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Abstract. In this brief note we study Schauder’s second fixed point theorem in the
space (BC,‖ · ‖) of bounded continuous functions φ : [0,∞) → <n with a view to

reducing the requirement that there is a compact map to the requirement that the map
is locally equicontinuous. Several examples are given, both motivating and applying the

theory.
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1. Introduction

This note represents an attempt to draw Schauder’s fixed point theorem in a Banach
space (BC, ‖ · ‖) of bounded continuous functions φ : [0,∞) → <n with the supremum norm
closer to the much simpler Brouwer’s fixed point theorem for Rn.

In the simplest form Brouwer’s fixed point theorem states that any continuous mapping
of the closed ball in Euclidean n-space into itself has a fixed point. The theory of retracts
extends this ball to any closed bounded (therefore compact) convex nonempty set.

Schauder took two steps toward extending Brouwer’s result to a Banach space. First,
he removed the boundedness condition. Then he added a condition which has proved to
be very difficult to verify in one of the most important cases: That is when M consists of
continuous functions φ : [a,∞) → <n and P : M → M with P continuous and M closed,
convex, and nonempty. He required that either M be compact or P map M into a compact
subset K ⊂M of the Banach space. These conditions are not too stringent when M consists
of continuous functions φ : [a, b] → <n since we can frequently arrange matters so that PM
is equicontinuous and then apply the Ascoli-Arzela theorem. But the compactness can be
very difficult to establish when we are working on the entire interval [0,∞).

Corduneanu [4, p. 62] took an interesting step in the same direction as did Schauder.
First, he restored the boundedness assumption. Next, he asked that when the functions in
M are restricted to any finite subdomain then PM is equicontinuous. His final condition
is that for large t then M is essentially frozen in time: For each ε > 0 there is a T such
that |f(t) − f(∞)| < ε for all t ≥ T and all f in M . In this note we will accept most of the
requirements of Corduneanu, but we will eliminate any idea of demanding uniform limits at
infinity.

We have also recently studied this type of problem for specific integral equations [1] which
generated maps that were equicontinuous on [0,∞). A brief correction is being processed
by the journal asking that the mapping set be a ball or a certain retract.

The exact statements of the classical theorems discussed here can be found in Smart [6].

2. The fixed point theorem

We begin with the Banach space (BC, ‖ · ‖) as described in Section 1. It is assumed
that there is a convex, nonempty, bounded subset M of BC and a continuous mapping
P : M → M with the property that for each T > 0 the functions in PM restricted to the
domain [0, T ] are equicontinuous. We will say that such a set is locally equicontinuous.
To avoid possible confusion, we remark that there are different conventions concerning the
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definition of equicontinuity. If, for example, we consult Royden and Fitzpatrick [5, pp.
207-8] we see that some authors would call this equicontinuity, not local equicontinuity.

We will also be introducing a new space as follows. Let g : [0,∞) → [1,∞) be an arbitrary
continuous strictly increasing function with g(t) → ∞ as t→ ∞ and define a Banach space
(W, | · |g) of continuous functions ψ : [0,∞) → <n with the property that

|ψ|g = sup
0≤t<∞

|ψ(t)|
g(t)

<∞

which will be used as follows. In the example below we have constructed a set

M = {φ ∈ BC| a ≤ φ(t) ≤ b, |φ(t) − φ(s)| ≤ |t− s|, t, s ≥ 0}

which would contain a fixed point for any continuous self-map, say P . But in many problems
we wish to have a fixed point with a particular property so we add that to the mapping set.
Have we added so much that there may no longer be a fixed point for certain continuous
self-maps? The test we offer is to see if the set is closed in the weighted norm. If for this
mapping PM resides in a subset of M which is closed in the weighted norm then we will
still have a fixed point. By “the g-norm closure of a set E ⊂ BC” we mean the closure of
E in (W, | · |g). The next example illustrates the test.

Example 1. Let (BC, ‖ · ‖) be the Banach space of bounded continuous functions φ :
[0,∞) → R with the supremum norm. Let M⊂BC be defined as

M = { x ∈ BC
∣

∣ ‖x‖ ≤ 1, |x(t) − x(s)| ≤ |t− s|, ∀ t, s ≥ 0, lim
t→∞

x(t) = 1 }

Then M is a convex, nonempty, bounded subset of BC. Now define P : M →M by

(Px)(t) =
t

t+ 1
x(t)

for any x ∈M . Have we asked too much of M?
We see that P is continuous on M and PM ⊂ M . We also notice that PM is locally

equicontinuous. Thus, all conditions of the up coming Theorem 2.1a are satisfied except the
condition that the “g-norm closure of PM is in M .” We see that P has no fixed point in
M . Note that, in this case, the g-norm closure of PM is not in M . To see this, let K be
the closure of PM in (W, | · |g) and define φn ∈ BC by

φn(t) = t − n for n ≤ t ≤ n+ 1,

with φn(t) = 0 for t < n and φn(t) = 1 for t > n + 1. Then φn ∈ M . We see that
|Pφn − φ|g → 0 as n → ∞ where φ ≡ 0 on [0,∞). This implies that φ ∈ K. However,
φ 6∈ M . Thus, K 6⊂M . That last condition which we added to M was simply too much to
guarantee a fixed point for every continuous mapping of M into M .

We shall use the notation ‖φ‖[0, T ] = sup0≤t≤T |φ(t)| for any continuous function φ
defined on [0, T ]. There are two equivalent ways to state the result and we offer both of
them. The difference is that the second form states one way of showing that the g−norm
closure of PM is in M .

Theorem 2.1a. Let M be a convex, nonempty, bounded subset of BC and let P : M →M
be continuous, and PM locally equicontinuous. If, in addition, the g-norm closure of PM
is in M , then there exists a point φ ∈M with Pφ = φ.

Theorem 2.1b. Let M be a convex, nonempty, bounded subset of BC and let P : M →M
be continuous, and PM locally equicontinuous. If, in addition, for any sequence {xn} in M ,

‖Pxn − x‖[0, T ] → 0 as n → ∞ for each fixed T > 0 implies that x ∈ M , then there exists
a point φ ∈M with Pφ = φ.
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Proof. By Lemma 2.1 and Lemma 2.2 given below, we know that P is also continuous on M
in (W, | · |g) and PM resides in a compact subset K of (W, | · |g). Now let K be the closure
of PM in (W, | · |g). We show that K⊂M . In fact, for each x ∈ K, there exists a sequence
{xn} in M with |Pxn − x|g → 0 as n→ ∞. For each T > 0, we have

‖Pxn − x‖[0, T ] ≤ g(T )|Pxn − x|g → 0 as n → ∞.

This then implies that x ∈ M by the assumption. Thus, K ⊂M . Applying Schauder’s
second fixed point theorem to P : M → K ⊂M in (W, | · |g), we obtain that there exists a
point φ ∈ M with Pφ = φ. The proof is complete. �

Remark 1. The conditions in the theorems above are very precise in the sense that P may
not have a fixed point if the g-norm closure of PM is not in M (see Example 1). Also,
the equicontinuity condition on PM is necessary for PM being pre-compact in (W, | · |g).
This fact is well-known for theorems of Ascoli-Arzela type (see Royden and Fitzpatrick [5,
p. 209]).

Lemma 2.1. If P is continuous on M in the supremum norm, ‖·‖, then it is also continuous

on M in the weighted norm, (W, | · |g).

Proof. To say that P is continuous at φ ∈ M in the weighted norm is to say that for each
ε > 0 there is a δ > 0 such that η ∈ M and |φ− η|g < δ implies that |Pφ− Pη|g < ε. Let
ε > 0 be given.

First notice that there exists K∗ > 0 such that if φ, η ∈ M then ‖Pφ‖ ≤ K∗ and
‖Pη‖ ≤ K∗ so we select T > 0 so that g(T ) > 2K∗/ε. It then follows that

sup
t≥T

|(Pφ)(t)− (Pη)(t)|
g(t)

≤ 2K∗

g(T )
< ε.

Thus, we restrict our work to 0 ≤ t ≤ T .
Now, P is continuous on M in the supremum norm by assumption so for the given φ ∈M

and ε > 0 there is a δ > 0 such that η ∈M and ‖φ−η‖ < δg(T ) implies that ‖Pφ−Pη‖ < ε.
Thus, |φ− η|g < δ implies that |φ(t) − η(t)| < δg(t) < δg(T ) for 0 ≤ t ≤ T so

sup
0≤t≤T

|(Pφ)(t) − (Pη)(t)|
g(t)

< ε

�

Lemma 2.2. The set PM resides in a compact subset of (W, | · |g).

Proof. Since the g-norm closure of PM is in M , the proof is essentially identical to that of
Theorem 3.3 in [2]. We use Ascoli’s theorem and a diagonalization process in the classical
way to show that any sequence in PM has a subsequence converging uniformly on compact
sets to a continuous function on [0,∞) and that function is inM . The local equicontinuity is
used as follows. The diagonalization process takes place on intervals [0, n]; the equicontinuity
holds on each of these and so the Ascoli theorem establishes the convergence on that interval.

�

Corollary 1. Let M be a convex, nonempty, bounded subset of BC and let P : M → M
be continuous, and PM locally equicontinuous. If M is closed in (W, | · |g), then there exists
a point φ ∈M with Pφ = φ.

Proof. Since PM ⊂M and M is closed in (W, | · |g), we see that if K is the closure of PM
in (W, | · |g), then K ⊂M . Thus, all conditions of Theorem 2.1a are satisfied. �

A special case of Example 2 shows that M is closed in (W, | · |g) if it is a closed ball in
BC.
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Corollary 2. Let M be a closed ball in BC and let P : M → M be continuous, and PM
locally equicontinuous. Then there exists a point φ ∈M with Pφ = φ.

In the counterexample given above the functions all had the same limit at infinity, but
they converged to that limit at varying rates. There are problems in functional differential
equations concerning uniform asymptotic stability or uniform ultimate boundedness in which
we need to show that the functions in the mapping set enter a prescribed small set for large
times. The next example shows that our theorem will work in these cases if the functions
enter that small set in a uniform manner.

Example 2. The set

M = {x ∈ BC| ‖x‖ ≤ L and |x(t)| ≤ B for t ≥ T}
is closed in (W, | · |g).
Proof. Let xn ∈M . Suppose that there exists x ∈ (W, | · |g) with |Pxn−x|g → 0 as n → ∞.
Then for each ` ≥ 0, we have

‖Pxn − x‖[0,`] ≤ g(`)|Pxn − x|g → 0 as n→ ∞.

This implies that ‖x‖ ≤ supn≥1 ‖Pxn‖ ≤ L. Now for each ` ≥ T , we also have

‖Pxn − x‖[T,` ] ≤ g(`)|Pxn − x|g → 0 as n → ∞
so that ‖x‖[T,∞) ≤ supn≥1 ‖Pxn‖[T,∞) ≤ B. Thus, x ∈M . This proves that M is closed in
(W, | · |g). �

Example 3. The set

M = {x ∈ BC| ‖x‖ ≤ L, |x(t1) − x(t2)| ≤ K |t1 − t2|q, ∀ t1, t2 ≥ 0 }
is closed in (W, | · |g), where 0 < q ≤ 1.

Proof. Let xn ∈ M . If there exists x ∈ (W, | · |g) with |Pxn − x|g → 0 as n → ∞, then
‖x‖ ≤ L. For any t1, t2 ≥ 0, we have

|x(t1) − x(t2)| ≤|(Pxn)(t1) − x(t1)| + |(Pxn)(t1) − (Pxn)(t2)| + |(Pxn)(t2) − x(t2)|

≤ g(t1)|Pxn − x|g +K |t1 − t2|q + g(t2)|Pxn − x|g.
Letting n→ ∞, we obtain |x(t1)−x(t2)| ≤ K |t1−t2|q. This implies that x ∈M . Therefore,
M is closed in (W, | · |g). The proof is complete. �

Example 4. Consider the fractional differential equation of Caputo type

(1) cDqx = −a(t)x3(t) + b(t)x3(t− r(t)), x(0) = x0, 0 < q < 1,

with a, b, r : [0,∞) → < continuous. See [3] for background and definitions. Suppose that

(i) a(t) is bounded on [0,∞).

(ii) a(t) − |b(t)| ≥ δ for all t ≥ 0 and a constant δ > 0.

(iii) r(t) ≥ 0 for all t ≥ 0.

Then the zero solution of (1) is stable.

Proof. Choose a constant η > 0 with supt≥0 a(t) < η for all t ≥ 0 and define

C(t) =
η

Γ(q)
tq−1

Then the resolvent R satisfies

R(t) = C(t) −
∫ t

0

C(t− s)R(s)ds
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This resolvent R is completely monotone on (0,∞). Moreover,

0 ≤ R(t) ≤ C(t), tR(t) → 0 as t→ ∞, and

∫ ∞

0

R(s)ds = 1.

If we write (1) as

cDqx = −a(t)x3(t) + b(t)x3(t − r(t))

= −ηx(t) + η[x− x3] + [η − a(t)]x3 + b(t)x3(t − r(t))

then the solution x(t) of (1) satisfies

x(t) = z(t) +

∫ t

0

R(t− s)[x(s) − x3(s)]ds

+

∫ t

0

R(t − s)

(

1 − a(t)

η

)

x3(s)ds+

∫ t

0

R(t− s)
b(t)

η
x3(s− r(s))ds =: (Px)(t)

where z(t) = x0(1 −
∫ t

0
R(s)ds).

Let 0 < ε <
√

3/3. We may assume that η ≥ 1 and 0 < δ < 1 so that δε3/η < ε. Now
set m0 = inf{s− r(s) : s ≥ 0}. Let ψ : [m0, 0] → < be a given continuous initial function
with ‖ψ‖ < δε3/η. Define

M = {φ ∈ BC| ‖φ‖ ≤ ε}.
For the natural mapping defined above with x(s) = ψ(s) for s ≤ 0, we can show that

P : M → M . To see this, we observe that r − r3 is increasing on [0, ε] and apply (ii) to
obtain

|(Px)(t)| ≤ |z(t)| + (ε− ε3) + ε3
∫ t

0

R(t− s)

(

1 − a(t)

η
+

|b(t)|
η

)

ds

≤ |ψ(0)| + (ε− ε3) + ε3(1 − δ/η) < ε

if ‖ψ‖ < δε3/η. It is clear that PM is equicontinuous on [0,∞) and the g-norm closure
of PM is in M by Corollary 2. By Theorem 2.1a, P has a fixed point x ∈ M which is a
solution of (1). Thus, the zero solution of (1) is stable. �

Example 5. Consider the scalar integral equation

x(t) = f(t) +

∫ t

0

R(t− s)a(s)g(x(s))ds.

The kernel is used to obtain locally equicontinuous maps even when a(t) is unbounded, but
integrable in a certain sense. Here are our assumptions.

(i) R is positive and decreasing with R(t) ≤ tq−1 for some q ∈ (0, 1).

(ii) a : [0,∞) → < is continuous with a ∈ Lp[0,∞) for some p > 1/q.

(iii) g : < → < is continuous, |g(x)| → ∞ as |x| → ∞, and g(x)/x→ 0 as |x| → ∞.

(iv) f : [0,∞) → < is continuous with supt≥0 |f(t)| <∞.

Let p be given in (ii) and define p∗ = p/(p− 1). Then (1/p∗) + (1/p) = 1. Observe that

p > 1/q implies p∗(1 − q) < 1 and therefore, R ∈ Lp∗ [0,∞). This results in
∫ t

0

R(t− s)|a(s)|ds ≤ |R|p∗|a|p =: K.

For x ≥ 0, we define

g∗(x) = max{|g(x)|, |g(−x)|}.
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Next we choose a number α > 0 with 0 < Kα < 1. Since |g(x)| → ∞ and g(x)/x → 0 as
|x| → ∞, we can assert the existence of a number b > 0 with

g∗(b)/b ≤ α < 1, ‖f‖ +Kαb < b, and |g(u)| ≤ g∗(b) for |u| ≤ b.

There is a continuous solution in

M = {φ ∈ BC| ‖φ‖ ≤ b}.
Proof. Note that P : M → M where P is the natural mapping defined by the integral
equation. To see this, let φ ∈ M and use Hölder’s inequality to obtain

|(Pφ)(t)| ≤ ‖f‖ +

∫ t

0

|R(t− s)a(s)|g∗(b)ds

≤ ‖f‖ +Kg∗(b) ≤ ‖f‖ +Kαb ≤ b.

For such mappings it is shown in [3] that if a is bounded and continuous, then the integral
part of PM is equicontinuous on the entire interval [0,∞). But a is unbounded so we have
local equicontinuity of PM on [0,∞).

We now show that P is continuous, so that our theorem will give a solution in M . To
that end, if φ, η ∈M then

|(Pφ)(t) − (Pη)(t)| ≤
∫ t

0

R(t − s)|a(s)||g(φ(s)) − g(η(s))|ds.

But g is uniformly continuous on [−b, b] so for a given ε > 0 there is a δ > 0 so that
‖φ − η‖ < δ implies that |g(φ(t)) − g(η(t))| ≤ ε/K. That will establish the continuity of
P on M . Since M is a closed ball in BC and PM ⊂ M , it follows from Corollary 2 that
the g-norm closure of PM is in M . This proves that the integral equation has a continuous
solution on [0,∞) and it lies in M . �
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