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Abstract. We consider a scalar integral equation x(t) = a(t) −
∫

t

0
C(t, s)g(s, x(s))ds where a ∈ L2[0,∞), while C(t, s) has a sig-

nificant singularity, but is convex when t − s > 0. We construct
a Liapunov functional and show that g(t, x(t)) − a(t) ∈ L2[0,∞)
and that x(t)− a(t) → 0 pointwise as t → ∞. Small perturbations
are also added to the kernel. In addition, we consider both infinite
and finite delay problems.

1. Introduction

The first results on Liapunov functionals for integral equations (which
were not converted to differential equations) were obtained in 1992 [1]
and most of the subsequent work was recently collected in [5]. To this
point it can be mainly regarded as “in between” theory. In the classical
theory [11; Chapter VI] if an equation

(1) x(t) = a(t)−

∫ t

0

C(t, s)g(s, x(s))ds

can be differentiated then Liapunov’s direct method can be readily
applied. The work in [5] goes one step further by applying the method
to (1) directly without differentiation; however, in all of that work it
is required that the kernel be continuous. Hence, it lies between the
classical method and the work with discontinuous kernels such as is
found in a heat equation of the form

x(t) = a(t)−

∫ t

0

1
√

π(t− s)
g(s, x(s))ds.

(See Miller [11; p. 209, second equation].)
This paper offers a first step toward treating discontinuous kernels by

means of Liapunov functionals. We will focus on kernels which satisfy
a truncated convexity condition of a type very common in problems
where partial differential equations are converted to integral equations.

There are five main conditions which we require and we will discuss
them under the heading of critique later. First, for each continuous
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function x, then
∫ t

0
C(t, s)g(s, x(s))ds exists. Next, for each small ε > 0

then

(2) C(t, s) ≥ 0, Cs(t, s) ≥ 0, Cst(t, s) ≤ 0, Ct(t, s) ≤ 0

provided that

(3) 0 ≤ s ≤ t− ε, t <∞;

thus, t − s ≥ ε. The kernel (t − s)−p for 0 < p < 1 does satisfy that
condition. The final two conditions are (8) and (9) to be given later.

Convex kernels (without (3)) were discussed by Volterra in 1928
[12] and have been widely used since then in mathematical biology,
viscoelasticity, circulating fuel nuclear reactors, neural networks, and
many other places. (See [5] for discussion and references.)

Volterra suggested that a Liapunov functional could be constructed
for

x′ = −

∫ t

0

C(t, s)g(x(s))ds

when C is convex and xg(x) > 0 if x 6= 0. Levin [10] accomplished
that construction in 1963 (continuing the work for many years) and we
did it for (1) in 1992 [1], using the more general g(t, x). It is the latter
functional which we modify here for the singular kernel.

2. Singular perturbations

One of the simple and common examples of (2) (without (3)) is

C(t, s) = [δ2 + t− s]−1/2, δ2 > 0.

In a series of papers [1-4, 6-8] we have studied (1) with such kernels
(not necessarily of convolution type) and find that if a ∈ L2[0,∞),
then x ∈ L2[0,∞), x−a ∈ L2[0,∞), and that x(t) → a(t) pointwise as
t→ ∞. There are further parallel results concerning the relation of the
resolvent to the kernel and a substitute variation of parameters formula
using the kernel in place of the resolvent. The proofs are uniformly the
same for every δ2 > 0. If we perturb C into a singular kernel, will those
L2 and pointwise properties still hold and will the proofs be essentially
the same? With one little trick, everything stays the same.

This is simply the next step in the study of convex kernels which are
so often used in real-world problems. In an earlier series of papers we
questioned the possibility of measuring any real-world phenomena so
closely as to verify (2). Thus, we perturbed C(t, s) to C(t, s) +D(t, s)
where C satisfied (2) (without (3)) and

∫ ∞

0

|D(u+ t, t)|du ≤ δ,

∫ t

0

|D(t, s)|ds ≤ γ, δ + γ < 2.
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We modified the Liapunov functional and showed that the L2 and
pointwise behavior still obtained. The study lent integrity to the prac-
tice of modeling real-world problems with kernels satisfying (2) even
when the intricacies of (2) could not be measured.

Our study here takes the next step and shows that perturbing C(t, s)
into a singular kernel still preserves the qualitative properties of L2 and
pointwise convergence of x and a.

3. A Liapunov functional

Consider the scalar equation (1) with (2) and (3) satisfied and let
both a(t) and g(t, x) be continuous for t ≥ 0 and x ∈ <, while

(4) xg(t, x) > 0 if x 6= 0.

For an ε > 0 and for t ≥ ε we define a Liapunov functional by
(5)

V (t, ε) =

∫ t−ε

0

Cs(t, s)

(
∫ t

s

g(u, x(u))du

)2

ds+C(t, 0)

(
∫ t

0

g(u, x(u))du

)2

.

While Cs(t, s) may be badly behaved at s = t, we have s ≤ t − ε or
ε ≤ t− s so the bad point is always avoided in V (t, ε). We will discuss
existence later in this section.

Theorem 3.1. Let x be a continuous solution of (1) on [0,∞) and let
(2) and (3) be satisfied. If ε > 0 is chosen and if V (t, ε) is defined in
(5) then for t ≥ ε we have

dV (t, ε)

dt
≤ 2g(t, x(t))

[

a(t) − x(t) + C(t, t− ε)

∫ t

t−ε

g(u, x(u))du

−

∫ t

t−ε

C(t, s)g(s, x(s))ds

]

+ Cs(t, t− ε)

(
∫ t

t−ε

g(u, x(u))du

)2

.(6)

Proof. For t ≥ ε we have Ct(t, 0) ≤ 0 and Cst(t, s) ≤ 0 when 0 ≤ s ≤
t− ε so by Leibnitz’s rule we have

V ′(t, ε) ≤ Cs(t, t− ε)

(
∫ t

t−ε

g(u, x(u))du

)2

+ 2g(t, x(t))

∫ t−ε

0

Cs(t, s)

∫ t

s

g(u, x(u))duds

+ 2g(t, x(t))C(t, 0)

∫ t

0

g(u, x(u))du.
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Integrating the next-to-last term by parts yields

2g(t, x(t))

∫ t−ε

0

Cs(t, s)

∫ t

s

g(u, x(u))duds

= 2g(t, x(t))

[

C(t, s)

∫ t

s

g(u, x(u))du

∣

∣

∣

∣

t−ε

0

+

∫ t−ε

0

C(t, s)g(s, x(s))ds

]

= 2g(t, x(t))

[

C(t, t− ε)

∫ t

t−ε

g(u, x(u))du− C(t, 0)

∫ t

0

g(u, x(u))du

+

∫ t−ε

0

C(t, s)g(s, x(s))ds

]

.

Thus,

V ′(t, ε) ≤ Cs(t, t− ε)

(
∫ t

t−ε

g(u, x(u))du

)2

+ 2g(t, x(t))

[

C(t, t− ε)

∫ t

t−ε

g(u, x(u))du+

∫ t−ε

0

C(t, s)g(s, x(s))ds

]

= Cs(t, t− ε)

(
∫ t

t−ε

g(u, x(u))du

)2

+ 2g(t, x(t))

[

C(t, t− ε)

∫ t

t−ε

g(u, x(u))du−

∫ t

t−ε

C(t, s)g(s, x(s))ds

]

+ 2g(t, x(t))[a(t)− x(t)],

as required. We have used the integral equation (1) in the last step. �

Three relations will be needed for us to parlay this Liapunov func-
tional derivative into a qualitative result for a solution of (1). First,
we must be able to estimate the relation between xg(t, x) and g2(t, x).
Our conditions (8) and (9) below will allow such strongly singular ker-
nels that it is not a great surprise to need g(t, x) bounded by a linear
function. We ask that

(7) xg(t, x) ≥ g2(t, x).

Next, we need some control over the magnitude of the singularity and
this turns out to be enlightening. In the simplest case it asks for a
locally L1 kernel.

We suppose that there are positive constants α and β with α+β < 1
so that there is an ε > 0 with

(8)

∫ s+ε

s

[εCs(u, u− ε) + C(u, u− ε) + |C(u, s)|]du < α

for 0 ≤ s <∞ and that

(9) C(t, t− ε)ε+

∫ t

t−ε

|C(t, s)|ds < β
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for ε ≤ t < ∞. Note in (2) and (3) that we do not specify the sign of
C(s, s) so the absolute value is needed in (8).

Remark We will use the α+ β < 1 relation in obtaining the second
line of (10). In fact, we can get by with α + β < 2, as we actually
do using ξ and M in the proof of Theorem 5.2. This, however, will
complicate the relation a−g ∈ L2 which we want to preserve. Theorem
5.2 will, thereby, contain this possible improvement of Theorem 3.2 by
taking D = 0.

Critique

Conditions (8) and (9) allow for gross singularities to occur at s = t.
We have already noticed that Cs(u, u − ε) occurring in the derivative
of V is always well away from the singularity and (2) holds for it.
While (8) and (9) occur as technical necessities in a later computation,
repeated again and again in this work here, one would really like at least
a theoretical rational for them. To begin with, for mild singularities
such as C(t, s) = [t−s]−p for 0 < p < 1, those conditions are too lenient
to make any sense; for in that case α+ β → 0 as ε → 0. Remarks and
references in Kirk and Olmstead [9] suggest impulse functions, in which
case α + β would not tend to zero.

Concerning existence theory, mild singularities such as C(t, s) =
[t− s]−p for 0 < p < 1 offer no existence problems at all when g is Lip-

schitz since in contraction mapping arguments
∫ t

0
C(t, s)g(s, φ(s))ds is

continuous whenever φ is continuous. We use a weighted norm to get
existence on an arbitrary interval [0, T ]. See Windsor [13] for a simple
and recent treatment of existence in the presence of such singularities.
Miller [11] gives very general conditions for existence of solutions and
there are other special existence results scattered throughout the liter-
ature. It would be a distraction and a limitation to repeat them here.
To keep the focus on what is fundamentally new here, we simply work
with problems in which a solution is known to exist.

Theorem 3.2. Let x be a continuous solution of (1) on [0,∞) and let
(2), (3), (7)–(9) hold. If, in addition, a ∈ L2[0,∞) so are g(t, x(t))
and g(t, x(t))− a(t).

Proof. We begin by organizing the derivative of V which we computed
in (6). First, by the Schwarz inequality we have

Cs(t, t− ε)

(
∫ t

t−ε

g(u, x(u))du

)2

≤ εCs(t, t− ε)

∫ t

t−ε

g2(u, x(u))du.

Next,

|2g(t, x)C(t, t−ε)

∫ t

t−ε

g(u, x(u))du| ≤ C(t, t−ε)

∫ t

t−ε

[g2(t, x(t))+g2(u, x(u))]du
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and

|2g(t, x)

∫ t

t−ε

C(t, s)g(s, x(s))ds| ≤

∫ t

t−ε

C(t, s)[g2(t, x(t))+g2(s, x(s))]ds.

These three relations in (6) yield

V ′(t, ε) ≤ 2g(t, x(t))[a(t)− x(t)]

+ C(t, t− ε)εg2(t, x(t)) + g2(t, x(t))

∫ t

t−ε

C(t, s)ds

+

∫ t

t−ε

[εCs(t, t− ε) + C(t, t− ε) + C(t, s)]g2(s, x(s))ds.

By (7) we obtain

2g(t, x(t)[a(t)− x(t)] ≤ 2g(t, x(t))a(t)− 2g2(t, x(t))

= −g2(t, x(t))− (g(t, x(t))− a(t))2 + a2(t).(10)

Invoke (8) and (9) to find ε, α, and β. Using (9) we have

V ′(t, ε) ≤ a2(t) − (g(t, x)− a(t))2 − (1 − β)g2(t, x)

+

∫ t

t−ε

[εCs(t, t− ε) + C(t, t− ε) + C(t, s)]g2(s, x(s))ds.(11)

Take |C(t, s)| in this expression, integrate from ε to t, and work with
the last term, interchanging the order of integration. We have

∫ t

ε

∫ u

u−ε

[εCs(u, u− ε) + C(u, u− ε) + |C(u, s)|]g2(s, x(s))dsdu

≤

∫ t

0

∫ s+ε

s

[εCs(u, u− ε) + C(u, u− ε) + |C(u, s)|]dug2(s, x(s))ds

≤ α

∫ t

0

g2(s, x(s))ds

using (8). This now yields

V (t, ε) ≤ V (ε, ε) +

∫ t

ε

a2(u)du−

∫ t

ε

(g(s, x(s)) − a(s))2ds

−(1 − α− β)

∫ t

ε

g2(u, x(u))du+ α

∫ ε

0

g2(u, x(u))du.

We assumed x(t) exists so V (ε, ε) is finite, while V (t, ε) ≥ 0. Put the
negative terms on the left to finish the proof. �

We now want to investigate two things. First, can we get bounded-
ness “at the same price?” Next, can we add just a bit to the conditions
and actually show that x(t) → a(t) as t→ ∞?
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Theorem 3.3. If x is a continuous solution of (1) on [0,∞), then for
t ≥ ε

(x(t)− a(t))2 ≤ 6εC2(t, t− ε)

∫ t

t−ε

g2(u, x(u))du

+ 6C(t, t− ε)V (t, ε) + 2

∫ t

t−ε

C2(t, s)ds

∫ t

t−ε

g2(s, x(s))ds.

Proof. In the calculation below, it will save much work to set

H := 2

(
∫ t

t−ε

C(t, s)g(s, x(s))ds

)2

.

Starting with (1) we have

(x(t)− a(t))2 =

(
∫ t

0

C(t, s)g(s, x(s))ds

)2

≤ 2

(
∫ t−ε

0

C(t, s)g(s, x(s))ds

)2

+H

= 2

(

− C(t, s)

∫ t

s

g(u, x(u))du

∣

∣

∣

∣

t−ε

0

+

∫ t−ε

0

Cs(t, s)

∫ t

s

g(u, x(u))duds

)2

+H

= 2

(

− C(t, t− ε)

∫ t

t−ε

g(u, x(u))du+ C(t, 0)

∫ t

0

g(u, x(u))du

+

∫ t−ε

0

Cs(t, s)

∫ t

s

g(u, x(u))duds

)2

+H

≤ 6

(

− C(t, t− ε)

∫ t

t−ε

g(u, x(u))du

)2

+ 6

(

C(t, 0)

∫ t

0

g(u, x(u))du

)2

+ 6

∫ t−ε

0

Cs(t, s)ds

∫ t−ε

0

Cs(t, s)

(
∫ t

s

g(u, x(u))du

)2

ds +H

≤ 6

(

− C(t, t− ε)

∫ t

t−ε

g(u, x(u))du

)2

+ 6
[

C(t, 0) +

∫ t−ε

0

Cs(t, s)ds
]

V (t, ε) +H.

= 6C2(t, t− ε)ε

∫ t

t−ε

g2(u, x(u))du+ 6C(t, t− ε)V (t, ε) +H.

�

From this we can obtain x(t) bounded in several simple ways.
Notice that in our last condition below we would be asking for a

convolution kernel to be in L2[0,∞) which is unlike anything else we
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have asked in this note. In [6] we had offered a better argument in the
linear case, but it required a bounded kernel.

Theorem 3.4. Suppose that x is a continuous solution of (1) on [0,∞),
that g(t, x(t)) ∈ L2[0,∞), that for each large T then

∫ T

0

|C(t, s)|ds→ 0

as t → ∞, and that

sup
0≤t

∫ t

0

C2(t, s)ds ≤ M

for some M > 0. Then x(t) → a(t) as t→ ∞.

Proof. We have

|x(t) − a(t)| ≤

∫ T

0

|C(t, s)||g(s, x(s))|ds

+

√

∫ t

T

C2(t, s)ds

∫ t

T

g2(s, x(s))ds

≤ ‖g‖[0,T ]

∫ T

0

|C(t, s)|ds+

√

M

∫ t

T

g2(s, x(s))ds.

For a given ε > 0, take T so large that the last term is less than ε/2.
Then we have J > 0 with ‖g‖[0,T ] ≤ J , where the notation means the

supremum on [0, T ]. Finally, if t is large enough then
∫ T

0
|C(t, s)|ds ≤

ε/2J. �

4. small kernels

We are now going to develop Liapunov functionals for integral equa-
tions with small kernels. Some of this will later be used to handle a
perturbation of the convex kernelC . We begin with the scalar equation

(12) x(t) = a(t)−

∫ t

0

D(t, s)g(s, x(s))ds

where g again satisfies (4) and D satisfies several integrability condi-
tions to follow. Again we will be treating an assumed solution, rather
than give detailed conditions under which the solution exists.

Theorem 4.1. Let (4) hold, |g(t, x)| ≤ |x|, D be continuous,
∫ ∞

0
|D(u+

t, t)|du ≤ δ,
∫ t

0
|D(t, s)|ds ≤ γ, and for p an even positive integer let

a ∈ Lp[0,∞). If
δ + (p− 1)γ − p < 0

and if x(t) is a continuous solution of (12) on [0,∞) then
∫ ∞

0

gp(s, x(s))ds <∞.
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Proof. Define

V (t) =

∫ t

0

∫

∞

t−s

|D(u + s, s)|dugp(s, x(s))ds

and compute the derivative. We quickly arrive at

V ′(t) ≤ δgp(t, x)−

∫ t

0

|D(t, s)|gp(s, x(s))ds

+ pgp−1(t, x(t))[a(t)− x(t) −

∫ t

0

D(t, s)g(s, x(s))ds].

That last term is identically zero since x solves (12); this will be clarified
in the remark following the proof of Theorem 5.1. Multiplying out
that last term and using the inequality (under appropriate conditions)
ab ≤ (ap/p) + (bs/s) we can find positive numbers q and M with q as
small as we please, while M is large, and show that the last term is
bounded by

p

[

a(t)gp−1(t, x(t))− gp−1(t, x(t))x(t) +

∫ t

0

|D(t, s)|
[

gp−1(t, x(t))g(s, x(s))
]

ds

]

≤ q(p− 1)(gp−1(t, x(t)))
p

p−1 +Map(t) − pgp(t, x(t))

+

∫ t

0

|D(t, s)|

[

(p− 1)(gp−1(t, x(t)))
p

p−1 + gp(s, x(s))

]

ds

≤ q(p− 1)gp(t, x(t)) +Map(t) − pgp(t, x(t)) + (p− 1)

∫ t

0

|D(t, s)|dsgp(t, x(t))

+

∫ t

0

|D(t, s)|gp(s, x(s))ds.

We now have

V ′(t) ≤

[

δ + q(p− 1) − p+ (p− 1)γ

]

gp(t, x(t)) +Map(t).

We can choose q so small that we can find µ > 0 and have

V ′(t) ≤ −µgp(t, x(t)) +Map(t).

An integration yields the result. �

This is a new result, but there are other Liapunov functionals for this
equation as seen in [5; pp. 60-64]. They require γ = 1 for all p > 1.
This result is much simpler and has more flexibility.

5. Fully perturbed convex kernel

We now consider the scalar equation

(13) x(t) = a(t)−

∫ t

0

[C(t, s) +D(t, s)]g(s, x(s))ds
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where (2), (3), and (4) hold. We also suppose that there are positive
constants γ and δ with

(14)

∫ t

0

|D(t, s)|ds ≤ γ,

∫

∞

0

|D(u + t, t)|du ≤ δ, γ + δ < 2.

Unlike differential equations, we can add kernels and add Liapunov
functionals in a completely seamless manner.

Theorem 5.1. Let (2), (3), and (14) hold for (13) and let D be con-
tinuous. Then for

V (t, ε) =

∫ t

0

∫

∞

t−s

|D(u + s, s)|dug2(s, x(s))ds

+

∫ t−ε

0

Cs(t, s)

(
∫ t

s

g(u, x(u))du

)2

ds + C(t, 0)

(
∫ t

0

g(u, x(u))du

)2

(15)

we have

V ′(t, ε) ≤ 2g(t, x(t))
[

a(t) − x(t) −

∫ t

0

D(t, s)g(s, x(s))ds

+ C(t, t− ε)

∫ t

t−ε

g(u, x(u))du
]

− 2g(t, x(t))

∫ t

t−ε

C(t, s)g(s, x(s))ds+ Cs(t, t− ε)

(
∫ t

t−ε

g(u, x(u))du

)2

+ δg2(t, x(t))−

∫ t

0

|D(t, s)|g2(s, x(s))ds.

Proof. As Ct ≤ 0 and Cst ≤ 0 we have

V ′(t, ε) ≤

∫ ∞

0

|D(u+ t, t)|dug2(t, x(t))−

∫ t

0

|D(t, s)|g2(s, x(s))ds

+ Cs(t, t− ε)

(
∫ t

t−ε

g(u, x(u))du

)2

+ 2g(t, x(t))

∫ t−ε

0

Cs(t, s)

∫ t

s

g(u, x(u))duds

+ 2g(t, x(t))C(t, 0)

∫ t

0

g(u, x(u))du

(Integrate the next-to-last term by parts.)

≤ δg2(t, x(t))−

∫ t

0

|D(t, s)|g2(s, x(s))ds

+ 2g(t, x(t))C(t, 0)

∫ t

0

g(u, x(u))du+ Cs(t, t− ε)

(
∫ t

t−ε

g(u, x(u))du

)2
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+ 2g(t, x(t))

[

C(t, s)

∫ t

s

g(u, x(u))du

∣

∣

∣

∣

t−ε

0

+

∫ t−ε

0

C(t, s)g(s, x(s))ds

]

= δg2(t, x(t)) + Cs(t, t− ε)

(
∫ t

t−ε

g(u, x(u))du

)2

+ 2g(t, x(t))C(t, 0)

∫ t

0

g(u, x(u))du−

∫ t

0

|D(t, s)|g2(s, x(s))ds

+ 2g(t, x(t))

[

C(t, t− ε)

∫ t

t−ε

g(u, x(u))du−C(t, 0)

∫ t

0

g(u, x(u))du

+

∫ t−ε

0

C(t, s)g(s, x(s))ds

]

(Write the last term as

∫ t

0

C(t, s)g(s, x(s))ds−

∫ t

t−ε

C(t, s)g(s, x(s))ds

and replace the first of these by its value in (13), thereby linking the

Liapunov functional to the integral equation.)

= δg2(t, x(t)) + Cs(t, t− ε)

(
∫ t

t−ε

g(u, x(u))du

)2

−

∫ t

0

|D(t, s)|g2(s, x(s))ds+ 2g(t, x)C(t, t− ε)

∫ t

t−ε

g(u, x(u))du

+ 2g(t, x(t))

[

a(t)− x(t)−

∫ t

0

D(t, s)g(s, x(s))ds

]

− 2g(t, x(t))

∫ t

t−ε

C(t, s)g(s, x(s))ds,

as required. �

Remark When D = 0 then V ′ coincides with V ′ in Theorem 3.1.
When C = 0, then V ′ coincides with V ′ in Theorem 4.1 for p = 2. The
replacement described in the sentence before the last set of expressions
in the above proof is well-motivated as it links the Liapunov functional
with the integral equation. That work coincides with the rather mys-
terious addition of the second line in the derivation of V ′ in the proof
of Theorem 4.1.

Caution! In view of this remark we would conjecture that if the
conditions of Theorems 3.2 and 4.1 hold for p = 2, then a solution of
(13) satisfies g(t, x(t)) ∈ L2 when a ∈ L2. But this is wrong. Both of
those theorems use the x of the equation in the term 2g(t, x)x. When
we add C(t, s) + D(t, s) we only have x once. Thus, instead of asking
α + β < 2, as in the remark following (8) and (9), followed by asking
δ + γ < 2, as in (14), we are forced to ask α+ β + δ + γ < 2.

Take courage! It is often true. For “mild” singularities, such as
C(t, s) = [t − s]−1/2, the conditions α + β < 1 in (8) and (9) ask
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entirely too little. They can be replaced by α + β → 0 as ε → 0. In
such cases the conjecture is saved and δ + γ < 2 is all that is needed.
The perturbation D is added entirely without cost.

Theorem 5.2. Let (2) – (4), (7)–(9) without α+β < 1, and (14) hold
for (13). For α and β defined in (8) and (9) and for γ and δ defined
in (14) let

γ + δ + α + β < 2.

Then a ∈ L2[0,∞) implies g(t, x(t)) ∈ L2[0,∞).

Proof. Starting with V ′ in Theorem 5.1 we can find an ξ as small as
we please and a correspondingly large M with

V ′(t, ε)

≤ 2a(t)g(t, x(t))− 2g2(t, x(t)) +

∫ t

0

|D(t, s)|[g2(s, x(s)) + g2(t, x(t))]ds

+ C(t, t− ε)

∫ t

t−ε

[g2(u, x(u)) + g2(t, x(t))]du

+

∫ t

t−ε

C(t, s)[g2(t, x(t)) + g2(s, x(s))]ds+ εCs(t, t− ε)

∫ t

t−ε

g2(u, x(u))du

+ δg2(t, x(t))−

∫ t

0

|D(t, s)|g2(s, x(s))ds

≤ ξg2(t, x(t)) +Ma2(t) − 2g2(t, x(t)) + δg2(t, x(t))

+ g2(t, x(t))

[
∫ t

0

|D(t, s)|ds+ C(t, t− ε)

∫ t

t−ε

ds +

∫ t

t−ε

C(t, s)ds

]

+

∫ t

t−ε

[C(t, t− ε) + C(t, s) + εCs(t, t− ε)]g2(s, x(s))ds

≤ g2(t, x(t))[ξ − 2 + δ + γ + εC(t, t− ε) +

∫ t

t−ε

C(t, s)ds] +Ma2(t)

+

∫ t

t−ε

[C(t, t− ε) + C(t, s) + εCs(t, t− ε)]g2(s, x(s))ds.

We then have

V ′(t, ε) ≤ Ma2(t) + g2(t, x(t)[ξ − 2 + δ + γ + β]

+

∫ t

t−ε

[C(t, t− ε) + C(t, s) + εCs(t, t− ε)]g2(s, x(s))ds.

When we integrate from ε to t as we did after (11) the last term

is bounded by α
∫ t

0
g2(s, x(s))ds. That integration will now yield the

result. �
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6. Infinite delay

Volterra recognized two kinds of singularities: a discontinuous kernel
or an infinite delay. Here, we consider the combination in the form of

(16) x(t) = a(t) −

∫ t

−∞

C(t, s)g(s, x(s))ds

where C satisfies (2), (3), and several integrability and limit conditions.
Such equations can have three kinds of solutions. Given a continuous
initial function φ : (−∞, t0] → < we seek a solution x(t) for t > t0 with
x(t) = φ(t) for t ≤ t0. If

(17) φ(t0) = a(t0) −

∫ t0

−∞

C(t0, s)g(s, φ(s))ds

then x(t) is continuous on (−∞, t) for t > t0; otherwise, the solution has
a discontinuity at t0. It can be shown that there is an ψ arbitrarily near
φ with x(t) continuous. This gives two kinds of solutions. The third
kind occurs when x satisfies (16) on (−∞,∞) so at any t0, then x(t) is
its own initial function. Periodic solutions are central examples of this
and are discussed throughout [5]. Several existence results using fixed
point theory for this kind of equation are found in Burton [3], Section
1 of Chapter 3 of [5], and in Burton and Makay [8].

Much of the work done on this equation using Liapunov functions
and a nonsingular kernel is summarized in [5] and interesting recent
work is found in Zhang [14].

Here, we again allow for C to be singular and (8) and (9) hold.
Moreover, we suppose that φ is chosen so that (17) holds and that
there is a continuous solution on [t0,∞). The work of Burton-Makay
[8] speaks extensively to that case when the kernel is nonsingular. Our
Liapunov functional will have the form

(18) V (t, ε) =

∫ t−ε

−∞

Cs(t, s)

(
∫ t

s

g(v, x(v))dv

)2

ds.

The critical condition which makes this a viable Liapunov functional
is

(19) lim
s→−∞

(t− s)C(t, s) = 0

for fixed t. It is used in the integration by parts formula for the deriva-
tive and it allows us to skip one term in the usual Liapunov functional.

Theorem 6.1. Let (2), (3), and (19) hold. If x(t) solves (16) with a
bounded and continuous initial function φ satisfying (17), then for ε > 0
the derivative of V defined by (18) satisfies (6). If (8) and (9) hold and
if |g(t, x)| ≤ |x| then a ∈ L2[0,∞) implies that g(t, x(t)) ∈ L2[t0,∞).
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Proof. As Cst ≤ 0 we have

V ′(t, ε) ≤ Cs(t, t− ε)

(
∫ t

t−ε

g(v, x(v))dv

)2

+ 2g(t, x(t))

∫ t−ε

−∞

Cs(t, s)

∫ t

s

g(v, x(v))dvds.

If we integrate the last term by parts as we have done before and use
(19) on the lower limit with the bounded initial function then we obtain

V ′(t, ε)

≤ −2g(t, x(t))

∫ t

t−ε

C(t, s)g(s, x(s))ds+ Cs(t, t− ε)

(
∫ t

t−ε

g(v, x(v))dv

)2

+ 2g(t, x(t))C(t, t− ε)

∫ t

t−ε

g(v, x(v))dv + 2g(t, x(t))[a(t)− x(t)].

The rest of the proof proceeds just as we have seen several times before.
�

We can add the perturbation D and add the Liapunov functional
∫ t

−∞

∫ ∞

t−s

|D(u+ s, s)|dug2(s, x(s))ds

and we can find a lower bound on the Liapunov functional as we did
in Theorem 3.3. In summary, (1) can be perturbed with a singularity
at t = s, it can be perturbed with D(t, s), and it can be perturbed to
(−∞, 0] without substantially changing the solution. Equation (1) is
very stable and it is a defensible practice to use a kernel satisfying (2)
to model real-world problems, just as noted by Volterra in 1928.

7. The truncated equation

In this section we consider the equation

(20) x(t) = a(t) −

∫ t

t−h

C(t, s)g(s, x(s))ds, h > 0,

and we must modify (2) in a crucial way, asking that

(21) C(t, s) ≥ 0, Cst(t, s) ≤ 0, Cs(t, s) ≥ 0, C(t, t− h) = 0

when

(22) 0 < ε < h and t− h ≤ s ≤ t− ε.

Theorem 7.1. Let (21) and (22) hold for (20) and let V be defined by

V (t, ε) =

∫ t−ε

t−h

Cs(t, s)

(
∫ t

s

g(v, x(v))dv

)2

ds.

Then along a continuous solution of (20) V ′(t, ε) satisfies (6).
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The proof of the theorem and the consequences should now be rou-
tine.
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