover, if f : [a, b] → (−∞,∞) is

increasing, then

F (t) =

∫ t

a

f(u)du

is convex downward. For our purposes here, Jensen’s inequality may be stated as follows.

THEOREM (Jensen). Let W : [0,∞) → (−∞,∞) be convex downward and let f, p :

[a, b] → [0,∞) be continuous with
b
∫

a

p(t)dt > 0. Then

∫ b

a

p(t)W (f(t))dt ≥

∫ b

a

p(t)dt W

[
∫ b

a

f(t)p(t)dt

/
∫ b

a

p(t)dt

]

.

For h > 0 and a given t0 we will frequently make use of the sequence of intervals Ij =

Ij(t0, h) defined by

Ij(t0, h) = [t0 + (i − 1)h, t0 + ih]. (3)

Since it is always possible to find a convex W (r) ≤ W3(r) when r is restricted to a compact

set (see Lemma 2), we may always suppose W3 to be convex when solutions are bounded. If

we integrate (ivb) along a solution x(t) = x(t, t0, φ) from t0 to t > t0 + nh we obtain

V (t, xt) − V (t0, φ) ≤ −
n

∑

j=1

∫

Ij

W3(‖xs‖)ds

≤ −
n

∑

j=1

hW3

[
∫

Ij

‖xs‖ds/h

]

(by Jensen’s inequality)

≤ −
n

∑

j=1

hW3(h‖xtj‖/h),

or

V (t, xt) ≤ V (t0, φ) −
n

∑

j=1

hW3(‖xtj‖) (ivb)′
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for some tj ∈ Ij.

In particular, then, a much more useable form of (ivb) would be

V (t, xt) ≤ V (t0, φ)−
n

∑

j=1

W4(‖xt0+jh‖) (ivb)′′

for t > t0 + nh. And that is the form that we frequently obtain in applications.

THEOREM 2. Suppose there is a continuous V : [0,∞) × CH → [0,∞).

(Ib) If (ib) and (iib) hold, then x = 0 is stable.

(IIb) If (iib) and (iiib) hold, then x = 0 is U.S.

(IIIb) If (ib) and (ivb) hold, then x = 0 is A.S.

(IVb) If (iiib) and (ivb) hold, then x = 0 is U.A.S.

We remark that (IIIb) was neither stated nor proved by Krasovskii, but it is a corollary

to a result of Burton-Hatvani [6].

Krasovskii himself was one of the first to remark that (ib) and (ivb) might seldom be

satisfied. We now briefly discuss the classical prototype showing how the problem appeared

to early investigators and why (ib) and (ivb) seemed unrealistic.

Let A and B be n × n matrices of constants, let h > 0, and consider the system

x′(t) = Ax(t) + Bx(t− h). (4)

If the characteristic roots of A all have negative real parts, then there is a unique positive

definite and symmetric matrix C with ATC + CA = −I . One then constructs a functional

V (t, xt) = xT (t)Cx(t) +

∫ t

t−h

xT (s)Lx(s)ds (5)

where L is positive definite, symmetric, and to be chosen later. If L is well chosen, then for

“small enough” B we have

V ′
(4)(t, xt) ≤ −α|x(t)|2, α > 0. (6)
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We also have

a|x(t)|2 ≤ V (t, xt) ≤ b‖xt‖
2 (7)

for certain positive constants a and b. However, it would seem by inspection that

W1(‖xt‖) ≤ V (t, xt)

and

V ′
4(t, xt) ≤ −W3(‖xt‖)

could not be satisfied. Thus, Krasovskii immediately introduced the following properties:

(ic) W1(|φ(0)|) ≤ V (t, φ), V (t, 0) = 0,

(iic) V ′
(2)(t, φ) ≤ 0,

(iiic) W1(|φ(0)|) ≤ V (t, φ) ≤ W2(‖φ‖),

(ivc) V ′(t, φ) ≤ −W3(|φ(0)|),

(vc) F (t, φ) is bounded for φ bounded,

(vic) W1(|φ(0)|) ≤ V (t, φ) ≤ W2(|φ(0)|) + W4(|||φ|||) where ||| · ||| is the L2-norm.

Krasovskii then obtained the following result.

THEOREM 3. Suppose there is a continuous V : [0,∞) × CH → [0,∞).

(Ic) If (ic) and (iic) hold, then x = 0 is stable.

(IIc) If (iic) and (iiic) hold, then x = 0 is U.S.

(IIIc) If (iiic), (ivc), and (vc) hold then x = 0 is U.A.S.

(IVc) If (ivc), (vc), and (vic) hold then x = 0 is A.S.

REMARK. In Section 4 we show that the apparently more generous formulation in

Theorem 3 can, essentially, be put in the form of Theorem 2.

In 1978 Burton [3] improved (IVc) as follows.

THEOREM 4. Suppose there is a continuous V : [0,∞) × CH → [0,∞).
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(IVc)′ If (ivc) and (vic) hold, then x = 0 is U.A.S.

We remark that investigators generally did not notice that Theorem 3(IVc) required (vc)

and this has produced a fair amount of confusion. See El’sgol’ts [11; p. 72], for example. It

remains an important open problem to eliminate (vc) from (IIIc). This condition has blocked

the study of many interesting problems for which we have beautiful Liapunov functionals.

While the reformulation (ic)–(vic) seemed to be dictated by examples, it has proved to

be unfruitful in many problems of A.S., U.A.S., U.B., and U.U.B. But perhaps the most

interesting difficulty is that in problems in which F (t, φ) is not bounded for φ bounded, then

the condition V (t, φ) ≤ W (‖φ‖) is almost never satisfied; and we show in this paper that

this is a blessing in disguise.

We now motivate our work by returning to (4) and showing that, with a little effort, the

original Krasovskii formulation in Theorem 2 can be satisfied. Using (5) we define a new

functional

V (t, x(·)) = V (t, xt) + V (t− h, xt−h) (8)

for t ≥ t0 + h, a technique introduced in Becker-Burton-Zhang [1]. It is possible to find

positive constants ki for which the following relations hold:

V (t, x(·)) ≥ xT (t)Cx(t) + k1

∫ t

t−h

[

|x(s)|2 + |x(s − h)|2
]

ds

≥ k2|x(t)|2 + k3

[
∫ t

t−h

(|x(s)| + |x(s− h)|)ds

]2

(by Jensen’s inequality and convexity of u2)

≥ k4

[

|x(t)|+

∫ t

t−h

|x′(s)|ds

]2

≥ k5‖xt‖
2
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(by Sobolev’s inequality; see Theorem 5).

Next, from (6) we have V ′(t, xt) ≤ −α|x(t)|2 and so we readily obtain V ′(t, x(·)) ≤

−k6(|x(t)|+ |x′(t)|)2 so that for t > t0 + nh and for Ij defined by (3) we have

V (t, x(·))− V (t0 + h, x(·)) ≤ −k6

n
∑

j=2

∫

Ij

(|x(s)|+ |x′(s)|)2ds

≤ −k7

n
∑

j=2

[
∫

Ij

(|x(s)|+ |x′(s)|)ds

]2

≤ −k8

n
∑

j=2

‖xt0+jh‖
2

(see Theorem 5 for details) so that

V (t, x(·)) ≤ V (t0 + h, x(·)) − k8

n
∑

j=2

‖xt0+jh‖
2. (9)

Our work here is not restricted to finite delay equations but also includes problems of the

form

x′(t) = G(t, x(s); α ≤ s ≤ t)
def
= G(t, x(·)) (10)

in which α ≥ −∞ and G is defined and takes values in Rn for t ≥ 0 whenever x : [α,∞) → Rn

is continuous and bounded for t ≤ 0. It is supposed that for each t0 ≥ 0 and each bounded

and continuous φ : [α, t0] → Rn there is a solution x(t, t0, φ) of (10) on [t0, β) satisfying

x(t, t0, φ) = φ(t) on [α, t0] and that if the solution remains bounded then β = ∞. Conditions

ensuring such behavior are found in Driver [10] and in Burton [4]. As this material is fairly

complicated in the general case, we do not repeat it here. However, in the examples we use,

the derivative is simply a chain rule and a Lipschitz argument.
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3 Applications of Sobolev’s inequality

In this section we present a form of Sobolev’s inequality that will allow us to handle some

Liapunov functionals for equations with F (t, xt) unbounded for xt bounded. We will also

show that Krasovskii’s Theorem 3 is just a particular case of his original formulation, Theo-

rem 2. The first lemma is essentially a form of Sobolev’s inequality, tailored to our purposes.

A standard proof is found in Brézis [2], but our forms are so simple that easy proofs are

supplied here.

LEMMA 1. Let φ : [−h, 0] → Rn have a continuous derivative. Then

min
−h≤t≤0

|φ(t)|+

∫ 0

−h

|φ′(s)|ds ≥ ‖φ‖, (i)

|φ(t)|+

∫ 0

−h

|φ′(s)|ds ≥ ‖φ‖, (ii)

and
∫ 0

−h

[

|φ(s)| + |φ′(s)|
]

ds ≥ k‖φ‖ (iii)

where k = min[1, h].

PROOF. Choose t1 and t2 with

|φ(t1)| = min
−h≤s≤0

|x(s)| and |φ(t2)| = ‖φ‖.

Then

φ(t2) = φ(t1) +

∫ t2

t1

φ′(s)ds
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and so

|φ(t2)| ≤ |φ(t1)|+

∣

∣

∣

∣

∫ t2

t1

φ′(s)ds

∣

∣

∣

∣

≤ |φ(t1)|+

∣

∣

∣

∣

∫ t2

t1

|φ′(s)|ds

∣

∣

∣

∣

≤ |φ(t1)|+

∫ 0

−h

|φ′(s)|ds

which shows that

‖φ‖ = |φ(t2)| ≤ min
−h≤t≤0

|φ(t)|+

∫ 0

−h

|φ′(s)|ds

yielding (i) and, certainly (ii). To prove (iii) we have
∫ 0

−h

[

|φ(s)| + |φ′(s)|
]

ds =

∫ 0

−h

|φ(s)|ds +

∫ 0

−h

|φ′(s)|ds

≥

∫ 0

−h

min
−h≤s≤0

|φ(s)|ds +

∫ 0

−h

|φ′(s)|ds

= h|φ(t1)| +

∫ 0

−h

|φ′(s)|ds

≥ {min[h, 1]}

[

|φ(t1)| +

∫ 0

−h

|φ′(s)|ds

]

≥ k‖φ‖

as required.

LEMMA 2. Let W1(r) and W2(r) be wedges defined for 0 ≤ r ≤ M . Then there exists

a convex wedge W (r) with W (r) ≤ W1(r) and W (r) ≤ W2(r) on [0, M ].

PROOF. Note that

W (r) = min
[

W1(r), W2(r)
]

is a wedge;

W̃ (r) =

∫ r

0

W (s)ds is a convex wedge;

and on [0, 1] we have W̃ (r) ≤ W (r). If M > 1, define W (r) = W̃ (r/M). Since r/M ≤ r we

have W̃ (r/M) < W̃ (r) on [0,1], while on [1, M ] we have W (M) = W̃ (1) ≤ W (1) ≤ W (r)
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and since W is increasing it follows that W (r) ≤ W (M) ≤ W (r). Thus, W (r) ≤ W (r) ≤

min[W1(r), W2(r)]. This completes the proof.

LEMMA 3. Let f : [0,∞) → [0,∞) be continuous and suppose there is a sequence

{tn} ↑ ∞ such that
tn
∫

tn−h

f(s)ds → ∞. Then
t
∫

t−h

f(s)ds → ∞ uniformly for t̃n ≤ t ≤ t̃n+(h/2)

where t̃n is either tn or [tn + (h/2)].

PROOF. For any L > 0 there exists N = N(L) such that n ≥ N implies that
tn
∫

tn−h

f(s)ds > L. Write the integral as A1n
+ A2n

where A1n
=

tn−(h/2)
∫

tn−h

f(s)ds and A2n
=

tn
∫

tn−(h/2)

f(s)ds. Thus, for n ≥ N either A1n
> L/2 or A2n

> L/2. If A1n
> L/2 then

t
∫

t−h

f(s)ds > L/2 for t ∈ [tn − h/2, tn]. If A2n
> L/2, then

t
∫

t−h

f(s)ds > L/2 for t ∈

[tn, tn + (h/2)]. This completes the proof.

The next theorem shows how it is possible to get the inequalities involving wedges that

Krasovskii used in his first formulation, when one starts from inequalities involving the

derivative.

THEOREM 5. Let V : [0,∞)× CH → [0,∞) be continuous.

(I) If x : [t0,∞) → Rn is a solution of (2) with |x(t)| < H and

V (t, xt) ≥ W1(|x(t)|) + W2

(
∫ t

t−h

W3(|x(s)|)W4(|x
′(s)|)ds

)

(i)

where W4 is convex, then there is a convex W5 with

W5(‖xt‖) ≤ V (t, xt). (ii)

(II) If x(t) is a solution of (2) on [0,∞) with |x(t)| < H and

V ′
(2)(t, xt) ≤ −W1(|x(t)|)− W2

(
∫ t

t−h

|x′(s)|ds

)

(iii)
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then there is a convex W3 with

V ′
(2)(t, xt) ≤ −W3(‖xt‖). (iv)

(III) If x(t) is a solution of (2) on [0,∞) with

V ′
(2)(t, xt) ≤ −W1(|x(t)|)− W2(|x

′(t)|) (v)

then

V (t, xt) ≤ V (0, x0) −

k
∑

i=1

W3(‖xih‖) (vi)

for t > kh and some convex W3.

PROOF. To prove (I) we let x(t) = x(t, t0, φ) and consider two cases. If t ≥ t0 and

|x(t)| ≥ (1/2)‖xt‖, then

V (t, xt) ≥ W1((1/2)‖xt‖)
def
= W̃5(‖xt‖).

If |x(t)| < (1/2)‖xt‖ then there are points t1, t2 ∈ [t − h, t] with |x(t1)| = ‖xt‖, |x(t2)| =

(1/2)‖xt‖, and |x(s)| ≥ (1/2)‖xt‖ for all s between t1 and t2. Thus,

W2

(
∫ t

t−h

W3(|x(s)|)W4(|x
′(s)|)ds

)

≥ W2

(
∣

∣

∣

∣

∫ t2

t1

W3(|x(s)|)W4(|x
′(s)|)ds

∣

∣

∣

∣

)

≥ W2

(

W3((1/2)‖xt‖)

∣

∣

∣

∣

∫ t2

t1

W4(|x
′(s)|)ds

∣

∣

∣

∣

)

≥ W2

(

W3((1/2)‖xt‖)hW4

(
∣

∣

∣

∣

∫ t2

t1

|x′(s)|ds

∣

∣

∣

∣

/h

))

≥ W2(W3((1/2)‖xt‖)hW4((1/2)‖xt‖))
def
= W5(‖xt‖).

We take W (r) = min[W̃5(r), W 5(r)]. Then find W5(r) ≤ W 5(r) with W5 convex to complete

the proof of (I).
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To prove (II) we first note that
t
∫

t−h

|x′(s)|ds is bounded; otherwise, apply Lemma 3,

integrate (iii) from 0 to t, and conclude that V (t, xt) → −∞. Next, apply Lemma 2 and

conclude that there is a convex W3 with

W1(|x(t)|) + W2

(
∫ t

t−h

|x′(s)|ds

)

≥ W3(|x(t)|) + W3

(
∫ t

t−h

|x′(s)|ds

)

≥ 2W3

(

(1/2)

(

|x(t)|+

∫ t

t−h

|x′(s)|ds

))

≥ 2W3((1/2)‖xt‖)

by Lemma 1.

To prove (III) we integrate (v) so that for t > nh we have

V (t, xt) ≤ V (0, x0) −

∫ t

0

[

W1(|x(s)|) + W2(|x
′(s)|)

]

ds

≤ V (0, x0) −
n

∑

j=1

∫

Ij

[

W1(|x(s)|) + W2(|x
′(s)|)

]

ds

≤ V (0, x0) −
n

∑

j=1

h

[

W1

(
∫

Ij

(|x(s)|)/h

)

+ W2

(
∫

Ij

(|x′(s)|)/h

)

]

by Jensen’s inequality. Clearly, these integrals are bounded since V ≥ 0. Hence, by Lemma

2 there is a convex W3 for which the result holds. This completes the proof.

We now give two propositions linking Krasovskii’s second formulation to his first one.

The work in Section 2 of showing how to transform a Liapunov functional to a better form

depended strongly on the form of the functional. But if F (t, φ) is bounded for φ ∈ CH, then

the form takes on less importance. A weaker form of this result is found in [4; p. 258].

PROPOSITION 1. If there is a continuous V : [0,∞) ×CH → [0,∞) with

(i) W1(|x(t)|) ≤ V (t, xt), V (t, 0) = 0,

(ii) V ′
(2)(t, xt) ≤ −W2(|x(t)|),
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(iii) |F (t, xt)| ≤ M for xt ∈ CH, M ≥ 1,

then there is a W3 with

(iv) V ′
(2)(t, xt) ≤ −(1/2)

[

W2(|x(t)|)+W2(|x(t)|)|x′(t)|/M
]

and for x(t) = x(t, t0, φ)

with t > t0 + kh we have

(v) V (t, xt) − V (t0, φ) ≤ −(1/2M)
k

∑

j=1

W3(‖xt0+jh‖).

PROOF. Since |F (t, xt)| ≤ M , (iv) is clear. We let |x(t)| < H, take Ij = [t0 + (j −

1)h, t0 + jh], and ‖x‖j = ‖xt0+jh‖. Then

V (t, xt) − V (t0, φ) ≤ −(1/2M)
k

∑

j=1

∫

Ij

[

W2(|x(s)|) + W2(|x(s)|)|x′(s)|
]

ds

≤ −(1/2M)
k

∑

j=1

[

hmin
s∈Ij

W2(|x(s)|) +

∫

Ij

W2(|x(s)|)|x′(s)|ds

]

.

If min
s∈Ij

|x(s)| ≥ (1/2)‖x‖j , then the j-th term in the series is bounded below by

hW2((1/2)‖x‖j).

If min
s∈Ij

|x(s)| < (1/2)‖x‖j , then there are points t1, t2 ∈ Ij with

|x(t1)| = ‖x‖j, |x(t2)| = (1/2)‖x‖j , |x(s)| ≥ (1/2)‖x‖j

for s between t1 and t2. Thus,

∫

Ij

W2(|x(s)|)|x′(s)|ds > W2((1/2)‖x‖j)

∣

∣

∣

∣

∫ t2

t1

|x′(s)|ds

∣

∣

∣

∣

≥ W2((1/2)‖x‖j)(1/2)‖x‖j .

If

W3(r) = min[hW2(r/2), W2(r/2)r/2],
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then

V (t, xt) − V (t0, φ) ≤ −(1/2M)
k

∑

j=1

W3(‖x‖j).

This completes the proof.

PROPOSITION 2. If V : [0,∞) × CH → [0,∞) is continuous, if x(t) = x(t, t0, φ) is a

solution of (2) satisfying |x(t)| < H, if

V (t, xt) ≥ W1(|x(t)|) + W2

(
∫ t

t−h

W3(|x(s)|)ds

)

(i)

and if

|F (t, xt)| ≤ M for xt ∈ CH, (ii)

then there is a W4 with

V (t, xt) ≥ W4(‖xt‖). (iii)

To prove the result we write

V (t, xt) ≥ W1(|x(t)|) + W2

(
∫ t

t−h

W3(|x(s)|)(|x′(s)|/M)ds

)

and apply Theorem 5(I).

4 Some motivating examples

In this section we present examples which have proved to be particularly troublesome when

approached with the standard theory. We make extensive use of Theorem 5 in Section 3 to

show how the Liapunov functionals used in the examples satisfy Krasovskii’s first formula-

tion.

EXAMPLE A. Consider the scalar equation

x′(t) = b(t)x(t/2) − a(t)x(t) (A1)
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in which a, b : [0,∞) → (−∞,∞) are continuous. If there are constants θ1, θ2 with

0 < θ1 < 1, θ2 > 0, (A2)

|b(t)| − (θ1/2)a(t/2) ≤ −θ2|b(t)|, (A3)

and if
∫ ∞

0

a(t)dt = ∞ (A4)

then for

V (t, x(·)) = |x(t)|+ θ1

∫ t

t/2

a(s)|x(s)|ds

we have

V (t, x(·)) ≤ −α
[

a(t)|x(t)|+ |x′(t)|
]

, α > 0 (A5)

and x = 0 is A.S.

Moreover, if a(t) > 0 then the functional

V (t, x(·)) = V (t, x(·)) + V (t/2, x(·))

satisfies

V ′(t, x(·)) ≤ −αa(t)|x(t)| (A6)

and

V (t, x(·)) ≥ β
[

{|x′(t)|/a(t)}+ |x(t)|
]

, β > 0, a(t) > b(t), (A7)

so that for

Ṽ (t, x(·)) = V (t, x(·)) + (1/2)V 2(t, x(·))
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we have

Ṽ (t, x(·)) ≤ −αa(t)|x(t)| − αβ|x(t)| |x′(t)|. (A8)

Moreover, if ‖x‖J denotes the supremum of |x| on an interval J , then

V (t, x(·)) ≥ µ‖x‖[t/2,t], µ > 0; (A9)

and if J1 = [t0, 2t0], J2 = [2t0, 4t0], . . . then for a(t) ≥ a0 > 0 it follows that

V (t, x(·)) ≤ V (t0, x(·))− α
k

∑

j=1

‖x‖Jj (A10)

and a similar expression is valid for V .

PROOF. We have

V ′(t, x(·)) ≤ |b(t)| |x(t/2)| − a(t)|x(t)|+ θ1a(t)|x(t)| − (θ1/2)a(t/2)|x(t/2)|

≤ (θ1 − 1)a(t)|x(t)| − θ2|b(t)| |x(t/2)|

so that if 2α = min[θ2, 1− θ1] then (A5) holds. A.S. now follows from Theorem 6 of Section

5.

To prove (A9) we note that

V (t, x(·)) ≥ |x(t)|+ θ1

∫ t

t/2

a(s)|x(s)|ds + θ1

∫ t/2

t/4

a(s)|x(s)|ds

≥ |x(t)|+ (θ1/2)

∫ t

t/2

[

a(s)|x(s)|+ a(s/2)|x(s/2)|
]

ds

≥ |x(t)|+ µ

∫ t

t/2

|x′(s)|ds, µ > 0.

Then (A9) follows from Theorem 5.

When a(t) ≥ a0, then (A5) yields

V ′(t, x(·)) ≤ −α
[

|x(t)|+ |x′(t)|
]
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so that for t past Jk then

V ′(t, x(·)) ≤ V (t0, x(·)) − α
k

∑

j=1

∫

Ij

[

|x(s)|+ |x′(s)|
]

ds

and (A10) will follow from Lemma 1(i). This completes the proof.

REMARK. Example A is notable because:

(a) G(t, x(·)) is not bounded for x(·) bounded.

(b) The delay is unbounded.

(c) The derivative of V can vanish over arbitrarily long time intervals; yet, we

conclude A.S.

(d) Inequalities (A9) and (A10) are the ones which Krasovskii needed in his first

formulation.

The next example concerns (A1) again and it requires much more of a(t). But it more

clearly illustrates how unboundedness of the Liapunov functional can be used to great ad-

vantage.

EXAMPLE B. Consider the scalar equation

x′(t) = b(t)x(t/2) − a(t)x(t) (B1)

with a, b : [0,∞) → (−∞,∞) being continuous. If there is a θ ∈ (0, 1) with

a′(t) + (θ − 1)a2(t) ≤ −α ≤ 0, (B2)

b2(t) − (θ/2)a2(t/2) ≤ −β ≤ 0. (B3)

α + β > 0, a(t) ≥ a1 > 0, (B4)
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then x = 0 is A.S.

Moreover, if

V (t, x(·)) = a(t)x2(t) + θ

∫ t

t/2

a2(s)x2(s)ds

then

V ′(t, x(·)) ≤ −αx2(t)− βx2(t/2), (B5)

V (t, x(·)) ≥ γ

∫ 2t

t

|x′(s)|2ds, γ > 0, (B6)

and if {Jn} is the sequence in Example A then for t past Jn we have

V (t, x(·))− V (t0, x(·)) ≤ −
[

γ/V (t0, x(·))
]

n
∑

j=2

(
∫

Jj

[αx2(s) + βx2(s/2)]1/2|x′(s)|ds

)2

.

(B7)

PROOF. A calculation yields (B5). To prove (B6) note that

|x′(t)|2 ≤ 2[a2(t)x2(t) + b2(t)x2(t/2)]

while

V (t, x(·)) ≥ θ

∫ t

t/2

a2(s)x2(s)ds = θ

∫ 2t

t

a2(s/2)x2(s/2)ds

≥

∫ 2t

t

b2(s)x2(s/2)ds.

Since V ′(t, x(·)) ≤ 0, then

V (t, x(·)) ≥ V (2t, x(·)) ≥ θ

∫ 2t

t

a2(s)x2(s)ds
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so that

2V (t, x(·)) ≥

∫ 2t

t

[

θa2(s)x2(s) + 2b2(s)x2(s/2)
]

ds

≥ 2γ

∫ 2t

t

|x′(s)|2ds

which yields (B6). Thus,

V (t0, x(·)) ≥ V (jt0, x(·)) ≥ γ

∫ 2jt0

jt0

|x′(s)|2ds

and so

1 ≥ γ

∫

Jj

|x′(s)|2ds/V (t0, x(·)).

This, together with (B5) yields

V (t, x(·))− V (t0, x(·))

≤ −

n
∑

j=1

∫

Jj

[αx2(s) + βx2(s/2)]ds

≤ −
n

∑

j=2

γ

∫

Jj

[αx2(s) + βx2(s/2)]ds

∫

Jj

|x′(s)|2ds/V (t0, x(·))

from which we obtain (B7) by Schwarz’ inequality.

The A.S. will follow from V , (B5), (B6) and Theorem 7 of Section 5. This completes the

proof.

EXAMPLE C. Let h > 0 and consider the scalar equation

x′(t) = −(t + h + 1)x(t) + tx(t− h). (C1)

Then x = 0 is A.S. Also if

V (t, xt) = |x(t)|+

∫ t

t−h

(s + h)|x(s)|ds (C2)
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then

V ′(t, xt) ≤ −|x(t)| (C3)

and

V (t, xt) ≥ γ‖xt+h‖, γ > 0. (C4)

If

V (t, x(·)) = V (t, xt) + V (t − h, xt−h),

then

V ′(t, x(·)) ≤ −
[

|x(t)|+ |x(t − h)|
]

, (C5)

V (t, x(·)) ≥ |x′(t)|/(t + h + 1), (C6)

and for

Ṽ (t, x(·)) = V (t, x(·)) + (1/2)V
2
(t, x(·))

we have Ṽ (t, x(·)) ≥ γ‖xt‖ and

Ṽ ′(t, x(·)) ≤ −|x(t)| −
[

|x(t)| |x′(t)|/(t + h + 1)
]

. (C7)

PROOF. A calculation yields

V ′(t, xt) ≤ −(t + h + 1)|x(t)|+ t|x(t− h)|

+ (t + h)|x(t)| − t|x(t− h)| = −|x(t)|.

Also, since V ′ ≤ 0 we have

V (t + h, xt+h) ≥

∫ t+h

t

(s + h)|x(s)|ds
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and

V (t, xt) ≥

∫ t

t−h

(s + h)|x(s)|ds =

∫ t+h

t

s|x(s− h)|ds

so that

(2 + (1/h))V (t, xt) ≥

∫ t+h

t

|x′(s)|ds + |x(t)| ≥ ‖xt+h‖.

Then (C4) will follow from Lemma 1(ii). Also, (C5)–(C7) are obvious.

A simple Razumikhin argument with x2 yields U.S. The asymptotic stability will now

follow from Theorem 8.

REMARK. Example C is notable because:

(a) F (t, xt) is not bounded.

(b) The growth of V enables us to get |x′| in the derivative of Ṽ .

(c) Inequalities (C4) and (C7) give properties needed in Krasovskii’s first formu-

lation.

The next example, along with Theorem 6, show that the techniques are also effective on

nonlinear equations.

Example D. Consider the scalar equation

x′(t) = b(t)x3(t − h) −C(t)x3(t) (D1)

with

C(t) /∈ L1[0,∞) (D2)

and

|b(t)| − θC(t − h) ≤ 0, 0 < θ < 1. (D3)
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Then x = 0 is A.S. Also, for

V (t, xt) = |x(t)|+ θ

∫ t

t−h

C(s)|x3(s)|ds

and

V (t, x(·)) = V (t, xt) + V (t− h, xt−h)

then

V (t, x(·)) ≥ α‖xt‖, α > 0, (D4)

and

V ′(t, x(·)) ≤
[

θ(θ − 1)/2
]

|x′(t)|+
[

(θ − 1)/2
]

C(t)|x3(t)|. (D5)

PROOF. We have

V ′(t, xt) ≤ |b(t)| |x3(t− h)| − C(t)|x3(t)| + θC(t)|x3(t)|

− θC(t− h)|x3(t − h)|

≤ (θ − 1)C(t)|x3(t)|+
[

|b(t)| − θC(t− h)
]

|x3(t− h)|

≤ (θ − 1)C(t)|x3(t)|.

Hence,

V ′(t, x(·)) ≤ (θ − 1)
[

C(t)|x3(t)| + C(t− h)|x3(t − h)|
]

so that (D5) holds. Next,

V (t − h, xt−h) = |x(t − h)|+ θ

∫ t−h

t−2h

C(s)|x3(s)|ds

= |x(t − h)|+ θ

∫ t

t−h

C(s − h)|x3(s − h)|ds
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so that

V (t, x(·)) ≥ |x(t)|+ θ

∫ t

t−h

[

C(s)|x3(s)| + C(s − h)|x3(s − h)|
]

ds

and (D4) will follow from Lemma 1. The proof of A.S. will then follow from Theorem 6.

EXAMPLE D (revisited). Consider Example D once more with h = h(t) ≥ 0 and suppose

there are positive constants M and θ with

1 − h′(t) > 0,
[

1 + (1/M)
]

|b(t)| ≤ (1 − h′(t))θC(t− h), (D6)

and

Mθ < M − 1,

∫ ∞

0

C(t)dt = ∞. (D7)

Then x = 0 is A.S. Also, if

V (t, xt) = |x(t)|+

∫ t

t−h(t)

θC(s)|x3(s)|ds

then

V ′(t, xt) ≤ −η1(t)|x
3(t)| − η2|x

′(t)| (D8)

where η1(t) = λC(t) , λ > 0, and η2 is a positive constant. The conclusion of A.S. follows

from Theorem 6.

EXAMPLE E. Consider the scalar equation

x′(t) = −a(t)x(t) +

∫ t

0

C(t− s)x(s)ds (E1)

with a and C continuous on [0,∞),

−a(t) +

∫ ∞

0

|C(u)|du ≤ −αa(t) ≤ −β < 0, (E2)

and
∫ ∞

t

|C(u)|du ≥ K|C(t)|, K > 0. (E3)
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Then x = 0 is A.S. Also, if

V (t, x(·)) = |x(t)|+

∫ t

0

∫ ∞

t−s

|C(u)|du|x(s)|ds

then

V ′(t, x(·)) ≤ −αa(t)|x| ≤ −β|x| (E4)

so that any solution is L2[0,∞),

V (t0, x(·)) ≥ V (t, x(·)) ≥ M |x′(t)|/a(t), M > 0, (E5)

and for

V (t, x(·)) = V (t, xt) +

(

1

2

)

V 2(t, xt)

it follows that

V ′(t, x(·)) ≤ −β|x(t)| − αM |x(t)| |x′(t)|. (E6)

PROOF. We have

V ′(t, x(·)) ≤ −a(t)|x(t)|+

∫ t

0

|C(t− s)| |x(s)|ds

−

∫ t

0

|C(t− s)| |x(s)|ds

+

∫ ∞

0

|C(u)|du|x(t)| ≤ −αa(t)|x(t)|

so that (E4) holds. Next, note that

V (t0, x(·)) ≥ V (t, x(·)) ≥ |x(t)|+ K

∫ t

0

|C(t− s)| |x(s)|ds

≥ [a(t)/a(t)]

[

|x(t)|+ K

∫ t

0

|C(t− s)| |x(s)|ds

]

≥ M |x′(t)|/a(t), some M > 0.
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The A.S. will follow from Theorem 9. This completes the proof.

REMARK. The growth of V , shown in (E5), is the property that allows us to place |x′|

in V ′ which, in turn, allows us to obtain the counterpart of Krasovskii’s (ivb) in his first

formulation.

The preceding examples all featured equations which were perturbations of U.A.S. or-

dinary differential equations. The next example shows that is not necessary. This is an

interesting example in that it is not obvious by inspection that V (t, x(·)) ≥ W (|x(t)|), yet

the properties of V ′ show that this is true.

EXAMPLE F. Consider the scalar equation

x′(t) =

∫ t

−∞

C(t− s)x(s)ds (F1)

and suppose there is a function G ∈ L1[0,∞) with

G′(u) = C(u),

∫ ∞

t

|G(u)|du ≥ K|C(t)|, K > 0, (F2)

and

2G(0) > [2G(0) + 1]

[
∫ ∞

0

|G(u)|du

]

+ 1. (F3)

Then x = 0 is A.S. Moreover, if k = G(0) + 1 and

V (t, x(·)) =

[

x −

∫ t

−∞

G(t − s)x(s)ds

]2

+ k

∫ t

−∞

∫ ∞

t−s

|G(u)|du x2(s)ds

we have

V ′(t, x(·)) ≤ −αx2, α > 0, (F4)

V (t, x(·)) ≥ M |x′(t)|2, M > 0 (F5)
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so that

V ′(t, x(·)) ≤ −
{

α/[V (t0, φ)/M ]1/2
}

x2(t)|x′(t)| (F6)

and

V (t0, φ) ≥ γ
[

|φ(t0)|
]1/2

, γ > 0. (F7)

PROOF. The equation may be expressed as

x′(t) = −G(0)x(t) + (d/dt)

∫ t

−∞

G(t − s)x(s)ds (F8)

and the details for (F4) are then found in Burton-Zhang [7]. We note that

|x′(t) ≤

[
∫ t

−∞

|C(t− s)|ds

∫ t

−∞

|C(t− s)|x2(s)ds

]1/2

so that by (F2) we see that (F5) holds. Then V ′ ≤ 0 implies that V (t0, , φ)/M ≥ |x′(t)|2

so that (F6) then follows from (F4). The proof of Theorem 6 will show that if t0 ≥ 0 and

φ : (−∞, t0] → R is any bounded and continuous function, then x(t) = x(t, t0, φ) → 0 as

t → ∞. From (F4) and (F5) we see that

V 1/2(t, x(·))V ′(t, x(·)) ≤ −βx2(t)|x′(t)|, β > 0

so that for V (t) = V (t, x(·)) we have

(2/3)
[

V 3/2(t)− V 3/2(t0)
]

≤ −β

∫ t

t0

x2(s)|x′(s)|ds

≤ −β

∣

∣

∣

∣

∫ t

t0

x2(s)x′(s)ds

∣

∣

∣

∣

≤ −(β/3)|x3(t) − x3(t0)|.

But x(t) → 0 and V (t) → 0 as t → ∞ and so we obtain

(β/3)|x3(t0)| ≤ (2/3)V 3/2(t0)
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from which (F7) follows. This completes the proof.

In the next example it is not clear from inspection that V (t, xt) ≥ W (‖xt‖). Yet this can

be obtained from V (t, xt) ≥ |x(t)| and from V ′ ≤ −α|x′(t)|.

EXAMPLE G. Consider the scalar equation

x′(t) = −a(t)x(t) +

∫ t

t−h

b(s)x(s)ds (G1)

with a, b : [0,∞) → R continuous,

0 < θ1h < 1, θ > 0, a(t) /∈ L1[0,∞), a(t) > 0. (G2)

|b(t)| − θ1|a(t)| ≤ −θ2|b(t)|. (G3)

Then x = 0 is A.S. Also, if

V (t, xt) = |x(t)|+ θ1

∫ 0

−h

∫ t

t+s

a(u)|x(u)|du ds

then

V ′(t, xt) ≤ −α
[

|x′(t)|+ a(t)|x(t)|
]

, α > 0. (G4)

If a(t) ≥ a0 > 0, then for t > t0 + kh we have

V (t, xt) ≤ V (t0, φ) − α
k

∑

j=1

‖xt0+jh‖, α > 0. (G5)
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PROOF. A calculation yields

V ′(t, xt) ≤ −a(t)|x(t)|+

∫ t

t−h

|b(s)| |x(s)|ds

+ θ1

∫ 0

−h

[

a(t)|x(t)| − a(t + s)|x(t + s)|
]

ds

≤ (θ1h − 1)a(t)|x(t)|+

∫ t

t−h

[

|b(s)| − θ1a(s)
]

|x(s)|ds

≤ (θ1h − 1)a(t)|x(t)| − θ2

∫ t

t−h

|b(s)| |x(s)|ds

so that (G4) holds. A.S. will now follow from Theorem 6. An integration of (G4) with

a(t) ≥ a0 > 0 and application of Lemma 1 will prove (G5). This completes the proof.

EXAMPLE H. Hale [12; pp. 55–57] considers the scalar equation

x′(t) = −ax(t)− bx(t− h) (H1)

with a and b constants and h > 0. He considers a functional

V (t, xt) = [x2(t)/2|a|] + αx(t)

∫ t

t−h

x(u)du

+

∫ t

t−h

β(u− t)x2(u)du

and, under complicated conditions, obtains

V ′(t, xt) ≤ −γ

(

x2(t) +

∫ t

t−h

x2(u)du

)

. (H2)

Note that

V ′(t, xt) ≤ −γ

(

x2(t) +

∫ t+h

t

x2(u − h)du

)

so that if we define

V (t, x(·)) = V (t, xt) + V (t− h, xt−h)
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then there are positive constants γi with

V ′(t, x(·)) ≤ −γ1

[

x2(t) + x2(t − h) +

∫ t

t−h

|x′(u)|2du

]

≤ −γ2

[

|x(t)|+

∫ t

t−h

|x′(u)|2|du

]2

(using Jensen’s inequality)

so that

V ′(t, x(·)) ≤ −γ3‖xt‖
2 (H3)

by Lemma 1.

To this point we have looked at A.S. However, the ideas are fruitful for study of limit

sets.

EXAMPLE 1. Krasovskii [15; pp. 173–174] considers the system










x′(t) = y(t)

y′(t) = −Q(t, y(t))− f(x(t)) +

∫ 0

−h(t)

f∗(x(t + s))y(t + s)ds
(I1)

where

Q(t, y)/y ≥ b > 0 for y 6= 0, 0 ≤ h(t) ≤ h (I2)

f(x)/x > a > 0 for x 6= 0, (I3)

f∗(x) = (d/dx)f(x), |f∗(x)| < N. (I4)

He shows that if h < a/N and if Q is periodic in t, then all solutions tend to zero. (Actually,

it seems he needs to relate b to a, as well.) But if Q is unbounded in t, then it is known that
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even for h(t) ≡ 0, solutions need not tend to zero. We show that if

V (xt, yt) = y2(t) + 2

∫ x

0

f(x)dx + N

∫ 0

−h

∫ 0

u

y2(t + s)ds du

and if

−[Q(t, y)/y] + Nh ≤ −λQ(t, y)/y, λ > 0, (I5)

then

V V ′ ≤ −λy2(t)|y′(t)|, λ > 0 (I6)

and y(t) → 0 as t → ∞ and x(t) → constant.

PROOF. We have

V ′(xt, yt) ≤ −2Q(t, y)y +

∫ t

t−h

N [y2(t) + y2(s)]ds

+ N

∫ 0

−h

[y2(t) − y2(t + u)]du

≤
[

{−2Q(t, y)/y}+ 2Nh
]

y2

≤ −2λQ(t, y)y.

Using f(x)/x > a we have

∫ x

0

f(s)ds ≥

∫ x

0

as ds = ax2/2.

Using |f ′(x)| < N we have

|f(x)| =

∣

∣

∣

∣

∫ x

0

f ′(s)ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ x

0

N ds

∣

∣

∣

∣

= N |x|.

These two relations yield

∫ x

0

f(s)ds ≥ (a/2N2)f2(x).
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Moreover, if y(t) 9 0, then there is a γ > 0 with V (xt, yt) ≥ γ and we have V 1/2 ≥ γ1/2 so

that V ≥ V 1/2γ1/2. Also, there is a P > 0 with N
t
∫

t−h

y2(u)du ≤ P so (Nγ/2P )
t
∫

t−h

y2(u)du ≤

γ/2. This means that V = (V + V )/2 ≥ (V/2) + (Nγ/2P )
t
∫

t−h

y2(u)du and so

V (xt, yt)V
′(xt, yt)

≤ −2λQ(t, y)yγ1/2V 1/2

≤ −2λQ(t, y)yγ1/2

[

(V/2) + (Nγ/2P )

∫ t

t−h

y2(u)du

]1/2

≤ −λ∗Q(t, y)y

[

y2 + 2

∫ x

0

f(s)ds + N

∫ t

t−h

y2(u)du

]1/2

≤ −λQ(t, y)y

[

|y| +

[
∫ x

0

f(s)ds

]1/2

+

∫ t

t−h

|f∗(x(s))y(s)|ds

]

≤ −λQ(t, y)y

[

|y| + |f(x)| +

∫ t

t−h

|f∗(x(s))y(s)|ds

]

≤ −λ̃y2

[

Q(t, y) + |f(x)| +

∫ t

t−h

|f∗(x(s))y(s)|ds

]

≤ −λ̃y2|y′|, λ̃ > 0.

It now readily follows that y(t) → 0.

Since V ′ ≤ 0, V (xt, yt) → constant. But

V (xt, yt) → 2

∫ x

0

f(s)ds

and so x(t) → constant. This completes the proof.

5 The general results and proofs

The following results were motivated by the examples of Section 4 and complete the proofs

of those results. Theorem 6 is given mainly to complete the proof of Example A. Such
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results are discussed in Burton ([5; pp. 237–239 and [4]) for ordinary differential equations.

It can be significantly improved when the delay is bounded by means of Jensen’s inequality,

particularly when x = 0 is U.S. Related results are found in ([14], [17], [20]).

THEOREM 6. Let V (t, x(·)) be a continuous functional which is locally Lipschitz in x(·)

for |x(t)| < H and let η : [0,∞) → [0,∞) be continuous. If

(i) W1(|x(t)|) ≤ V (t, x(·)), V (t, 0) = 0,

(ii) V ′
(10)(t, x(·)) ≤ −η(t)W2(|x(t)|)− W3(|x|)|x

′(t)|,

(iii)

∫ ∞

0

η(t)dt = ∞,

then x = 0 is A.S.

PROOF. The stability readily follows from (i) and (ii). Suppose there is a solution

x(t) = x(t, t0, φ) on [t0,∞) with |x(t)| < H which does not tend to zero. Then there is an

ε > 0 and {tn} ↑ ∞ with |x(tn)| > ε on [T,∞). To show that this is impossible we first

suppose there is a T > t0 with |x(t)| ≥ ε/2 on [T,∞). Then V ′(t, x(·)) ≤ −η(t)W2(ε/2)

which, by (iii) will contradict V ≥ 0. Thus, for each n there is a Tn with |x(t)| ≥ ε/2 on

[tn, Tn] and |x(Tn)| = ε/2. We may suppose, by renaming if necessary, that tn < Tn < tn+1.

Then from (ii) if t > Tn we have

0 ≤ V (t, x(·)) ≤ V (t0, x(·)) −
n

∑

i=1

W3(ε/2)

∫ Ti

ti

|x′(s)|ds

≤ V (t, x(·))−W3(ε/2)n(ε/2),

a contradiction for large n. This completes the proof.

THEOREM 7. Suppose there is a continuous functional V (t, x(·)) which is locally Lip-

schitz in x(·) for |x(t)| < H, a continuous function g : [0,∞) → [0,∞), an α > 0, and a
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p > 1 with

W1|x(t)| ≤ V (t, x(·)), V (t, 0) = 0. (i)

for each t0 ≥ 0, if t is large enough then

V (t0, x(·)) ≥

∫ t

g(t)

|x′(s)|pds, (ii)

V ′
(10)(t, x(·)) ≤ −W2(|x(t)|), (iii)

and

t− g(t) ≥ α for large t. (iv)

Then x = 0 is A.S.

PROOF. Stability follows from (i) and (iii). Suppose there is a solution x(t) = x(t, t0, φ)

of (10) with |x(t)| < H and that x(t) 9 0 as t → ∞. There there is an ε > 0 and

{tn} ↑ ∞ such that |x(tn)| > ε. By (iii) we can argue that there is a sequence {Tn} with

tn < Tn + α < tn+1 for which |x(Tn)| = ε/2 and |x(t)| ≥ ε/2 on [tn, Tn], all of this for large

n, say n ≥ 1.

We prove the result for p = 2. First we note that there is no subsequence with Tn − tn ≥

α since that would yield V ′(t, x(·)) ≤ −W2(ε/2) on [tn, Tn], implying that V (t, x(·)) →

−∞. Hence, for large enough t we have from (ii) that
t
∫

g(t)

|x′(s)|2ds ≤ V (t0, x(·)) so that

Tn
∫

tn

|x′(s)|2ds/V (t0, x(·)) ≤ 1. Then for t > Tn we have

V (t, x(·))− V (t0, x(·)) ≤ −

n
∑

j=1

∫ Tn

tn

W2(|x(s)|)ds

≤ −
n

∑

j=1

∫ Tn

tn

W2(|x(s)|)ds

∫ Tn

tn

|x′(s)|2ds/V (t0, x(·))

36



≤ −

n
∑

j=1

(
∫ Tn

tn

W
1/2
2 (|x(s)|)|x′(s)|2ds

)2

/V (t0, x(·))

≤ −[W2(ε/2)/V (t0, x(·))]
n

∑

j=1

(
∫ Tn

tn

|x′(s)|2ds

)2

≤ −W2(ε/2)(ε/2)
2n/V (t0, x(·)),

a contradiction to V > 0 for large n. This completes the proof.

LEMMA 4. Let W be a convex function from [0,∞) to [0,∞) with W (0) = 0. If

0 < a < 1 and b ≥ 0, then W (b) ≤ aW (b/a).

PROOF. We have

W (b) = W (ab/a) = W ((1 − a)0 + ab/a)

≤ (1 − a)W (0) + aW (b/a) = aW (b/a).

This completes the proof.

THEOREM 8. Let x = 0 be U.S. for the finite delay system (2). Suppose that V :

[0,∞) × CH → [0,∞) is continuous and that there is a continuous decreasing function

η : [0,∞) → [0,∞), η /∈ L1[0,∞), with

(i) 0 ≤ V (t, xt),

(ii) V ′(t, xt) ≤ −W1(|x(t)|),

(iii) V (t, xt) ≥ W2(|x
′(t)|)W3(|x(t)|)η(t), and

(iv) W2 is convex.

Then x = 0 is A.S.

PROOF. Let x(t) = x(t, t0, φ) be a solution of (2) with |x(t)| < H and suppose x(t) 9 0

as t → ∞. Then there is an ε > 0 and a sequence {tn} ↑ ∞ with |x(tn)| > ε. Now for

this ε > 0 find the δ of U.S. On each interval of length h there is a t with |x(t)| > δ since
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|x(tn)| > ε. Thus, we consider Ij = [t0+(j−1)h, t0+jh] and find sj ∈ Ij with |x(sj)| > δ. By

(ii) there is not an α > 0 and a subsequence, say {sn} again, with |x(t)| ≥ δ/2 on [sn, sn+α].

Hence, there is a sequence {Tn} with sn < Tn < sn + h and |x(Tn)| = δ/2, |x(t)| ≥ δ/2 on

[sn, Tn]. Therefore, from (ii) and (iii) we have

V (t, xt)V
′(t, xt) ≤ −W4(|x(t)|)W2(|x

′(t)|)η(t)

for W4(u) = W3(u)W1(u). If t > t0 + 2nh then

V 2(t, xt) − V 2(t0, φ) ≤ −2
2n
∑

j=1

∫

Ij

W4(|x(s)|)W2(|x
′(s)|)η(s)ds

≤ −2

2n
∑

j=1

η(t0 + jh)

∫

Ij

W4(|x(s)|)W2(|x
′(s)|)ds

≤ −2
n

∑

j=1

η(t0 + 2jh)W4(δ/2)

∫ T2j

s2j

W2(|x
′(s)|)ds

≤ −2
n

∑

j=1

η(t0 + 2jh)W4(δ/2)h
{

[T2j − s2j]/h
}

· W2

[
∫ T2j

s2j

|x′(s)|ds/
{

h[T2j − s2j]/h
}

]

(by Lemma 4)

≤ −2h
n

∑

j=1

η(t0 + 2jh)W4(δ/2)W2[hδ/2]

≤ −2hW4(δ/2)W2[δ/2h]

n
∑

j=1

η(t0 + 2jh)

≤ −2hW4(δ/2)W2[δ/2h]
n

∑

j=1

η(t0 + 2jh)

which tends to −∞ as n → ∞, a contradiction.

The following definition was introduced in [6]. It is a generalization of the common notion

of integral positivity used in stability theory of ordinary differential equations.
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DEFINITION. A measurable function η : [0,∞) → [0,∞) is said to be integrally positive

with parameter δ > 0 (IP(δ)) if whenever {ti} and {δi} satisfy ti + δi < ti+1, δi ≥ δ, then

∞
∑

i=1

∫ ti+δi

ti

η(t)dt = ∞.

REMARK. If η(t) ≡ 1, then the U.S. in Theorem 8 may be deleted, as may be seen from

the proof of the next result.

THEOREM 9. Consider the equation (10) and suppose V (t, x(·)) is continuous and locally

Lipschitz in x(·), η ∈ IP(δ), 0 < δ, and that

(i) W1(|x(t)|) ≤ V (t, x(·)), V (t, 0) = 0,

(ii) V ′
(10)(t, x(·)) ≤ −η(t)W2(|x(t)|)− W3(|x(t)|)W4(|x

′(t)|),

(iii) W4 convex.

Then x = 0 is A.S.

PROOF. The stability follows from (i) and (ii). Suppose that x(t) = x(t, t0, φ) is a

solution with V (t, x(·)) defined and that x(t) 9 0 as t → ∞. Then there is an ε > 0 and

a sequence {tn} ↑ ∞ with |x(tn)| ≥ ε. By (ii) and the IP of η we see that there is not a

subsequence, say {tn} again, with |x(t)| ≥ ε/2 on [tn, tn + δ]. Thus, there is a sequence {Tn}

with |x(Tn)| = ε/2, |x(t)| ≥ ε/2 on [tn, Tn], Tn − tn < δ, Tn < tn+1 for large n, say n ≥ 1.

Thus, for t > Tn we have

V (t, x(·))− V (t0, φ) ≤ −
n

∑

j=1

∫ Tj

tj

W3(|x(s)|)W4(|x
′(s)|)ds

≤ −W3(ε/2)
n

∑

j=1

[Tj − tj]W4

(
∫ Tj

tj

|x′(s)|ds/[Tj − tj]

)

≤ −W3(ε/2)δ

n
∑

j=1

(

[Tj − tj]/δ
)

W4

(

(1/δ)[ε/2]/([Tj − tj]/δ)
)
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≤ −W3(ε/2)δ

n
∑

j=1

W4(ε/2δ) → −∞

as n → ∞. This completes the proof.

THEOREM 10. Let V (t, x(·)) be continuous and locally Lipschitz in x(·), ηi : [0,∞) →

[0,∞) be continuous, η2(t) > 0, η1 ∈ IP(δ) for some δ > 0, 0 < p < 1, q = p/(p − 1), with

W1(|x(t)|) ≤ V (t, xt), V (t, 0) = 0, (i)

V ′
(10)(t, x(·)) ≤ −η1(t)W3(|x(t)|)− η2(t)W4(|x(t)|)W2(|x

′|) (ii)

where [W2(r)]
p is convex,

∫ 0

−δ

[η2(t + s)]qds < B, 0 < B < ∞, t ≥ 0. (iii)

Then x = 0 is A.S.

PROOF. From (i) and (ii) we deduce that x = 0 is stable.

Suppose there is a solution x(t) = x(t, t0, φ) on [t0,∞) with V (t, x(·)) defined and that

x(t) 9 0 as t → ∞. Then there is an ε > 0 and a sequence {tn} ↑ ∞ with |x(tn)| ≥ ε.

We first assume that there is a T > t0 such that |x(t)| > ε/2 for t ≥ T . Then from (ii)

we have

V (t, x(·))− V (t0, φ) ≤ −

∫ t

t0

η1(s)W3(|x(s|)ds

which tends to −∞ as t → ∞ because η1 ∈ IP(δ).

Thus, we may suppose that there exists {Tn} ↑ ∞ such that |x(t)| ≥ ε/2 on [tn, Tn] and

|x(tn)| = ε/2. We note that Tn − tn < δ for all large n, say n ≥ 1; for, if not, then we obtain

a contradiction to V ≥ 0 just as before.
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Define Ij = [tj, tj + δ] and renumber, if necessary, so that the Ij are disjoint. Then for

t > tn + δ we have

V (t,x(·)) − V (t0, φ)

≤ −

∫ t

t0

η2(s)W4(|(s)|)W2(|x
′(s)|)ds

≤ −
n

∑

j=1

∫

Ij

η2(s)W4(|x(s)|)W2(|x
′(s)|)ds

≤ −

n
∑

j=1

{
∫

Ij

[

W4(|x(s)|)W2(|x
′(s)|)

]p
ds

}1/p{ ∫

Ij

[η2(s)]
qds

}1/q

≤ −
n

∑

j=1

{

W p
4 (ε/2)

∫ Tj

tj

W2(|x
′(s)|)pds

}1/p

B1/q

because

∫

Ij

[η2(s)]
qds < B implies

(
∫

Ij

[η2(s)]
qds

)1/q

> B1/q

since q < 0. This yields

V (t, x(·))− V (t0, φ) ≤
n

∑

j=1

B1/qW4(ε/2)

{
∫ Tj

tj

[

W2(|x
′(s)|)

]p
ds

}1/p

.

If [W2(r)]
p = W5(r), then Jensen’s inequality yields

∫ Tj

tj

W5(|x
′(s)|)ds ≥ [Tj − tj]W5

(
∫ Tj

tj

|x′(s)|ds/[Tj − tj]

)

≥
(

[Tj − tj]/δ
)

δW5

(

[1/δ]

∫ Tj

tj

|x′(s)|ds/
(

[Tj − tj]/δ
)

)

≥ δW5

(

[1/δ]ε/2
)

.

Hence

V (t, x(·))− V (t0, φ) ≤ −
n

∑

j=1

B1/qW4(ε/2){W5(ε/2δ)δ}
1/p
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which tends to −∞ as n → ∞. This completes the proof.

THEOREM 11. Let {Qj} = {[tj, Tj]} with Tj < tj+1 and let η : [0,∞) → [0,∞) be

continuous. Suppose that 0 < p < 1 and q = p/(p − 1). If there is a continuous V (t, x(·))

which is locally Lipschitz in x(·) with

(i) W1(|x(t)|) ≤ V (t, x(·)), V (t, 0) = 0,

(ii) V ′
(10)(t, x(·)) ≤ −η(t)W2(|x(t)|),

(iii) 0 ≤

∫

Qj

ηq(s)ds ≤ M , 0 <

∫

Qj

η(s)ds < 1, M > 0,

then

∫

Qj

|x(s)|ds → 0 as t → ∞ for any solution x(t) of (10) with V (t, x(·)) defined on [t0,∞).

PROOF. Stability follows from (i) and (ii). Hence, such solutions exist. In particular,

let |x(t)| < 1 on [t0,∞). We may assume W2 convex. If t > Tk then

V (t, x(·))− V (t0, φ) ≤ −

k
∑

j=1

∫

Qj

η(s)W4(|x(s)|)ds

≤ −

k
∑

j=1

∫

Qj

η(s)dsW2

(
∫

Qj

η(s)|x(s)|ds

/
∫

Qj

η(s)ds

)

(by Jensen’s inequality)

≤ −
k

∑

j=1

W2

(
∫

Qj

η(s)|x(s)|ds

)

(by Lemma 4)

≤ −
k

∑

j=1

W2

[

(
∫

Qj

|x(s)|pds

)1/p( ∫

Qj

ηq(s)ds

)1/q
]

≤ −
k

∑

j=1

W2

[

(
∫

Qj

|x(s)|ds

)1/p

M−1/p

]

(because |x(t)| < 1). Hence,

∫

Qj

|x(s)|ds → 0 as j → ∞. This completes the proof.
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