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ABSTRACT. In a series of papers we have studied stability properties of func-

tional differential equations by means of fixed point theory. We enlarge that study
now by also considering delay equations which may be unstable when the delay
is zero. We continue to focus on challenging examples to illustrate the work, as
opposed to attempting to state general theorems. Here, we deal with three different

examples. In Part I we obtain asymptotic stability using Schauder’s and Banach’s
fixed point theorems; it advances results used by Liapunov techniques in several
ways, but particularly by placing no smoothness on the delay. It also advances
some of our earlier work with fixed point theory in that it places no smoothness

conditions on the nonlinear perturbation. In Part II we prove boundedness and as-
ymptotic stability using Krasnoselskii’s fixed point theorem. Schaefer’s fixed point
theorem is used to prove that there is a periodic solution when a periodic forcing

function is added to that equation.

AMS (MOS) subject classification. 34D20, 34K20, 47H10

1. OVERVIEW

Liapunov’s direct method is by far the most general method for dealing with
stability, boundedness, and the existence of periodic solution of ordinary and func-

tional differential equations. But over the last hundred years investigators have
encountered a number of difficulties which have remained unresolved. Several years
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ago we began a project [2-5] to see if those problems could be circumvented using
fixed point theory. Since all of those problems had originated with specific exam-
ples, it seemed that our endeavor should center around difficult examples. Thus,

we have offered no general theorems. Instead, we have presented examples which
are known to cause severe difficulties using Liapunov’s direct method.

Our results here are of two different types. In Part I we look at a typical problem
on which there has been much work using Liapunov functionals and we show how
fixed point theory can be used to circumvent several difficulties encountered in that
method. In Part II we continue studying that problem under conditions which

have prevented the use of Liapunov functions; we show that fixed point theory can
be used to show boundedness, asymptotic stability, and the existence of periodic
solutions.

Here is a general overview of the work. The equation

x′(t) = −a(t)x(t − r1) + b(t)g(x(t − r2(t)))

has been studied by means of several Liapunov functionals under different assump-
tions. In most, but not all, cases it is assumed that

(A) r1 = 0

and

(B) |g(x)| ≤ |x| for small x.

If, in addition, one asks that

(C) r2 is a positive constant,

then one is led to the condition

(D) a(t) ≥ |b(t + r2)|

and to the Liapunov functional

V (t, xt) = |x(t)| +

∫ t

t−r2

|b(s + r2)||g(x(s)|ds

with derivative satisfying

V ′(t, xt) ≤ −a(t)|x(t)|+ |b(t)g(x(t− r2))|+ |b(t+ r2)g(x(t))|− |b(t)g(x(t− r2))| ≤ 0.

We have V positive definite and V ′ ≤ 0 so the zero solution is stable. With addi-
tional conditions asymptotic stability can be obtained.

Investigators have successfully removed (C) at some cost. We can ask instead
of (C) that there are positive constants α and k with

(E) r2(t) continuous and positive, 1 − r′2(t) ≥ α,



and

(F) a(t) ≥ k ≥ |b(t)|/α

which leads to the Liapunov functional

V (t, xt) = |x(t)| + k

∫ t

t−r2(t)

|g(x(s))|ds

whose derivative can be made non-positive.

Our project seeks to reduce or remove (A)-(F) by means of fixed point theory.

In an earlier paper [3] we used contraction mappings by assuming (A) and (B),
but eliminating (C) and (E), while reducing (D) to an averaging condition, at the
cost of asking

(G) that g satisfies a local Lipschitz condition.

Part I of this paper uses Schauder’s fixed point theorem to remove (G), resulting
in conditions close to (A), (B), and an averaging form of (D) implying asymptotic
stability. This is a significantly better result than has been obtained via Liapunov

functionals.

In Part II we continue with the equation, but we violate every one of the

conditions (A) - (G) and consider

x′(t) = −a(t)x(t − r1) + b(t)x1/3(t− r2(t))

where r1 is a positive constant. Notice now that g(x) = x1/3 and so x does not

dominate g. If ri = 0 then it is a Bernoulli equation; with a(t) > 0 and b(t) < 0
a simple Liapunov function will at least yield stability and sometimes asymptotic
stability. On the other hand, if a and b are positive constants then the zero solution

can be non-unique to the right, and hence, there can be no stability. But, surpris-
ingly, if a(t) > 0 and dominates b(t) sufficiently strongly then the zero solution can
be asymptotically stable independent of the sign of b(t). Thus, this equation is very
rich in behavior of solutions.

When the ri are positive, then it is a challenging problem and provides a good
test for the effectiveness of fixed point theory as a tool for proving stability and

boundedness. Our first result uses Krasnoselskii’s fixed point theorem to prove
boundedness of solutions in the case corresponding to a and b being positive con-
stants mentioned above. Our third result yields asymptotic stability via Krasnosel-
skii’s fixed point theorem when a dominates b sufficiently strongly.

For our second result we suppose that our equation is given a periodic pertur-
bation and that a, b are also periodic. Then, under essentially the same conditions

as our first result, we obtain a periodic solution by means of Schaefer’s fixed point
theorem. This result is again related to Liapunov theory. It is well known that if



a system of differential equations has a globally Lipschitz Liapunov function with
negative definite derivative, then the equation can be given a sufficiently small per-
turbation and that same Liapunov function will yield boundedness. Our second

result offers a parallel property.

It is to be noted that other authors are also using fixed point theory to prove

stability, although in different contexts. For example, Serban [10] has used a Picard
operator to prove asymptotic stability of a difference equation. Rus [8] uses Picard
operators to prove data dependence of boundary value problems.

PART I

Asymptotic Stability: Two fixed point theorems

2. PRELIMINARIES

In this part, we discuss asymptotic behavior of solutions of functional differential
equations by using the following theorem, which can be found in Smart [5; p. 15].

For reference it may be stated as follows.

THEOREM 2.1 (Schauder’s first theorem). Let (C, ‖·‖) be a normed space, and

let S be a compact convex nonempty subset of C . Then every continuous mapping
of S into S has a fixed point.

First we introduce a concept of equi-convergence. Let r0 be a fixed nonnegative
constant.

DEFINITION (Equi-convergence). The set S of real-valued functions on
[−r0,∞) is said to be equi-convergent to 0 if there is a function q : R+ → R+ :=
[0,∞) such that q(t) → 0 as t→ ∞, and that for any φ ∈ S and t ∈ R+, |φ(t)| ≤ q(t)

holds.

Now we prepare an Ascoli-Arzela like lemma. For the proof, see Lemma 3 in

Burton and Furumochi [4].

LEMMA. If the set {φk(t)} of real-valued functions on [−r0,∞) is equi-

convergent to 0 with respect to a function q : R+ → R+, and is equi-continuous,
then the sequence {φk(t)} contains a subsequence that converges uniformly on R+

to a continuous function φ(t) with |φ(t)| ≤ q(t) on R+.

3. FIRST ORDER HALF-LINEAR EQUATIONS

First consider the scalar half-linear equation

(3.1) x′(t) = −a(t)x(t) − b(t)g(x(t − r(t))), t ∈ R+,



where a, b, r : R+ → R := (−∞,∞) and g : R → R are continuous. Let α be any
fixed positive number. We assume that there are constants β > 0, γ > 0 and r0 ≥ 0
so that

(3.2) |g(x)| ≤ β|x| for |x| ≤ α,

(3.3) sup{e
R

t

τ
(a(s)−βγ|b(s)|)ds|t ∈ R+} ≤ γ,

where τ = τ (t) := max(0, t− r(t)),

(3.4)

∫ t

0

(a(s) − βγ|b(s)|)ds → ∞ as t→ ∞,

and

(3.5) r(t) ≥ 0 and t− r(t) ≥ −r0.

Define a number δ by

(3.6) δ := αe−σ,

where σ := sup{
∫ t

0 (βγ|b(s)| − a(s))ds|t ∈ R+}.

Now let q : [−r0,∞) → R be a continuous function such that q(t) = q(0) on

[−r0, 0], and that q(t) is the unique solution of the initial value problem

q′ = (βγ|b(t)| − a(t))q, q(0) = δ, t ∈ R+.

Then q(t) can be expressed as

q(t) = δe−
R

t

0
a(s)ds + βγ

∫ t

0

e−
R

t

s
a(u)du|b(s)|q(s)ds

= δe
R

t

0
(βγ|b(s)|−a(s))ds, t ∈ R+,

which together with (3.4) and (3.6), implies

(3.7) q(t) → 0 as t→ ∞

and

(3.8) 0 < q(t) ≤ δeσ = α, t ∈ R+.

Now we have the following theorem which effectively remedies the deficiencies we
had listed for the Liapunov functional.



THEOREM 3.1. Suppose that solutions of (3.1) are uniquely determined by
continuous initial functions. If (3.2)-(3.5) hold, then the solutions of Equation (3.1)
with small initial functions tend to 0 as t→ ∞.

Proof. We will give the details for the initial time t0 = 0, but general initial time
t0 offers no new difficulties. Let C be the Banach space of bounded and continuous

functions φ : [−r0,∞) → R with the supremum norm ‖·‖. For a continuous function
ψ : [−r0, 0] → R with sup{|ψ(θ)|| − r0 ≤ θ ≤ 0} ≤ δ, let S be a set of continuous
functions φ : [−r0,∞) → R such that φ(t) = ψ(t) on [−r0, 0], |φ(t)| ≤ q(t) on
R+, and |φ(t1) − φ(t2)| ≤ L|t1 − t2| for t1, t2 ∈ R+ with τ1 ≤ t1, t2 ≤ τ2 where

L = L(τ1, τ2) is a function with

(|a(t))| + βγ|b(t)|)α ≤ L for τ1 ≤ t ≤ τ2.

Since we have (3.8), we obtain

|q′(t)| ≤ (|a(t)| + βγ|b(t)|)α, t ∈ R+.

Thus the function ξ(t) defined by ξ(t) = ψ(t) on [−r0, 0], and ξ(t) = ψ(0)q(t)/δ on
R+ is an element of S, and from (3.7) and Lemma, S is a compact convex nonempty

subset of C . Define a mapping P for φ ∈ S by

(Pφ)(t) = ψ(t) if − r0 ≤ t ≤ 0,

and

(Pφ)(t) = ψ(0)e−
R

t

0
a(s)ds +

∫ t

0

e−
R

t

s
a(u)dub(s)g(φ(s − r(s)))ds if t > 0.

Then we have (Pφ)(t) = ψ(t) on [−r0, 0], and from (3.2) we obtain

|(Pφ)(t)| ≤ δe−
R

t

0
a(s)ds + β

∫ t

0

e−
R

t

s
a(u)du|b(s)|q(s − r(s))ds

≤ δe−
R

t

0
a(s)ds + βγ

∫ t

0

e−
R

t

s
a(u)du|b(s)|q(s)ds = q(t), t ∈ R+.

Moreover, it is easy to see that

(Pφ)′(t) = −a(t)(Pφ)(t) + b(t)g(φ(t − r(t))), t > 0,

which implies
|(Pφ)′(t)| ≤ |a(t)|q(t) + β|b(t)|q(t − r(t))

≤ (|a(t)| + βγ|b(t)|)q(t) ≤ (|a(t)| + βγ|b(t)|)α, t > 0,

and hence, P maps S into S. Clearly P is continuous. Thus, by Theorem 2.1, P
has a fixed point φ and that is the solution which satisfies |φ(t)| ≤ q(t), t ∈ R+.

Now we show an example.



EXAMPLE 3.1. Let a : R+ → R be a 13-periodic function satisfying

a(t) =



















−1, 0 ≤ t < 1

6t− 7, 1 ≤ t < 2

5, 2 ≤ t < 12

77 − 6t, 12 ≤ t ≤ 13,

and let r(t) ≡ r, b(t) ≡ 2, β = 1 and 0 ≤ r ≤ ln 2. Then it is easily seen that

(3.3) and (3.4) hold with γ = 2, σ = 85/12 in (3.6), and q(t) = δe
R

t

0
(4−a(s))ds → 0

as t → ∞, where δ is defined by (3.6). Thus, by Theorem 3.1, for a continuous
function ψ : [−r, 0] → R with sup{|ψ(θ)|| − r ≤ θ ≤ 0} ≤ δ, the solution x(t, 0, ψ)
of the equation

x′(t) = −a(t)x(t) − b(t)g(x(t − r)), t ∈ R+,

satisfies

|x(t, 0, ψ)| ≤ δe
R

t

0
(4−a(s))ds, t ∈ R+.

If g(x) ≡ x on R and r(t) ≡ r, Equation (3.1) becomes

(3.9) x′(t) = −a(t)x(t) − b(t)x(t − r), t ∈ R+.

In Hale [6; p. 108], under the assumption

(3.10) a(t) ≥ δ > 0, |b(t)| ≤ θδ, θ < 1,

where δ and θ are constants, the uniform asymptotic stability of the zero solution
of Equation (3.9) is discussed by using the Liapunov functional

V (t, xt) = (1/2)(x2(t) + δ

∫ t

t−r

x2(s)ds).

On the other hand, in Burton and Furumochi [3], under the assumption

(3.11)

∫ t

0

e−
R

t

s
a(u)du|b(s)|ds ≤ η < 1 on R+,

∫ t

0

a(s)ds → ∞ as t→ ∞,

where η is a constant, the asymptotic stability of the zero solution of Equation (3.9)
is discussed by using the contraction mapping principle.

But the functions a(t) and b(t) in Example 3.1 satisfy neither (3.10) nor (3.11).

Next consider the scalar integro-differential equation

(3.12) x′(t) = −a(t)x(t) +

∫ t

t−r(t)

b(t, s)g(x(s))ds, t ∈ R+,



where a, r : R+ → R, b : R+ ×R→ R and g : R→ R are continuous. Let α be any
fixed number. We assume that there are constants β > 0, γ > 0 and r0 ≥ 0 so that
(3.2), (3.5),

(3.13) sup{sup{e
R

t

v
(a(s)−βγ

R

s

s−r(s)
|b(s,u)|du)ds

|τ ≤ v ≤ t}|t ∈ R+} ≤ γ,

where τ = τ (t) := max(0, t− r(t)), and

(3.14)

∫ t

0

(a(s) − βγ

∫ s

s−r(s)

|b(s, u)|du)ds → ∞ as t→ ∞.

For the number σ := sup{
∫ t

0
(βγ

∫ s

s−r(s)
|b(s, u)|du− a(s))ds|t ∈ R+}, define a num-

ber δ by δ := αe−σ .

Now let q : [−r0,∞) → R be a continuous function such that q(t) ≡ q(0) on
[−r0, 0], and that q(t) is the unique solution of the initial value problem

q′ = (βγ

∫ t

t−r(t)

|b(t, s)|ds − a(t))q, q(0) = δ, t ∈ R+.

Then q(t) can be expressed as

q(t) =δe−
R

t

0
a(s)ds + βγ

∫ t

0

e−
R

t

s
a(u)du

∫ s

s−r(s)

|b(s, u)|duq(s)ds

= δe
R

t

0
(βγ

R

s

s−r(s)
|b(s,u)|du−a(s))ds

, t ∈ R+,

which together with (3.14) and δ = αe−σ, implies (3.7) and (3.8).

THEOREM 3.2. Suppose that solutions of (3.12) are uniquely determined by

continuous initial functions. If (3.2), (3.5), (3.13) and (3.14) hold, then the solutions
of Equation (3.12) with small initial functions tend to 0 as t→ ∞.

This theorem can be easily proved by taking the set S in the proof of Theorem
3.1 for the above function q(t) and a function L = L(τ1, τ2) with

(a(t) + βγ

∫ t

t−r(t)

|b(t, s)|ds)α ≤ L for τ1 ≤ t ≤ τ2,

and by defining a mapping P for φ ∈ S by

(Pφ)(t) :=

{

ψ(t), −r0 ≤ t ≤ 0,

ψ(0)e−
R

t

0
a(s)ds +

∫ t

0
e−

R

t

s
a(u)du

∫ s

s−r(s)
b(s, u)dug(φ(s))duds, t > 0.

So we omit the details of the proof.

Now we show an example.



EXAMPLE 3.2. Let a : R+ → R be the function defined in Example 3.1, and
let r(t) ≡ r, b(t, s) ≡ 2, β = 1 and 0 ≤ r ≤ 2/3. Then it is easily seen that (3.13)

and (3.14) hold with γ = 3, σ ≤ 85/12 and q(t) = δe
R

t

0
(6r−a(s)ds) → 0 as t → ∞,

where δ := αe−σ . Thus, by Theorem 3.2, for a continuous function ψ : [−r, 0] → R

with sup{|ψ(θ)| − r ≤ θ ≤ 0} ≤ δ, the solution x(t, 0, ψ) of the equation

x′(t) = −a(t)x(t) + 2

∫ t

t−r

g(x(s))ds, t ∈ R+,

satisfies

|x(t, 0, ψ)| ≤ δe
R

t

0
(6r−a(s))ds, t ∈ R+.

In Burton and Furumochi [3], under the assumption

(3.15) there exists η < 1 with

∫ t

0

e−
R

t

s
a(u)du

∫ s

s−r(s)

|b(s, u)|duds ≤ η,

the asymptotic stability of the zero solution of Equation (3.12) is discussed by using
the contraction mapping principle. But the functions a(t) and b(t, s) in Example

3.2 do not satisfy (3.15) for r = 2/3.

4. A SECOND ORDER EQUATION

All equations in the previous section are first order. We now discuss stability
of solutions of a second order equation. Here, the reader will see that problems
will occur in the variation of parameters formula if we try to do this with variable
coefficients in the part of the equation from which we hope to derive stability. But

there are ways to choose the system from the second order equation so that the
variable matrix A(t) will commute with its integral. In that case, the work can
proceed in the manner given below.

We discuss asymptotic behavior of solutions using the contraction mapping
principle. Consider the linear equation of retarded type

(4.1) x′′ + ax′ + bx(t − r) = 0

and write it as the system

x′ =y

y′ =− ay − bx+ (d/dt)

∫ t

t−r

bx(s)ds(4.2)

which is then expressed as the vector system

(4.3) z′ = Az + (d/dt)

∫ t

t−r

Bz(s)ds,



where A and B are

A =

(

0 1
−b −a

)

and

B =

(

0 0
b 0

)

.

By the variation of parameters formula

(4.4) z(t) = eAtz0 +

∫ t

0

eA(t−s)(d/ds)

∫ s

s−r

Bz(u)duds

or upon integration by parts,

z(t) =eAtz0 +

∫ t

t−r

Bz(u)du − eAt

∫ 0

−r

Bz(u)du

+ A

∫ t

0

eA(t−s)

∫ s

s−r

Bz(u)duds.(4.5)

In order for eAt → 0 as t→ ∞ we need

(4.6) a > 0, b > 0.

Let ψ : [−r, 0] → R2 be a given continuous initial function and define

S := {φ : [−r,∞) → R2| continuous , φ0 = ψ, φ(t) → 0 as t→ ∞},

where φ0 is defined by φ0(θ) := φ(θ) for −r ≤ θ ≤ 0. Then define a mapping P for

φ ∈ S by

(Pφ)(t) :=eAtψ(0) +

∫ t

t−r

Bφ(u)du− eAt

∫ 0

−r

Bψ(u)du

+ A

∫ t

0

eA(t−s)

∫ s

s−r

Bφ(u)duds.(4.7)

Here we use special norms for a vector and a matrix. For

z =

(

x
y

)

let |z|0 := |x| + |y|. Let Q be a fixed 2 × 2 nonsingular matrix such that |q|0 ≤ 1,
where q is the second column of Q, and let |z| := |Qz|0. For a 2 × 2 matrix M , let

|M | := sup{|QMQ−1z|0 : |z|0 = 1}.

Then |M | is the norm of M .



Now we have the following theorem.

THEOREM 4.1. Let a > 0 and b > 0. In addition, if

(4.8) br(1 +

∫ t

0

|AeA(t−s)|ds) < 1

holds, then every solution of Equation (4.1) tends to 0 with its derivative as t→ ∞.

Since eAt is an L1-function on R+, if φ ∈ S then (Pφ)(t) → 0 as t→ ∞. Thus
P maps S into S, and it is easily seen that (4.8) implies that P is a contraction
mapping. So we omit the details of the proof.

Finally we show an example.

EXAMPLE 4.1. Consider the equation

(4.9) x′′ +
1

3
x′ +

1

48
x(t − 16) = 0, t ∈ R+.

Then

A =

(

0 1
−1/48 −1/3

)

in Equation (4.3), and the characteristic values of A are −1/4 and −1/12. Let Q

be a 2 × 2 nonsingular matrix such that

Q =

(

− 1
16 − 3

4
1
16

1
4

)

.

Then we have

QAQ−1 =

(

−1/4 0
0 −1/12

)

.

It is easy to see that AeA(t−s) = Q−1EQ, where

E :=

(

−(1/4)e−(t−s)/4 0
0 −(1/12)e−(t−s)/12

)

.

Thus we have

|AeA(t−s)| = sup{|Ez|0 : |z|0 = 1}

= sup{(|x|/4)e−(t−s)/4 + (|y|/12)e−(t−s)/12 : |x| + |y| = 1}

≤ (1/4)e−(t−s)/4 + (1/12)e−(t−s)/12.

Finally we obtain

∫ t

0

|AeA(t−s)|ds ≤

∫ t

0

((1/4)e(s−t)/4 + (1/12)e(s−t)/12)ds



= 2 − e−t/4 − e−t/12 < 2, t ≥ 0,

which together with br = 1/3, implies that Assumption (4.8) holds. Thus, by
Theorem 4.1, every solution of Equation (4.9) tends to 0 as t→ ∞.

REMARK. In Example 4.2.7 in Burton [1; p. 253], br < a is necessary for
asymptotic stability of the zero solution of Equation (4.1). But in Example 4.1,

a = br = 1/3, and hence, the result in [1] is not applicable to Equation (4.1) with
a = 1/3, b = 1/48, and r = 16.

PART II

Boundedness, Periodic Solutions, and Asymptotic Stability:
Two More Fixed Point Theorems

5. INTRODUCTION

Let a : [0,∞) → (0,∞) and b : [0,∞) → R be continuous, r1 ≥ 0 be constant,
r2 : [0,∞) → [0, γ] for γ > 0 be continuous, and consider the scalar equation

(5.1) x′(t) = −a(t)x(t − r1) + b(t)x1/3(t− r2(t))

with constants 0 < β < 1 and K > 0 satisfying

(5.2) sup
t≥0

|b(t)/a(t + r1)| ≤ β

and if |t2 − t1| ≤ 1, then

(5.3) |

∫ t2

t1

a(u+ r1)du| ≤ K|t2 − t1|,

while for t ≥ 0 we have

(5.4) 2 sup
t≥0

∫ t

t−r1

a(u + r1)du+ β < 1.

From existence theory we can conclude that for each continuous initial function

ψ : [−r, 0] → R (where r ≥ max[r1, γ]) there is a continuous solution x(t, 0, ψ) on
an interval [0, T ) for some T > 0 and x(t, 0, ψ) = ψ(t) on [−r, 0].

When the ri are positive, then this becomes a formidable problem. But if
r1 = r2 = 0, then (5.1) is an elementary Bernoulli equation which can be explicitly
integrated for exact solutions. Several interesting types of behavior can be distin-
guished in that elementary case and these lead us to conjectures when ri > 0. Cases

of interest are:

i) The zero solution of

x′ = −2x+ x1/3

is unstable, but all solutions are bounded.



ii) The zero solution of

x′ =
−2t

t2 + 1
x+

x1/3

t2 + 1

is asymptotically stable; although the unstable term x1/3 dominates the stable term
−x, the coefficient t

t2+1 strongly dominates the coefficient 1
t2+1 and that plays an

important role in compactness arguments given later.

iii) The forced equation

x′ = −2x+ x1/3 + sin t

has a periodic solution.

We will use fixed point theory to obtain counterparts of these properties where
ri > 0. In particular, for moderate size ri, fixed point theory can treat the formi-
dable case almost as easily as integration can treat the elementary case.

6. A FIRST BOUNDEDNESS RESULT

Krasnoselskii [7] (cf. Smart [11; p. 31]) studied a 1932 paper of Schauder [9]

and concluded that the inversion of a perturbed differential operator yields the sum
of a contraction and compact map. This is, of course, a great over simplification.
The inversion must be done in a cerain way and the space for compactness must be
carefully chosen. We will be using that result for our first and last theorems here

so it is stated for reference as follows.

THEOREM (Krasnoselskii). Let M be a closed convex non-empty subset of a
Banach space (S, ‖ · ‖). Suppose that A and B map M into S such that

(i) Ax+By ∈M(∀x, y ∈M),

(ii) A is continuous and AM is contained in a compact set,

(iii) B is a contraction with constant α < 1.

Then there is a y ∈M with Ay +By = y.

It may be noted that for ri = 0 Equation (5.1) is a Bernoulli equation and the
zero solution may not be unique to the right if b > 0; hence, stability is impossible.
Moreover, our method of proof does not distinguish b > 0 from b < 0. The most
we can hope for is bounded solutions. Not only do we obtain boundedness, but the

proof and construction is very interesting.

THEOREM 6.1. If (5.2)-(5.4) hold and if ψ is a given continuous initial func-

tion which is sufficiently small, then there is a solution x(t, 0, ψ) on [0,∞) with
|x(t, 0, ψ)| < 1.



Proof. Let ψ : [−r, 0] → R be a given continuous initial function with |ψ(t)| ≤ Ψ
where Ψ is a positive constant to be determined, Ψ < 1. Let h : [−r,∞) → [1,∞)
be any strictly increasing and continuous function with h(−r) = 1, h(s) → ∞ as

s→ ∞, together with a constant α < 1, such that

(6.1) 2

∫ t

t−r1

[a(s + r1)h(s)/h(t)]ds ≤ α.

Indeed, from (5.4) we have for any such function h that

2

∫ t

t−r1

[a(s + r1)h(s)/h(t)]ds ≤ 2

∫ t

t−r1

[a(s + r1)h(t)/h(t)]ds < 1.

Let (S, | · |h) be the Banach space of continuous φ : [−r,∞) → R with

|φ|h := sup
t≥−r

|φ(t)/h(t)| <∞

and let (M, | · |h) be the complete metric space of φ ∈ S such that

|φ(t)| ≤ 1 for − r ≤ t <∞ and φ(t) = ψ(t) on [−r, 0].

Write (5.1) as

x′(t) = −a(t + r1)x(t) + (d/dt)

∫ t

t−r1

a(s + r1)x(s)ds + b(t)x1/3(t − r2(t))

so that by the variation of parameters formula and integration by parts we have

x(t) =x0e
−

R

t

0
a(s+r1)ds

+

∫ t

0

e−
R

t

s
a(u+r1)du[

d

ds

∫ s

s−r1

a(u+ r1)x(u)du + b(s)x1/3(s − r2(s))]ds

or

x(t) =x0e
−

R

t

0
a(s+r1)ds +

∫ t

t−r1

a(u+ r1)x(u)du

− e−
R

t

0
a(u+r1)du

∫ 0

−r1

a(u+ r1)x(u)du

−

∫ t

0

a(s + r1)e
−

R

t

s
a(u+r1)du

∫ s

s−r1

a(u+ r1)x(u)duds

+

∫ t

0

b(s)e−
R

t

s
a(u+r1)dux1/3(s − r2(s))ds(6.2)



where x(t) = ψ(t) on [−r, 0] and ψ(0) = x0.

Define mappings A,B : M →M by φ ∈M implies that

(6.3) (Aφ)(t) =

∫ t

0

b(s)e−
R

t

s
a(u+r1)duφ1/3(s − r2(s))ds

and

(Bφ)(t) =x0e
−

R

t

0
a(s+r1)ds +

∫ t

t−r1

a(u+ r1)φ(u)du

− e−
R

t

0
a(u+r1)du

∫ 0

−r1

a(u+ r1)ψ(u)du

−

∫ t

0

a(s + r1)e
−

R

t

s
a(u+r1)du

∫ s

s−r1

a(u + r1)φ(u)duds.(6.4)

We now show that φ, η ∈ M implies that Aφ + Bη ∈ M . Let ‖ · ‖ be the
supremum norm on [−r,∞) of φ ∈ S if φ is bounded. Note that if φ, η ∈M then

|(Aφ)(t) + (Bη)(t)|

≤ ‖ψ‖e−
R

t

0
a(s+r1)ds + ‖η‖

∫ t

t−r1

a(u+ r1)du

+ e−
R

t

0
a(u+r1)du‖ψ‖

∫ 0

−r1

a(u + r1)du+ ‖η‖ sup
t≥0

∫ t

t−r1

a(u+ r1)du+ ‖φ‖1/3β

≤ ‖ψ‖e−
R

t

0
a(s+r1)ds(1 +

∫ 0

−r1

a(u + r1)du) + 2 sup
t≥0

∫ t

t−r1

a(u + r1)du+ β

< 1

provided that ‖ψ‖ is sufficiently small.

Next, we show that AM is equicontinuous. If φ ∈ M and if 0 ≤ t1 < t2 < t1 +1



then

|(Aφ)(t2) − (Aφ)(t1)|

≤

∣

∣

∣

∣

∫ t2

0

b(s)e−
R

t2
s

a(u+r1)duφ1/3(s − r2(s))ds

−

∫ t1

0

b(s)e−
R

t1
s

a(u+r1)duφ1/3(s− r2(s))ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t2

t1

b(s)e−
R

t2
s

a(u+r1)duφ1/3(s − r2(s))ds

+

∫ t1

0

b(s)

[

e−
R

t2
s

a(u+r1)du − e−
R

t1
s

a(u+r1)du

]

φ1/3(s − r2)ds

∣

∣

∣

∣

≤ β

∫ t2

t1

a(s + r1)ds

+

∫ t1

0

|b(s)|

∣

∣

∣

∣

e−
R

t2
0 a(u+r1)du − e−

R

t1
0 a(u+r1)du

∣

∣

∣

∣

e
R

s

0
a(u+r1)duds

≤ βK|t2 − t1| + β|e−
R

t2
0 a(u+r1)du − e−

R

t1
0 a(u+r1)du|[e

R

t1
0 a(u+r1)du − 1]

≤ βK|t2 − t1| + β|e−
R

t2
t1

a(u+r1)du − 1|

≤ βK|t2 − t1| + β|

∫ t2

t1

a(u+ r1)du|

≤ 2βK|t2 − t1|,

by (5.3). In the above calculation, the error made by replacing e−
R

t2
t1

a(u+r1)du by 1

is less than the next term in its series, |
∫ t2

t1
a(u+ r1)du|. In the space (S, | · |h), the

set AM resides in a compact set. To see this, one may consult Burton [1; p. 169],
Example 3.1.6(c).

Now we show that there is an α < 1 so that B : M →M and

|Bφ1 −Bφ2|h ≤ α|φ1 − φ2|h.

We have

|(Bφ1)(t) − (Bφ2)(t)|/h(t)

≤

∫ t

t−r1

a(u+ r1)|φ1(u) − φ2(u)|/h(t)du

+ (1/h(t))

∫ t

0

a(s + r1)e
−

R

t

s
a(u+r1)du

∫ s

s−r1

a(u+ r1)|φ1(u) − φ2(u)|duds

≤ sup
t≥0

∫ t

t−r1

[a(s + r1)h(s)/h(t)]ds|φ1 − φ2|h

+ |φ1 − φ2|h sup
t≥0

∫ t

t−r1

a(u+ r1)[h(u)/h(t)]du



≤ 2|φ1 − φ2|h sup
t≥0

∫ t

t−r1

a(u+ r1)[h(u)/h(t)]du

≤ α|φ1 − φ2|h

for some α < 1 by (5.4).

Finally, we need to show A continuous.

Let ε > 0 be given and let φ ∈ M . We must find δ > 0 such that [η ∈
M, |φ− η|h < δ] implies that |Aφ−Aη|h < εβ.

Now x1/3 is uniformly continuous on [−1, 1] so for ε > 0 and a fixed T > 0 with

4/h(T ) < ε there is a δ > 0 such that |x1 −x2| < δh(T ) implies |x
1/3
1 − x

1/3
2 | < ε/2.

Thus for |φ(t) − η(t)| < δh(t) and for t > T we have

|(Aφ)(t) − (Aη)(t)|/h(t)

≤ (1/h(t))

∫ t

0

b(s)e−
R

t

s
a(u+r1)du|φ1/3(s − r2) − η1/3(s − r2(s))|ds

≤ (1/h(t))

[
∫ T

0

|b(s)|e−
R

t

s
a(u+r1)du|φ1/3(s − r2) − η1/3(s− r2(s))|ds

+

∫ t

T

2|b(s)|e−
R

t

s
a(u+r1)duds

]

≤ [(βε)/(2h(t))]

∫ T

0

a(s + r1)e
−

R

t

s
a(u+r1)duds+ (2β/h(T ))

≤ (βε/2) + (2β/h(T ))

< εβ.

The conditions of Krasnoselskii’s theorem are satisfied and there is a fixed point.

7. Boundedness and Periodicity

Stability, boundedness, and the existence of periodic solutions are concepts

which are closely related. This is discussed in detail in Chapter 0 of Burton [1] in the
context of Liapunov’s direct method. Given a system x′ = f(t, x) and a Liapunov
function V (t, x) which is radially unbounded and decrescent, whose derivative along
solutions is negative definite, and which satisfies a global Lipschitz condition in x,

that same Liapunov function will prove uniform ultimate boundedness for solutions
of a perturbed equation, x′ = f(t, x) + p(t) when p is bounded and small enough
relative to the Lipschitz condition and the derivative of V along solutions of the
original system.

Here we study the same thing in the context of fixed point theory and essentially
the same kind of properties hold. All of the work in Section 6 can be used to prove

that a perturbed form of (5.1) has a periodic solution using Schaefer’s fixed point
theorem. For reference we have (Smart [11; p. 29])



THEOREM (Schaefer). Let (B, ‖ · ‖) be a normed space, H a continuous map-
ping of B into B which is compact on each bounded subset X of B. Then either

(i) the equation x = λHx has a solution for λ = 1, or

(ii) the set of all such solutions x, for 0 < λ < 1, is unbounded.

Consider Equation (5.1) again with a perturbation

(7.1) x′(t) = −a(t)x(t − r1) + b(t)x1/3(t − r2(t)) + p(t)

in which p : R→ R is continuous and there is a T > 0 with

(7.2) r2(t+ T ) = r2(t), p(t + T ) = p(t), a(t + T ) = a(t), and b(t + T ) = b(t)

for all t ∈ R. We will need relaxed forms of (5.2)-(5.4). Assume there are positive
constants β and K with

(7.3) sup
t≥0

|b(t)/a(t + r1)| ≤ β

and if |t2 − t1| ≤ 1, then

(7.4) |

∫ t2

t1

a(u+ r1)du| ≤ K|t2 − t1|,

while for t ≥ 0 we have

(7.5) 2 sup
t≥0

∫ t

t−r1

a(u+ r1)du < 1.

THEOREM 7.1. If (7.2) - (7.5) hold, then (7.1) has a T -periodic solution.

Proof. Write (7.1) as

x′ = −a(t + r1)x(t) +
d

dt

∫ t

t−r1

a(s + r1)x(s)ds + b(t)x1/3(t− r2(t)) + p(t)

or

(xe
R

t

0
a(s+r1)ds)′ = e

R

t

0
a(s+r1)ds

[

d

dt

∫ t

t−r1

a(s+r1)x(s)ds+b(t)x1/3 (t−r2(t))+p(t)

]

.

Note that since the function a is periodic and a(t) > 0 we have
∫ t

0
a(s)ds ↑ ∞

as t → ∞. If we consider only solutions of (7.1) bounded on R (if any), we can
integrate from −∞ to t and obtain (after integration by parts):



x(t)

=

∫ t

t−r1

a(u+ r1)x(u)du −

∫ t

−∞

e−
R

t

s
a(u+r1)dua(s + r1)

∫ s

s−r1

a(u + r1)x(u)du

+

∫ t

−∞

e−
R

t

s
a(u+r1)du[b(s)x1/3(s− r2(s)) + p(s)]ds.

Now, if (PT , ‖ · ‖) is the Banach space of continuous T -periodic functions with
the supremum norm, then we can define an operator H : PT → PT by φ ∈ PT

implies that

(Hφ)(t)
(7.6)

= λ

[
∫ t

t−r1

a(u+ r1)φ(u)du−

∫ t

−∞

e−
R

t

s
a(u+r1)dua(s + r1)

∫ s

s−r1

a(u+ r1)φ(u)du

+

∫ t

−∞

e−
R

t

s
a(u+r1)du[b(s)φ1/3(s − r2) + p(s)]ds

]

where 0 < λ ≤ 1.

We now obtain an a priori bound on all fixed points of H. If x ∈ PT is a fixed

point, then using ‖ · ‖ to denote the supremum norm we have Q > 0 with

‖x‖ ≤ sup
t∈R

∫ t

t−r1

a(u+ r1)du[2‖x‖] + ‖x‖1/3 sup
t∈R

|b(t)|

a(t + r1)
+Q.

Taking into account (7.3)-(7.5), this will establish an a priori bound if

2 sup

∫ t

t−r1

a(u+ r1)du ≤ α < 1.

An argument just like that in the proof of Theorem 6.1 will show that H maps
bounded sets into equicontinuous sets. Thus, H maps bounded sets into compact
subsets of our space. By Schaefer’s theorem there is a fixed point and it solves (7.1).
This completes the proof.

8. ASYMPTOTIC STABILITY

This section is motivated by the Bernoulli equation

x′(t) = −(2/t)x(t) − (1/t2)x3(t).

Even without solving the equation, the investigator would conjecture that the

asymptotically stable part
x′ = −(2/t)x



would dominate the term (1/t2)x3 since x dominates x3 for small x and 1/t2 is
L1[1,∞).

But that entire rationale vanishes when we consider

(8.1) x′(t) = −a(t)x(t − r1) + b(t)x1/3(t− r2(t))

again where the exact conditions of Theorem 6.1 hold except (5.2) becomes: There

is a β < 1 with

(5.2∗) sup
t≥0

|b(t)/a(t + r1)| ≤ β and b(t)/a(t + r1) → 0 as t→ ∞.

Not only does x1/3 dominate x for small x, but there is a delay in the linear part

which makes it a nontrivial stability problem and b(t) is not assumed to be L1[0,∞).

Thus, the investigator recognizes that it is a challenge to prove asymptotic

stability. Our point here is that fixed point theory is such a powerful tool that this
becomes a simple problem.

THEOREM 8.1. Let (5.2∗), (5.3), and (5.4) hold and assume that
∫ ∞

0 a(s)ds =
∞. If ψ is a given initial funciton which is sufficiently small, then (8.1) has a solution
x(t, 0, ψ) → 0 as t→ ∞.

Proof. All of the calculations of the proof of Theorem 6.1 hold with h(t) = 1
when | · |h is replaced by the supremum norm ‖ · ‖.

Define g : [0,∞) → (0, 1] by

(8.2) g(t) =

∫ t

0

a(s + r1)e
−

R

t

s
a(u+r1)du[b(s)/a(s + r1)]ds.

We can easily modify the classical proof that the convolution of an L1-function

[substitute a(s+ r1)e
−

R

t

s
a(u+r1)du] with a function tending to zero [b(s)/a(s + r1)]

tends to zero to show that g(t) → 0 as t→ ∞.

Add to M the condition that φ ∈M implies that φ(t) → 0 as t→ ∞. With A

defined by (6.3) we see that for φ ∈ M then |(Aφ)(t)| ≤ g(t). Clearly (Bφ)(t) → 0
as t→ ∞.

Since AM has been shown to be equicontinuous, A maps M into a compact
subset of M . By Krasnoselskii’s theorem there is a y ∈ M with Ay + By = y. As
y ∈M , y(t) → 0 as t→ ∞. This completes the proof.
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