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Abstract. In three recent papers investigators have shown that
a linear fractional differential equation can not have a periodic
solution. This raises two fundamental questions: What are the
properties of the out-put function if the in-put function is peri-
odic? What are the properties of perturbations that will leave the
out-put function unchanged? We answer both questions here. The
out-put function is asymptotically periodic and it is unchanged by
perturbations which are L1[0,∞) and by perturbations which tend
to zero as t → ∞ with these perturbations applied simultaneously
in the damping and the forcing terms. We also find a limiting
equation which this periodic function satisfies. The methods used
include limiting equation techniques and fixed point methods in-
volving both contractions and Krasnoselskii-Schaefer type.

1. Introduction

We consider a fractional differential equation of Caputo type

cDqx = −u(t, x(t)), 0 < q < 1,

where u(t, x) is continuous and there is a T > 0 with u(t+T, x) = u(t, x)
for all (t, x) ∈ < × <. When u(t, x) is continuous then this equation
is immediately inverted as the very familiar integral equation ([15, p.
54], [10, pp. 78, 86, 103])

x(t) = x(0) − 1

Γ(q)

∫ t

0

(t− s)q−1u(s, x(s))ds

where Γ is the gamma function. This equation has a unique solution
as seen in [1] or [20]

In three recent papers investigators ([19],[18],[11]) have offered proofs
that certain equations of this type can not have periodic solutions.
This is important, but hardly surprising. Even an ordinary differential
equation of the form

z′(t) = Az(t) +

∫ t

0

C(t− s)z(s)ds+ f(t)
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with A constant and f periodic will seldom have a periodic solution.
The reason for this is that when x(t) is a periodic function, then only

under very special circumstances will it be true that X(t) :=
∫ t

0
C(t−

s)x(s)ds is periodic. This is easily checked by computing X(t + nT )
and letting n → ∞. The problem seems to have been first studied in
Burton [3] and continued in [5, pp. 94-96].The periodicity depends on
a special orthogonal property discussed by Lakshmikantham and Rao
[14, pp. 120-123].

With this introduction, we explain the term “seldom” by noting that
z = cos t+ sin t solves

z′ = az + b

∫ t

0

e−(t−s)z(s)ds− (1 + a+ b) sin t+ (1 − a) cos t.

Notice, in particular, the L1[0,∞) kernel. The natural periodicity oc-

curs in
∫ t

−∞C(t− s)x(s)ds when x is periodic, but then only if C is an

L1[0,∞) function. That never happens with the kernel C(t) = 1
Γ(q)

tq−1.

This problem was discussed for integral equations in Burton [6, p. 58]
and the natural solution in such problems is an asymptotically periodic
solution. But, again, that depends on an L1 kernel, a property we will
obtain here by a transformation to a new kernel, R(t − s), which is
positive, completely monotone, and

∫ ∞
0
R(t)dt = 1.

2. Basic theory

In this paper we always contrive (see Section 6) to begin with

(1) cDqx(t) = −[x(t) +G(t, x(t))] + f(t), 0 < q < 1, x(0) ∈ <
with G : [0,∞) × < → < and f : [0,∞) → < both being continuous.
This equation is then inverted as

(2) x(t) = x(0) − 1

Γ(q)

∫ t

0

(t− s)q−1[x(s) +G(s, x(s)) − f(s)]ds.

Denote the kernel by

(3) C(t) =
1

Γ(q)
tq−1

so that for any T > 0 we have the critical property that
∫ T

0

|C(u)|du <∞.

Following Miller [17, pp. 193-22] we note that C(t) is completely
monotone on (0,∞) in the sense that (−1)kC(k)(t) ≥ 0 for k = 0, 1, 2, ...
and t ∈ (0,∞). Moreover C(t) satisfies the conditions of Miller’s The-
orem 6.2 on p. 212. That theorem states that if the resolvent equation
for the kernel C is

(4) R(t) = C(t) −
∫ t

0

C(t− s)R(s)ds
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then that resolvent kernel, R, satisfies

(5) 0 ≤ R(t) ≤ C(t) for all t > 0 so as t→ ∞ then R(t) → 0

and that

(6) C /∈ L1[0,∞) =⇒
∫ ∞

0

R(s)ds = 1.

Continuing on to [17, pp. 221-224 (Theorem 7.2)] we see that R is also
completely monotone.

Next, under the conditions here, it is shown in Miller [17, pp. 191-
207] that (2) can be decomposed into

(7) z(t) = x(0) −
∫ t

0

C(t− s)z(s)ds

with

z(t) = x(0) −
∫ t

0

R(t− s)x(0)ds = x(0)[1 −
∫ t

0

R(s)ds]

and, having found z(t), then the solution x(t) of (2) solves

(8) x(t) = z(t) −
∫ t

0

R(t− s)G(s, x(s))ds+

∫ t

0

R(t− s)f(s)ds.

Notice that z(t) → 0 as t→ ∞.
The kernel in (2) is not integrable on [0,∞), but in (8) it is replaced,

not only by an integrable kernel, but the value of the integral is one
and the new kernel is also completely monotone.

3. The main motivation

In order to see what can be expected from periodic forcing we begin
with the equation

(9) cDqx = −x(t) + f(t), 0 < q < 1, f(t+ T ) = f(t)

for some fixed T > 0 and all t with f continuous. This can be inverted
as

x(t) = x(0) − 1

Γ(q)

∫ t

0

(t− s)q−1[x(s) − f(s)]ds

which we write as

x(t) = x(0) −
∫ t

0

C(t− s)[x(s) − f(s)]ds.

with

(10) C(t) =
1

Γ(q)
tq−1 for t > 0.

We decompose this as

z(t) = x(0) −
∫ t

0

C(t− s)z(s)ds
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so that

z(t) = x(0) −
∫ t

0

R(t− s)x(0)ds

= x(0)[1 −
∫ t

0

R(s)ds] = x(0)

∫ ∞

t

R(s)ds

and

(11) x(t) = z(t) +

∫ t

0

R(t− s)f(s)ds.

where, again, the resolvent satisfies

R(t) = C(t) −
∫ t

0

C(t− s)R(s)ds

having properties (5) and (6).

Theorem 3.1. The function

(12) y(t) =:

∫ t

−∞
R(t− s)f(s)ds

is T -periodic and for any x(0) ∈ < the solution x(t) of (11) satisfies

(13) x(t+ nT ) → y(t) as n → ∞

uniformly on any compact subset of <.

Proof. Let K > 0 be fixed and n a positive integer with nT > K. Then
for t ∈ [−K,K], we have

|z(t+ nT )| = |x0|
∫ ∞

t+nT

R(u)du ≤ |x0|
∫ ∞

nT−K

R(u)du

and
∣∣∣∣
∫ −nT

−∞
R(t− s)f(s)ds

∣∣∣∣ ≤
∫ −nT

−∞
R(t− s)ds‖f‖

= ‖f‖
∫ ∞

t+nT

R(u)du ≤ ‖f‖
∫ ∞

nT−K

R(u)du.

Replacing t by t + nT in (11), we see that

x(t + nT ) = z(t + nT ) +

∫ t

−nT

R(t− s)f(s)ds.

Next, we write

y(t) =

∫ t

−nT

R(t− s)f(s)ds+

∫ −nT

−∞
R(t− s)f(s)ds
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and apply the two inequalities above to obtain

|x(t+ nT ) − y(t)|

=

∣∣∣∣z(t + nT ) −
∫ −nT

−∞
R(t− s)f(s)ds

∣∣∣∣

≤ (|x0| + ‖f‖)
∫ ∞

nT−K

R(u)du→ 0

as n→ ∞. This implies that x(t + nT ) → y(t) uniformly on [−K,K].
Moreover, a change of variable in (12) shows that y(t + T ) = y(t).
Thus, we have the desired conclusion. �

Can we do better? Can we prove that x(t) is a periodic solution
for an appropriate x(0)? First, we might invert the fractional equation
using the Riemann inversion as

x(t) = −
∫ t

−∞
C(t− s)[x(s) − f(s)]ds.

This would symbolically yield a mapping

(Zφ)(t) = −
∫ t

−∞
C(t− s)[φ(s) − f(s)]ds

so that φ periodic implies Zφ periodic. That conclusion is wrong be-
cause the integral may not converge.

Theorem 3.2. Solutions of (9) are uniformly bounded on [0,∞) and
all of them converge to the periodic function y(t) defined in (12). Thus,
we say that all solutions are asymptotically periodic and that y(t) is a
global attractor and an asymptotic T -periodic solution of (9).

Proof. Let x(t) be a solution of (9) with x(0) = x0. Then we have (11)
and so,

|x(t)| ≤ |z(t)| +
∫ t

0

R(t− s)|f(s)|ds(14)

≤ |x0|[1 −
∫ t

0

R(u)du] + ‖f‖
∫ t

0

R(t− s)ds

≤ B1 + ‖f‖ =: B2

if |x0| ≤ B1. Thus, solutions of (9) are uniformly bounded on [0,∞).
Next, we write x(t) as

x(t) = y(t) + z(t) −
∫ 0

−∞
R(t− s)f(s)ds

=: y(t) + φ(t).
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Since

|φ(t)| ≤ |z(t)| + ‖f‖
∫ ∞

t

R(u)du→ 0 as t→ ∞,

and y(t) ∈ PT , we see that y(t) is an asymptotic T -periodic solution of
(9) to which all other solutions converge. This completes the proof. �

Theorem 3.3. If (9) has a T -periodic solution x̃(t), then x̃(t) = y(t)
and

ψ(t) =

∫ ∞

t

R(u)f(t− u)du

is a solution of the homogeneous equation

(15) cDqx = −x(t).

Proof. If (9) has a T -periodic solution x̃(t), then it must be that x̃(t) =

y(t) for all t ≥ 0. But
∫ t

0
R(t − s)f(s)ds is also a solution of (9) with

initial value x0 = 0 and so, the difference
∫ 0

−∞
R(t− s)f(s)ds

is a solution of (15). Let s = t− u to complete the proof. �

Remark 3.4. Under the condition of Theorem 3.3, we have ψ(t) a
solution of (15) while every solution of (15) can be expressed as b[1 −∫ t

0
R(u)du] = b

∫ ∞
t
R(u)du for some constant b, and hence

b

∫ ∞

t

R(u)du =

∫ ∞

t

R(u)f(t− u)du for t ≥ 0.

It is clear that if f(t) ≡ f0, a constant, then x̃(t) = f0 is a constant
solution of (9) and f0

∫ ∞
t
R(u)du is a solution of (15).

4. A limiting equation for (9)

For decades investigators have studied the counterpart of our prob-
lem here for integro-differential equations and a synopsis can be found
in [4, pp. 90-97]. Let A be an n × n constant matrix, B ∈ L1[0,∞)
be an n × n matrix of continuous functions, and p be a column vec-
tor function of continuous T−periodic functions. If Z is the principal
matrix solution of

x′(t) = Ax(t) +

∫ t

0

B(t− s)x(s)ds+ p(t)

with Z ∈ L1[0,∞), then

φ(t) =

∫ t

−∞
Z(t− s)p(s)ds
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is a T−periodic solution of

y′(t) = Ay(t) +

∫ t

−∞
B(t− s)y(s)ds+ p(t),

called a limiting equation. We now find a limiting equation for our
y(t); it is an unusual fractional differential equation and it relates to
our early comment about writing the Riemann inversion of (1), just
before Theorem 3.2.

We now show that y(t) in (12) is a T -periodic solution of

(16) cDq
+x(t) = −x(t) + f(t)

if f ∈ PT with f ′ continuous, where cDq
+x is the Caputo fractional

derivative of x on < (see [12, pp. 87]) with

(17) cDq
+x(t) =

1

Γ(1 − q)

∫ t

−∞
(t− s)−qx′(s)ds.

We point out that by Dirichlet’s test, the integral on the right-hand
side of (17) converges if x ∈ PT with x′ continuous. We also view (16)
as the limiting equation of (9) (see the proof below).

Theorem 4.1. If f ∈ PT and f ′ is continuous on <, then y(t) =∫ t

−∞R(t− s)f(s)ds is a T -periodic solution of (16).

Proof. Let x(t) be a solution of (9) with x(0) = x0. Then we have

x(t) = z(t) +

∫ t

0

R(t− s)f(s)ds.

We first claim that x′(t) exists and is continuous for t > 0. In fact, it

follows from z(t) = [1 −
∫ t

0
R(u)du]x0 that z′(t) = −R(t)x0. Also, we

have

d

dt

∫ t

0

R(t− s)f(s)ds =
d

dt

∫ t

0

R(u)f(t− u)du

= R(t)f(0) +

∫ t

0

R(u)f ′(t− u)du

for t > 0 and thus,

(18) x′(t) = −R(t)x0 +R(t)f(0) +

∫ t

0

R(u)f ′(t− u)du

exists and is continuous for t > 0. Writing y(t) =
∫ ∞
0
R(u)f(t− u)du,

we see that

y′(t) =

∫ ∞

0

R(u)f ′(t− u)du =

∫ t

−∞
R(t− s)f ′(s)ds

for all t ∈ <.
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Next, let K > 0 be fixed. Then for t ∈ [−K,K] and nT > K, we
have

x′(t+ nT ) = −R(t + nT )x0 +R(t+ nT )f(0) +

∫ t

−nT

R(t− s)f ′(s)ds.

Subtract y′(t) from both sides of the equation above to obtain

x′(t+ nT ) − y′(t) = −R(t + nT )x0 +R(t+ nT )f(0)

−
∫ −nT

−∞
R(t− s)f ′(s)ds.

We then have

|x′(t+ nT ) − y′(t)|

≤ R(nT −K)|(|x0| + |f(0)|) + ‖f ′‖
∫ ∞

nT−K

R(u)du.

This implies that x′(t + nT ) → y′(t) uniformly in t on [−K,K]. We
know from Theorem 3.1 that x(t + nT ) → y(t) uniformly in t on
[−K,K]. Replacing t by t+ nT in (9) with nT > −t, we obtain

(19) cDqx(t + nT ) = −x(t + nT ) + f(t).

It is clear that the right-hand side converges to −y(t)+ f(t) as n→ ∞
for each t ∈ <.

We now show that cDqx(t+nT ) → cDq
+y(t) as n→ ∞. Let t > −K

be fixed and nT > K. From the definition of cDqx, we have

cDqx(t + nT ) =
1

Γ(1 − q)

∫ t+nT

0

(t + nT − s)−qx′(s)ds

(change variable by u = s− nT )

=
1

Γ(1 − q)

∫ t

−nT

(t− u)−qx′(u+ nT )du

=
1

Γ(1 − q)

∫ t

−K

(t− u)−qx′(u+ nT )du

+
1

Γ(1 − q)

∫ −K

−nT

(t− u)−qx′(u+ nT )du

=: I1 + I2.

Since x′(u+ nT ) → y′(u) as n→ ∞ uniformly on [−K, t], we see that

(20) I1 →
1

Γ(1 − q)

∫ t

−K

(t− u)−qy′(u)du as n→ ∞.
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We also observe that

I2 =
1

Γ(1 − q)

∫ −K

−nT

(t− u)−qx′(u+ nT )du

=
1

Γ(1 − q)

[
(t− u)−qx(u+ nT )

∣∣∣∣
−K

−nT

− q

∫ −K

−nT

(t− u)−(q+1)x(u+ nT )du

]

=
1

Γ(1 − q)

[
(t+K)−qx(−K + nT ) − (t+ nT )−qx(0)

− q

∫ −K

−nT

(t− u)−(q+1)x(u+ nT )du

]
.

This yields that

(21) I2 →
1

Γ(1 − q)

[
(t+K)−qy(−K) − q

∫ −K

−∞
(t− u)−(q+1)y(u)du

]

as n→ ∞. We now claim that∫ −K

−∞
(t− u)−qy′(u)du(22)

= (t +K)−qy(−K) − q

∫ −K

−∞
(t− u)−(q+1)y(u)du.

We integrate by parts and use the fact that
∫ −K

−∞ (t − u)−(q+1)du con-
verges to obtain

∫ −K

−∞
(t− u)−qy′(u)du

= lim
b→∞

[
(t− u)−qy(u)

∣∣∣∣
−K

−b

− q

∫ −K

−b

(t− u)−(q+1)y(u)du

]

= (t+K)−qy(−K) − q

∫ −K

−∞
(t− u)−(q+1)y(u)du.

This implies that

(23) I2 →
1

Γ(1 − q)

∫ −K

−∞
(t− u)−qy′(u)du.

Combining (20)-(23), we see that cDqx(t+nT ) → cDq
+y(t) as n→ ∞.

Let n→ ∞ in (19), we obtain
cDq

+y(t) = −y(t) + f(t).

Thus, y(t) is a T -periodic solution of (16). �
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5. Periodic perturbation of forcing

We come now to a sequence of three results based on questions raised
in the early stability theory of ordinary differential equations. The
reader is referred to the early chapters of the classical book of Bellman
[2], for example. We study systems of the form

x′ = (A+B(t))x

with A and B being n × n matrices and A constant or periodic. The
theme is that if x′ = Ax is stable in some sense and if B(t) is small or
in L1[0,∞), then the stability is not disturbed.

Parallel to that study, we now ask similar questions for (1) in the
context of asymptotic periodicity. Thus, given an asymptotically stable
linear homogeneous equation with constant coefficient:

(i) What is the effect of periodic forcing?
(ii) What is the effect of periodic damping and periodic forcing?
(iii) What is the effect of perturbing the periodicity, itself, in (ii) by

the sum of an L1[0,∞) function and a function tending to zero in both
the damping and the forcing?

The short answer is simple. Because all of the perturbations are
convolved with R(t) they damp out to zero and do not affect the long-
term behavior at all. To actually prove it is something of a challenge
and we introduce some simple but new fixed point ideas. This is a very
enlightening property of fractional differential equations.

We have seen that (9) has an asymptotic periodic solution when f is
a simple periodic function. Our next result shows that this behavior is
unchanged when f is a rather arbitrary function, h(t, xt), of the history,
xt, of the solution with h periodic in t. To see this, we focus on an
equation

(24) cDqx = −x(t) + h(t, x(t), x(t− r)) =: −x(t) + h(t, xt), r > 0,

for which we seek a solution of the form

(25) x(t) = p(t) + q(t)

where p ∈ PT , the Banach space of continuous T -periodic functions
p : [0,∞) → < with the supremum norm, while q ∈ Q the Banach
space of continuous functions q : [0,∞) → <, q(t) → 0 as t→ ∞, with
the supremum norm.

Lemma 5.1. The space (Y, ‖ · ‖) of functions x = p + q with p ∈ PT

and q ∈ Q with the supremum norm is a Banach space.

See Burton[6, p. 58].

Lemma 5.2. If φ, η ∈ Y so is φη. Hence, if L(x) is a polynomial with
real coefficients and if φ ∈ Y , so is L(φ).

This is a quick calculation.
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Lemma 5.3. Suppose that F : < → < satisfies a local Lipschitz con-
dition. If x ∈ Y , so is F (x).

Proof. Let x = p + q and let ‖p‖ + ‖q‖ ≤ K for some K > 0. Then
there exists an L > 0 such that

|F (p(t) + q(t)) − F (p(t))| ≤ L|p(t) + q(t) − p(t)| = L|q(t)|.
Now both functions on the left are continuous, so the difference defines
a continuous function and that function tends to zero since q does.
Moreover, F (p(t)) is certainly periodic and this proves the result. �

With these definitions and properties, we make the following as-
sumptions for this section. Suppose that for each continuous function
x : [−r,∞) → <, the function h(t, xt) = h(t, x(t), x(t − r)) is continu-
ous for t ≥ 0. Let ψ : [−r, 0] → < be a fixed continuous function and
denote its supremum by ‖ψ‖. For any φ ∈ Y with φ(0) = ψ(0), we
define φ(s) = ψ(s) for −r ≤ s ≤ 0 (or φ0 = ψ). Suppose that if φ ∈ Y
with φ0 = ψ then h(t, φt) ∈ Y . Moreover, suppose there is a K > 0
such that if φ ∈ Y with φ0 = ψ and ‖φ‖ ≤ K, then |h(t, φt)| ≤ K
whenever ‖ψ‖ ≤ K. Finally, suppose there is an α < 1 such that
φ, η ∈ Y, ‖φ‖, ‖η‖ ≤ K imply that |h(t, φt) − h(t, ηt)| ≤ α‖φ − η‖ for
t ≥ 0 if φ0 = η0 = ψ with ‖ψ‖ ≤ K. If r = 0, we simply write
h(t, xt) = h(t, x(t)).

Example 5.4. Let
cDqx = −x + x2(t) + (1/8) sin t

and take

h(t, x(t)) = x2(t) + (1/8) sin t, x ∈ Y, K = 3/8.

Then ‖x‖ ≤ K implies that |h(t, x(t))| ≤ K2 + (1/8) < K. Also, if
x, y ∈ Y and ‖x‖ ≤ K, ‖y‖ ≤ K, then

|h(t, x(t)) − h(t, y(t))| = |x2(t) − y2(t)|

≤ |x(t) − y(t)|(|x(t)| + |y(t)|) ≤ ‖x− y‖(2K) =: α‖x− y‖.

Example 5.5. In the same way, let h(t, xt) = x(t)x(t−r)+(1/8) sin t.
If x, y ∈ Y, ‖x‖ ≤ K, ‖y‖ ≤ K, and if x0 = y0 = ψ with ‖ψ‖ ≤ K, then

|h(t, xt) − h(t, yt)|
= |x(t)x(t− r) − y(t)x(t− r) + y(t)x(t− r) − y(t)y(t− r)|
≤ |x(t− r)||x(t) − y(t)| + |y(t)||x(t− r) − y(t− r)|
≤ 2K‖x− y‖

so we need 2K < 1 for a contraction. Also, ‖x‖, ‖ψ‖ ≤ K yield

|h(t, xt)| ≤ |x(t)x(t− r)| + (1/8) ≤ K2 + (1/8) < K

if 1/4 ≤ K < 1/2.
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We have already seen that
∫ 0

−∞R(t − s)φ(s)ds → 0 as t → ∞ if
φ : < → < is a bounded continuous function.

Theorem 5.6. Under these conditions, for each continuous initial
function ψ : [−r, 0] → <,
(26) cDqx = −x + h(t, xt)

has a solution x in Y with x0 = ψ.

Proof. Write the equation as

x(t) = x(0) − 1

Γ(q)

∫ t

0

(t− s)q−1[x(s) − h(s, xs)]ds

= x(0) −
∫ t

0

C(t− s)[x(s) − h(s, xs)]ds

and decompose as

z(t) = x(0) −
∫ t

0

C(t− s)z(s)ds,

z(t) = x(0) − x(0)

∫ t

0

R(s)ds,

x(t) = z(t) +

∫ t

0

R(t− s)h(s, xs)ds.

For the given K > 0, let ψ : [−r, 0] → < be a fixed continuous initial
function with ‖ψ‖ ≤ K. We define the complete metric space (YK, ‖·‖)
in Y by

YK = {φ ∈ Y : φ(0) = ψ(0), ‖φ‖ ≤ K}.
Next, recall that for any φ ∈ Y , we have the extension φ0 = ψ. Now
define P : YK → YK by φ ∈ YK implies that

(Pφ)(t) = z(t) +

∫ t

0

R(t− s)h(s, φs)ds

where

z(t) = φ(0) −
∫ t

0

C(t− s)z(s)ds

so that

z(t) = φ(0) −
∫ t

0

R(t− s)φ(0)ds = φ(0)[1 −
∫ t

0

R(s)ds].

Then

|(Pφ)(t)| ≤ K[1 −
∫ t

0

R(s)ds] +

∫ t

0

R(t− s)|h(s, φs)|ds

≤ K[1 −
∫ t

0

R(s)ds] +

∫ t

0

R(s)dsK = K.
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Also, if φ, η ∈ YK then

|(Pφ)(t) − (Pη)(t)| ≤
∫ t

0

R(t− s)|h(s, φs) − h(s, ηs)|ds

≤
∫ t

0

R(t− s)α‖φ− η‖ ≤ α‖φ− η‖

so P is a contraction.
Finally, if φ ∈ Y with φ0 = ψ so is h(t, φt) =: p(t) + q(t) so

(Pφ)(t) = z(t) +

∫ t

0

R(t− s)h(s, φs)ds

= z(t) +

∫ t

0

R(t− s)[p(s) + q(s)]ds

= z(t) +

∫ t

0

R(t− s)q(s)ds−
∫ 0

−∞
R(t− s)p̃(s)ds+

∫ t

−∞
R(t− s)p̃(s)ds

where p̃ is the T -periodic extension of p on <. Now
∫ t

0
R(t−s)q(s)ds→

0 as t → ∞ as it is the convolution of an L1 function and a function
tending to zero. Also

∣∣∣∣
∫ 0

−∞
R(t− s)p̃(s)ds

∣∣∣∣ ≤ ‖p‖
∫ 0

−∞
R(t− s)ds

= ‖p‖
∫ ∞

t

R(u)du→ 0 as t→ ∞.

Finally,
∫ t

−∞R(t − s)p̃(s)ds is periodic. Hence, P : YK → YK is a
contraction with unique fixed point x ∈ YK. �

6. A periodically damped equation

Return now to (9) and introduce variable damping in the form

(27) cDqx(t) = −a(t)x(t) + f(t), 0 < q < 1, x(0) ∈ <,
with a, f : < → < and both are continuous, while there is a T > 0 with

a(t+ T ) = a(t), f(t+ T ) = f(t).

Recall that early on we stated that we always contrive to write our
equation as

cDqx(t) = −[x(t) +G(t, x(t))] + f(t)

so that we can decompose the equation and introduce that all-important
kernel R(t− s). Clearly, (27) will require a lot of work to achieve this
and we suggest that the reader consider the following steps with some
care. These steps, and a number of others, were introduced in [9] in an
entirely different context and they can be carried out when the a(t)x(t)
in (27) is replaced by either a sublinear or a superlinear function.

It is assumed that there are numbers satisfying

(28) 0 < ε ≤ a(t) ≤M.
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Then we find a positive number α < 1 so that for J = (1/2)(M + ε)
then

(29) |J − a(t)| ≤ αJ.

In fact, we may choose α = (M − ε)/(M + ε).

Theorem 6.1. If (28) holds, then we have (29) and for every x(0) ∈ <
there is a unique solution of (27) in Y . Moreover, for every x(0), the
solution converges to the same periodic function as t→ ∞.

Proof. Invert (27) as

x(t) = x(0) − 1

Γ(q)

∫ t

0

(t− s)q−1[a(s)x(s) − f(s)]ds

and prepare it for separation as

x(t) = x(0) − 1

Γ(q)

∫ t

0

(t− s)q−1[Jx(s) − (J − a(s))x(s) − f(s)]

= x(0) − J

Γ(q)

∫ t

0

(t− s)q−1[x(s) − J − a(s)

J
x(s) − f(s)

J
]ds.(30)

The new kernel J
Γ(q)

tq−1 is still completely monotone and there is a

resolvent, say R(t) again, with exactly the same properties as before.
It is crucial that J be positive. Thus, we decompose (30) as

z(t) = x(0)[1 −
∫ t

0

R(s)ds]

and

(31) x(t) = z(t) +

∫ t

0

R(t− s)

[
J − a(s)

J
x(s) +

f(s)

J

]
ds.

Because of (29) this equation will define, for the given x(0), a contrac-
tion mapping on the Banach space of bounded continuous functions
φ : [0,∞) → < with the supremum norm and there is a unique bounded
solution for every x(0) ∈ <. More to the point here, we can define the
same mapping of the space (Y, ‖·‖) into itself and there is a fixed point
in Y . The point is that if x = p+ q ∈ Y then

J − a(s)

J
x(s) = p∗(s) + q∗(s) ∈ Y

and ∫ t

0

R(t− s)[p∗(s) + q∗(s)]ds ∈ Y.

Moreover, if x1(0) and x2(0) are given points and if z1(t), z2(t) and
x1(t), x2(t) are the corresponding solutions then x1(t) − x2(t) solves

x(t) = z1(t) − z2(t) +

∫ t

0

R(t− s)
J − a(s)

J
x(s)ds.
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This equation will define a contraction mapping on the Banach space of
bounded continuous functions tending to zero, showing that the unique
solution tends to zero. �

7. Perturbation of the periodicity, itself

Previously, we perturbed damping and forcing with periodic func-
tions and we saw that the resulting solution remained asymptotically
periodic. Now our perturbations are perturbations of the periodicity
itself. Consider a fractional differential equation of Caputo type

(32) cDqx = −[a(t) + b(t) + c(t)]x(t) + [f(t) + g(t) + h(t)], 0 < q < 1,

with a, b, c, g, f, h : [0,∞) → < all continuous,

(i) b(t), h(t) → 0 as t→ ∞,

(ii) c(t), g(t) ∈ L1[0,∞),

(iii) f(t), g(t) bounded,

and there are positive numbers ε,M with

(iv) ε ≤ a(t) ≤M.

Theorem 7.1. Equation (32) has a bounded solution for each x(0) ∈ <
and the solution is unique. If f(t) ≡ 0, then that solution converges to
zero. If x1(t), x2(t) are solutions for different initial conditions, then
x1(t) − x2(t) → 0 as t→ ∞.

Theorem 7.2. If a(t + T ) = a(t) and f(t + T ) = f(t) for all t and
some T > 0, then that unique solution of (32) lies in the space (Y, ‖ ·‖)
defined in Lemma 5.1.

In both of these theorems the uniqueness follows from a Lipschitz
condition and not from the fixed point theorem that will be used for
the rest of the conclusion.

Invert (32) as
(33)

x(t) = x(0)− 1

Γ(q)

∫ t

0

(t−s)q−1{[a(s)+b(s)+c(s)]x(s)−[f(s)+g(s)+h(s)]}ds.

As in the last section, we can find J > 1 and α < 1 with |a(t)−J | ≤ αJ ;
a first step is J = ε + (1/2)[M − ε]. Then rewrite the equation as

x(t) = x(0) − J

Γ(q)

∫ t

0

(t− s)q−1{x(s) − (J − a(s))

J
x(s) +

(b(s) + c(s))

J
x(s)

− 1

J
[f(s) + g(s) + h(s)]}ds.

(34)

Decompose into

z(t) = x(0)[1 −
∫ t

0

R(s)ds]
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and

x(t) = z(t) +
1

J

∫ t

0

R(t− s)[f(s) + g(s) + h(s)]ds

+

∫ t

0

R(t− s){(J − a(s))

J
x(s)}ds− 1

J

∫ t

0

R(t− s)(b(s) + c(s))x(s)ds

=: z(t) + F (t) +G(t) +H(t) +

∫ t

0

R(t− s){(J − a(s))

J
x(s)}ds

− 1

J

∫ t

0

R(t− s)(b(s) + c(s))x(s)ds

=: (Bx)(t)

+ (Ax)(t).
(35)

The notation should clearly indicate that we have defined functions
F,G,H, together with operators B and A. Each of these will have
properties which were clearly enhanced by the kernel R. Note that
R(t) → 0 as t→ ∞ and R ∈ L1[0,∞). As h(t) → 0, we have H(t) → 0
as t→ ∞. The property is also true for G. The function F is bounded.

There are two important, but simple, properties.

Theorem 7.3. Let (X, ‖ · ‖) denote the Banach space of bounded con-
tinuous functions φ : [0,∞) → < with the supremum norm. Then
B : X → X is a contraction with unique fixed point.

Theorem 7.4. Let (X0, ‖·‖) be the subspace of (X, ‖·‖) with φ(t) → 0
as t→ ∞. If F (t) = 0, then for B in (35) it follows that B : X0 → X0

is a contraction with unique fixed point.

The next result is not so simple, but a proof is found in [9](also see
Lemma 7.7 below).

Theorem 7.5. The operator A in (35) maps bounded subsets of X into
equicontinuous subsets of X.

We must modify this in order to prove that B +A has a fixed point
because c(t) can be unbounded, but the modification is simple.

It is a useful fact that if f(t+ T ) = f(t), then F ∈ Y ; that is,

F (t) = p(t) + q(t), p(t+ T ) = p(t), q(t) → 0 as t→ ∞.

It turns out that A + B is almost a contraction. It fails because∫ t

0
R(t−s)(|b(s)|+ |c(s)|)ds can be large on a certain interval which we

will denote by [0, S]; but for t > S, then A + B is a contraction. We
readily avoid the difficulty by using the following result from [8].

Theorem 7.6. Let (X, ‖ · ‖) be a Banach space, A,B : X → X, B
a contraction with constant α < 1, and A continuous with A mapping
bounded sets into compact sets. Either
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(i) x = λB(x/λ) + λAx has a solution in X for λ = 1, or
(ii) the set of all such solutions, 0 < λ < 1, is unbounded.

Notice that, as B linear, the λs cancel in that first term.
We are now ready for the proof of Theorem 7.1. It will be proved by

a sequence of lemmas allowing us to apply Theorem 7.6.

Lemma 7.7. Let Z be any bounded subset of X. Then AZ resides in
a compact subset of X.

Proof. Let the bound on Z be L and let ψ(t) := 1
J

∫ t

0
R(t − s)|b(s) +

c(s)|ds so that if φ ∈ Z then

|(Aφ)(t)| ≤ Lψ(t) → 0 as t→ ∞.(36)

There are two steps for the equicontinuity. Let ε > 0 be given and
find T so that Lψ(t) < ε/2 if t ≥ T . Thus, if φ ∈ Z and if t1, t2 ≥ T
then |(Aφ)(t1)− (Aφ)(t2)| < ε. Next, with T fixed, we consider AZ for
0 ≤ t ≤ T and invoke the result from [9] to conclude that this set is
equicontinuous. Hence, we see that AZ, itself, is equicontinuous, and
it is contained in a compact subset of X since (36) holds. This now
completes the proof. �

We have already noted that B is a contraction so all that remains in
order to invoke Theorem 7.6 is to show that there is an a priori bound
on solutions of

(37) x(t) = (Bx)(t) + λ(Ax)(t), 0 < λ < 1.

Lemma 7.8. There is a K > 0 so that if x solves (37) on [0,∞) for
any such λ, then ‖x‖ ≤ K.

Proof. For the given α with |J − a(t)| < αJ , refer to ψ in the proof of
Lemma 7.7 and find a number S such that ψ(t) ≤ (1− α)/2 for t ≥ S.
Next, find a number D with |z(t) + F (t) +G(t) +H(t)| ≤ D. We will
now find a bound on an arbitrary solution x of (37). Suppose, by way
of contradiction, that for some such x there is a sequence tn → +∞
with |x(t)| ≤ |x(tn)| if 0 ≤ t ≤ tn and |x(tn)| ↑ +∞. Then for tn > S
we have

|x(tn)| ≤ D+|x(tn)|
∫ tn

0

R(tn−s)
[
α+

|b(s) + c(s)|
J

]
ds ≤ D+|x(tn)|(α+ψ(tn))

and this will contradict |x(tn)| ↑ ∞ and yield a bound, say U , if any of
these tn lie to the right of S. Obviously, the tn would depend on the
particular solution, but the bound would not so depend if any of these
tn lie to the right of S, which is independent of the particular x.

Thus, we suppose that all the tn ≤ S. Let Q ≥ |b(s)| + |c(s)| for
0 ≤ s ≤ S. Then there is a Gronwall inequality [10, p. 111] (consult
also [13, p. 188], [10, pp. 172, 173], [21] [15, p. 91]) of the following
form:
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|x(t)| ≤ D +

∫ t

0

R(t− s)Q|x(s)|ds ≤ D +
J

Γ(q)

∫ t

0

(t− s)q−1Q|x(s)|ds

implies
|x(t)| ≤ DEq(JQt

q) for 0 ≤ t ≤ S

where Eq is the Mittag-Leffler function of order q. This function is
continuous on [0, S] and, hence, has a bound, say N . The bound is
uniform for all the values of λ and all such x. Either U or N is a bound
on [0,∞). �

We now apply Theorem 7.6 to prove the first conclusion in Theorem
7.1. Continue in the same way with the subspace (X0, ‖ · ‖) when
f(t) ≡ 0 to prove the second conclusion in Theorem 7.1. Finally, the
difference of two solutions satisfies an equation with f(t) removed so it
tends to zero.

Now we prove Theorem 7.2. Note that z(t), H(t), G(t),
∫ t

0
R(t −

s)b(s)ds → 0 as t → ∞, while α(t) := J−a(t)
J

and F (t) lie in space
Y of Lemma 5.1. Also, if P is the operator defined by φ ∈ Y implies
that

(Pφ)(t) = (Bφ)(t) + λ(Aφ)(t)

then Pφ ∈ Y . To see this, notice first that
∫ t

0

R(t− s)α(s)[p(s) + q(s)]ds

=

∫ t

−∞
R(t− s)α(s)p̃(s)ds+

[∫ t

0

R(t− s)α(s)q(s)ds−
∫ 0

−∞
R(t− s)α(s)p̃(s)ds

]

=: p1(t) + q1(t) ∈ Y

where p̃ is again the T -periodic extension of p on <. Also, A(p+q) ∈ Y .
Theorem 7.6 now says that there is a solution in Y .

Theorem 7.9. Let the conditions of Theorem 6.1 and 7.2 hold. If p1(t)
is the periodic solution to which all solutions of (27) converge and if
p2(t) is the periodic function to which all solutions of (32) converge,
then p1(t) = p2(t).

Proof. In both Theorem 6.1 and 7.2 we have F (t) = 1
J

∫ t

0
R(t−s)f(s)ds

where f is defined in (27). Write (31) as

y(t) = z(t) + F (t) +

∫ t

0

R(t− s)α(s)y(s)ds

and x(t) the solution of (32) as

x(t) = z(t)+F (t)+G(t)+H(t)+

∫ t

0

R(t−s)[α(s)− 1

J
(b(s)+c(s))]x(s)ds
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where both have the same initial condition so z(t) is the same in each

case. Now x(t) is a bounded function and so 1
J

∫ t

0
R(t − s)[−b(s) −

c(s)]x(s)ds =: ξ(t) → 0 as t→ ∞. We subtract y from x obtaining

x(t) − y(t) = H(t) +G(t) +

∫ t

0

R(t− s)[α(s)][x(s) − y(s)]ds+ ξ(t).

Then define L(t) = H(t) + G(t) + ξ(t) → 0 as t → ∞ and write that
last equation as

w(t) = L(t) +

∫ t

0

R(t− s)α(s)w(s)ds.

That last equation defines a contraction mapping on (X0, ‖ · ‖) with
solution tending to zero. But

x(t) = p1(t) + q1(t) ∈ Y, y(t) = p2(t) + q2(t) ∈ Y

while

w(t) = (p1(t) − p2(t)) + (q1(t) − q2(t)) → (p1(t) − p2(t)) = 0,

as required. �
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