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Abstract

Due to absence of an universally acceptable magnitude of the type I error in various

fields, p-values are used as a well-recognized tool in decision making in all areas of

statistical practice. The distribution of p-values under the null hypothesis is uniform.

However, under the alternative hypothesis the distribution of the p-values is skewed.

The expected p-value (EPV) has been proposed by authors to be used as a measure

of the performance of the test. In this article, we propose the median of the p-values

(MPV) which is more appropriate for this purpose. We work out many examples to

calculate the MPV’s directly and also compare the MPV with the EPV. We consider

testing equality of distributions against stochastic ordering in the multinomial case

and compare the EPV’s and MPV’s by simulation. A second simulation study for

general continuous data is also considered for two samples with different test statistics

for the same hypotheses. In both cases MPV performs better than EPV.

KEY WORDS: Comparing test statistics; Expected p-value; Median p-value; Power;

Stochastic order.
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1 INTRODUCTION

The theory of hypothesis testing depends heavily on the pre specified value of the

significance level. To avoid the non uniqueness of the decision of testing the same

hypotheses using the same test statistic but different significance levels, it is a pop-

ular choice to report the p-value. The p-value is the smallest level of significance at

which an experimenter would reject the null hypothesis on the basis of the observed

outcome. The user can compare his/her own significance level with the p-value and

make his/her own decision. The p-values are particularly useful in cases when the

null hypothesis is well defined but the alternative is not (e.g. composite) so that type

II error considerations are unclear. In this context to quote Fisher, “The actual value

of p obtainable from the table by interpolation indicates the strength of evidence

against the null hypothesis.”

We will consider tests of the form “Reject H0 when T ≥ c” where T is a real-

valued test statistic computed from data when testing the null hypothesis H0 against

the alternative H1. The value c is determined from the pre specified size restrictions

such that PH0
(T ≥ c) = α. Of course when T is a discrete random variable, one

needs to adopt randomization so that all sizes are possible. If t is the observed value

of T and the distribution of T under H0 is given by F0(·), then the p-value is given

by 1 − F0(t) which is the probability of finding the test statistic as extreme as, or

more extreme than, the value actually observed. Thus if the p-value is less than the

preferred significance level then one rejects H0. Over the years several authors have

attempted for proper explanation of the p-values. Gibbons and Pratt (1975) provided

interpretation and methodology of the p-values. Recently, Schervish (1996) treated

the p-values as significance probabilities. Discussions on p-values can be found in

Blyth and Staudte (1997) and in Dollinger et al. (1996). However these papers do

not treat the p-values as random.
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The p-values are based on the test statistics used and hence random. The stochas-

tic nature of the p-values has been investigated by Dempster and Schatzoff (1965) and

Schatzoff (1966) who introduced ‘expected significance value’. Recently Sackrowitz

and Samuel-Cahn (1999) investigated this concept further and renamed it as the

expected p-value (EPV). Under the null hypothesis, the p-values have a uniform dis-

tribution over (0, 1) for any sample size. Thus, under H0, EPV is 1/2 always, and

there is no way to distinguish p-values derived from large studies and those from

small-scale studies. Also it would be impossible under H0 to differentiate between

studies well powered to detect a posited alternative hypothesis and the underpowered

to detect the same posited alternative value.

In contrast, the distribution of the p-values under the alternative hypothesis is a

function of the sample size and the true parameter value in the alternative hypothesis.

As the p-values measure evidence against the null hypothesis, it is of interest to

investigate the behavior of the p-values under the alternative at various sample sizes.

We reject H0 when p-value is small which is expected when H1 is true. As noted by

Hung et al. (1997), the distribution of the p-values under the alternative is highly

skewed. The skewness increases with the sample size and the true parameter value

under the alternative reflecting the ability to detect the alternative by increasing

power under these situations. Hence it is more appropriate to consider the median

of the p-value (MPV) instead of the EPV under the alternative as a measure of the

center of its distribution which is the main focus of this article. Applications of

the distribution of the p-values under the alternative in the area of meta-analysis of

several studies is considered by Hung et al. (1997). Studying the p-value under the

alternative is also beneficial over the power of a test and is explained in the next

paragraph.

When several test procedures are available for the same testing situation one

compares them by means of power. However, power calculations depend on the chosen
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significance levels, and in discrete cases involves randomization. These steps can be

avoided by considering MPV’s. Also as the power functions depend on the chosen

significance levels, it is difficult to compare them when different power functions use

different significance levels. On the other hand, MPV’s depend only on the alternative

and not on the significance level. The smaller the value of MPV, the stronger the

test. The value of an MPV can tell us which alternative an attained p-value best

represents for a given sample size. Also, it helps to know the behavior of the MPV’s

for varying sample sizes.

In Section 2, we obtain a general expression for the MPV’s. We also derive

a computationally favorable form to be used later in the paper. In Section 3, we

consider several examples to compute the MPV’s directly. In Section 4, we perform

a simulation study to compute the MPV’s in the case of testing against stochastic

ordering for multinomial distributions. We also perform a second simulation study

for general distributions when testing the same hypotheses with two samples using

three test statistics of t-test, Mann-Whitney-Wilcoxon and Kolmogorov-Smirnov. In

Section 5, we make concluding remarks.

2 p-VALUE AS A RANDOM VARIABLE AND

ITS MEDIAN

For the test statistic T with distribution F0(·) under H0, let Fθ(·) be its distribution

under H1. Also, let F−1
0 (·) be the inverse function of F0(·), so that, F0(F

−1
0 (γ)) = γ,

for any 0 < γ < 1. Since the p-value is the probability of observing a more extreme

value than the observed test statistic value, as a random variable it can be expressed

as

X = 1 − F0(T ).
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As F0(T ) ∼ U(0, 1) under H0, so is X. The power of the test is related to the p-value

as

β = Pθ(X ≤ α)

= 1 − Fθ(F
−1
0 (1 − α)). (1)

Note the above is also the distribution function of the p-value under the alterna-

tive. As T is stochastically larger under the alternative than under the null hypothesis,

it follows that the p-value under the alternative is stochastically smaller than under

the null (Lehmann, 1986). This explains why the distribution of the p-value is skewed

to the right under the alternative. Hence to estimate the center of the distribution of

the p-value, the median is a better choice than the mean. The median is any value

of α = α∗ which satisfies

Pθ(X < α∗) ≤ .5 and Pθ(X > α∗) ≤ .5.

For continuous distributions, the median is the value of α = α∗ which satisfies

Pθ(X ≤ α∗) = .5.

It follows from (1) by simple manipulations that

α∗ = 1 − F0(F
−1
θ (.5)). (2)

Since Fθ(t) ≤ F0(t), ∀t, it is seen that F0(F
−1
θ (.5)) ≥ .5 which implies that α∗ ≤ .5

and equality holds when H0 is true. The smaller the MPV the better it is to detect

the alternative. Given the stochastic nature of the p-value under the alternative, it is

also true that the MPV is smaller than the EPV and hence clearly preferable over the

EPV. The MPV being smaller than the EPV produces a smaller indifference region

in the sense that higher power is generated closer to the null hypothesis region using

MPV than with using EPV.
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It is also possible to express the MPV in another way. Let T ∼ Fθ(·) and,

independently, T ∗ ∼ F0(·). If the observed value of T is t, then the p-value is simply

g(t) = P (T ∗ ≥ t|T = t). The MPV is

med g(t) = MPV(θ) = P (T ∗ ≥ med T ). (3)

If H0 is true then T and T ∗ are identically distributed, and hence the above probability

is .5 for any continuous distribution. For discrete distributions, although the above

expressions still hold, MPV will be slightly higher as P (T ∗ = med T ) > 0. For an

UMP test, the MPV will be uniformly minimal for all θ values in the alternative as

compared to the MPV’s of any other test of the same H0 versus H1. For computational

purposes the above form of the MPV in (3) is very useful.

3 EXAMPLES

In this section we consider several examples to calculate the MPV’s directly.

Example 1. Let X1, X2, · · · , Xn be a random sample of size n from a N(µ, σ2)

distribution, and we like to test H0 : µ ≤ µ0 versus H1 : µ > µ0 where σ is known.

Using the test statistic T = X and a particular value µ1 in H1 it follows from (2) that

MPV = Φ

(√
n(µ0 − µ1)

σ

)

(4)

where Φ is the CDF of the standard normal distribution. It is well known that for

a size α test to achieve power β at a specified alternative value µ1 the sample size n

satisfies

n =
(z1−α + zβ)

2σ2

(µ0 − µ1)2
(5)

where zγ is the γth quantile of the standard normal distribution. Using (4) and (5),

it follows that

MPV = Φ(−z1−α − zβ). (6)

6



In Table 1, we have provided values of the MPV’s in (6) using some commonly used

values of α and β. Each MPV value is smaller than the corresponding EPV value of

Table 1 of Sackrowitz and Samuel-Cahn (1999). We have also graphed the EPV and

the MPV in Figure 1 for various values of µ1 > 0 when µ0 = 0 at sample sizes 10

and 50. The MPV’s decrease from the .5 value at much faster rate than the EPV’s

although for both the rate increases with the sample size. In Figure 2, we have

graphed the EPV and the MPV for various sample sizes at µ1 = .3 and at µ1 = .5.

It is observed that the MPV’s decrease at a faster rate than the EPV’s at smaller

sample sizes and when closer to the null hypothesis.

****** Insert Table 1 here ******

****** Insert Figures 1 and 2 here ******

If the value of σ is unknown, the sample standard deviation S (or any other consistent

estimator of σ) may be used to replace it for moderately large n. The formula

in (4) is approximately correct in this case, consequently, Table 1 is approximately

correct for the one-sample t-test situation. After observing an actual p-value for an

approximately normally distributed statistic, the expression in (4) can be used to

determine the µ1 for which the given value would be an MPV.

Example 2. Let X1, X2, · · · , Xn be a random sample of size n from N(µ1, σ
2), and

independently, let Y1, Y2, · · · , Ym be another random sample of size m from N(µ2, σ
2),

and we like to test H0 : µ1 = µ2 versus H1 : µ1 > µ2 where σ is known. Using the

test statistic T = X − Y and a particular value µ1 − µ2 in H1 it follows that

MPV = Φ

(√

mn

m + n

µ2 − µ1

σ

)

. (7)

When m = n, formula (6) is still valid and hence Table 1 is also correct in this case.

For unknown σ, a consistent estimator of σ may be used in (7) for moderately large

m, n, and the formula in (7) becomes approximately correct in this case.
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Example 3. Suppose X1, X2, · · · , Xn is a random sample of size n from a N(µ, σ2)

distribution, and we like to test H0 : σ ≤ σ0 versus H1 : σ > σ0 when µ is unknown.

Using the test statistic (n − 1)S2/σ2 where S2 is the sample variance, it follows

from (4) that at the alternative point σ1,

MPV = 1 −G

(

σ2
1

σ2
0

G−1(.5)

)

(8)

where G is the CDF of a chi-square distribution with n− 1 degrees of freedom. Note

we need not use the F -distribution as needed for the computation of the EPV in this

problem (Sackrowitz and Samuel-Cahn, 1999).

The following two examples are concerned with testing the scale and location

parameters of the exponential distribution.

Example 4. Suppose T is exponentially distributed with parameter θ (from pdf

f(t) = θe−tθ for t > 0) denoted by exp(θ) and we like to test H0 : θ ≥ θ0 versus

H1 : θ < θ0. It is seen that med T = (1/θ)ln 2. For a particular value of θ1 < θ0, if

T ∗ ∼ exp(θ0) and T ∼ exp(θ1), the MPV is given by

P (T ∗ ≥ med T ) = 2−θ0/θ1 .

For a size α test with power β, since lnα/lnβ = θ0/θ1, it follows that for α = .1 and

β = .9, the MPV is 2.645 × 10−7. The EPV is .0438 in this case (Sackrowitz and

Samuel-Cahn, 1999). If a random sample X1, X2, · · · , Xn is available, the test may

be based on T =
∑n

i=1 Xi. Here T has a gamma distribution with shape parameter

n and scale parameter θ, we will denote its CDF by Gn,θ(·). Then it follows that the

MPV at alternative point θ1 is given by

P (T ∗ ≥ G−1
n,θ1

(.5)) = 1 − Gn,θ0
(G−1

n,θ1
(.5)).

Example 5. Suppose X1, X2, · · · , Xn is a random sample of size n from an expo-

nential distribution with parameters µ, θ (with pdf f(x) = (1/θ)e−(x−µ)/θ for x ≥ µ)
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denoted by exp(µ, θ) and we like to test H0 : µ ≤ µ0 versus H1 : µ > µ0 where

θ is known. The test statistic is T = min(X1, X2, · · · , Xn) whose distribution is

exp(µ, θ/n). It is seen that med T = µ + (θ/n)ln 2. For a particular alternative

µ1 > µ0, the MPV is given by .5e−n(µ1−µ0)/θ.

4 SIMULATION STUDIES

We perform two simulation studies to calculate and compare the EPV’s and MPV’s.

For the discrete case we consider the binomial distribution, with m trials and proba-

bility of success p, given by

pj =







m

j





 pj(1 − p)m−j , j = 0, · · · , m (9)

which is symmetric when p = .5. When p > .5, the binomial distribution is skewed

to the left, that is, it becomes stochastically larger than the p = .5 case. Let q =

(q0, · · · , qm) and p = (p0, · · · , pm) be the vectors of binomial probabilities obtained

from (9) with p = .5 and p > .5, respectively. We consider testing H0 : p = q (i.e.,

pi = qi, ∀i) against H1 : p is stochastically larger than q (i.e.,
∑m

i=j pi ≥
∑m

i=j qi, ∀j =

1, · · · , m, and
∑m

i=0 pi =
∑m

i=0 qi = 1). The likelihood ratio test statistic is given by

T = 2n
m
∑

i=0

p̂i ln (pi/qi)

where pi is the ith coordinate of p = p̂Ep̂(q/p̂|A), Ep̂(q/p̂|A) is the isotonic re-

gression of q/p̂ (all multiplications and divisions of vectors are done coordinatewise)

onto the non increasing cone A = {x = (x0, x1, · · · , xm) : x0 ≥ x1 ≥ · · · ≥ xm} with

weights p̂. It is well established (Robertson et. al., 1988) that under H0, asymptoti-

cally, the statistic T has a chi-bar squared distribution.

We create a random sample T1, · · · , Tn distributed like T , and independently,

another random sample T ∗

1 , · · · , T ∗

n distributed like T ∗. An unbiased estimator of
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EPV is given by

AE =
1

n

n
∑

i=1

I(T ∗

i ≥ Ti)

and an unbiased estimator of MPV is given by

AM =
1

n

n
∑

i=1

I(T ∗

i ≥ med Ti).

The variance of AE is EPV(1 − EPV)/n and that of AM is MPV(1 −MPV)/n

We consider m = 3, 6 with sample sizes n = 50, 100 and replications 10,000.

The results are given in Table 2. When p = .5, both of the EPV and MPV start

slightly higher than .5 as expected for discrete distributions. For p > .5, the MPV’s

are consistently smaller than the EPV’s, both being very close to zero when p > .65.

The effects are more pronounced for larger n. Note the exact value of the EPV or

the MPV is difficult to calculate in this case.

****** Insert Table 2 here ******

We consider a second simulation study to compare the performance of several tests

using the MPV’s for a general continuous case. We use the same set up as Sackrowitz

and Samuel-Cahn (1999) but calculate the MPV’s instead. Thus we consider the two-

sample problem of testing H0 : F = G versus H1 : F is stochastically larger than G

using two independent random samples from F and G respectively. The test statistics

considered are the two-sample t-test, the Mann-Whitney-Wilcoxon (MWW) test and

the Kolmogorov-Smirnov (KS) test. The comparison is made for shift alternatives

so that G(x) = F (x + ∆) where F is chosen as various distributions. We consider

F as normal (0,1), exponential, chi-square with degrees of freedom 10, uniform (0,1)

and double exponential. We chose sample sizes 10, 20, 50 and ∆0 = 0, ∆1 =

2.546σ/
√

50, ∆2 = 2.546σ/
√

20, ∆3 = 2.546σ/
√

10, where σ is the actual standard

deviation of the underlying distribution F . This choice is made so that when the
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underlying distribution is normal, a test based on the normal two-sample statistic

and n observations would have size α = .10 and power β = .7 (as opposed to β = .9

of Sackrowitz and Samuel-Cahn, 1999 in their table 4) for ∆ = (2.546σ/
√

n) and thus

from Table 1 we have MPV=.0355. Note that we have used the same ∆i values for

all n. We consider 10,000 replications.

****** Insert Table 3 here ******

The MPV values in Table 3 have similar magnitude as the EPV values of Sack-

rowitz and Samuel-Cahn (1999, Table 4) even at β = .7. They also have similar

pattern as the corresponding EPV values. So their conclusions are also valid in our

case. However our KS values of MPV perform worse than the corresponding EPV

values of Sackrowitz and Samuel-Cahn (1999) in all cases considered.

5 CONCLUSION

The distribution of the p-values under the alternative is a skewed distribution to the

right, and hence the median of this distribution is advocated as a more appropriate

tool than its mean for determination of the strength of a test for a particular alter-

native. The alternatives closer to H0 are detected easily with MPV than with EPV.

The MPV is easily computed in most cases and does not depend on the specified

significance level of a test. Thus it may be used as a single number which can help to

choose among different test statistics when testing the same hypotheses. For approx-

imately normally distributed statistics, Table 1 can be consulted to relate the MPV

value to the usual significance level and power combinations.
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Table 1: MPV’s in the testing for the normal mean as a function of the significance

level α and power β

α/β 0.40 0.50 0.60 0.70 0.80 0.90 0.95

0.01 0.0191 0.0100 0.0049 0.0022 0.0008 0.0002 0.0000

0.05 0.0820 0.0500 0.0288 0.0150 0.0065 0.0017 0.0005

0.10 0.1519 0.1000 0.0624 0.0355 0.0169 0.0052 0.0017

0.15 0.2168 0.1500 0.0986 0.0593 0.0302 0.0102 0.0036

Table 2: EPV’s and MPV’s for testing H0 : p = q against H1 : p is stochastically

larger than q for different combinations of m, n, p

m = 3 m = 6

EPV MPV EPV MPV

p n = 50 n = 100 n = 50 n = 100 n = 50 n = 100 n = 50 n = 100

0.50 0.509 0.508 0.510 0.506 0.509 0.511 0.505 0.510

0.51 0.454 0.432 0.439 0.407 0.445 0.421 0.421 0.401

0.52 0.404 0.364 0.363 0.309 0.380 0.335 0.332 0.279

0.53 0.350 0.291 0.292 0.222 0.319 0.250 0.248 0.164

0.54 0.300 0.235 0.230 0.143 0.258 0.170 0.168 0.079

0.55 0.252 0.174 0.165 0.081 0.202 0.110 0.103 0.033

0.56 0.208 0.129 0.117 0.045 0.149 0.065 0.055 0.011

0.57 0.169 0.087 0.078 0.020 0.102 0.037 0.027 0.003

0.58 0.135 0.054 0.050 0.007 0.069 0.019 0.012 0.001

0.59 0.102 0.036 0.031 0.003 0.044 0.008 0.006 0.000

0.60 0.075 0.021 0.017 0.001 0.026 0.002 0.002 0.000

0.61 0.054 0.011 0.008 0.000 0.013 0.001 0.001 0.000

0.62 0.037 0.006 0.003 0.000 0.007 0.000 0.000 0.000

0.63 0.026 0.003 0.002 0.000 0.003 0.000 0.000 0.000

0.64 0.017 0.001 0.001 0.000 0.001 0.000 0.000 0.000
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Table 3: MPV’s for the one sided, two-sample t, Mann-Whitney-Wilcoxon (MWW)

and Kolmogorov-Smirnov (KS) tests for various sample sizes, shift parameters and

underlying distributions

n = 10 n = 20 n = 50

t MWW KS t MWW KS t MWW KS

Normal(0, 1)

∆0 =0.0000 0.4943 0.5196 0.6745 0.4964 0.5032 0.6485 0.5066 0.4927 0.6181

∆1 =0.3600 0.2115 0.2497 0.4072 0.1275 0.1368 0.1662 0.0389 0.0413 0.0888

∆2 =0.5692 0.1084 0.1271 0.2039 0.0399 0.0458 0.0886 0.0027 0.0024 0.0100

∆3 =0.8050 0.0446 0.0567 0.0843 0.0085 0.0086 0.0189 0.0001 0.0000 0.0007

Exponential

∆0 =0.0000 0.5022 .5125 0.6858 0.4924 0.5078 0.6397 0.4864 0.5094 0.6031

∆1 =0.3600 0.2030 0.1235 0.2157 0.1221 0.0505 0.0913 0.0309 0.0041 0.0017

∆2 =0.5692 0.0905 0.0544 0.0851 0.0336 0.0104 0.0060 0.0013 0.0000 0.0000

∆3 =0.8050 0.0312 0.0168 0.0281 0.0038 0.0012 0.0004 0.0000 0.0000 0.0000

Chi − Square(10)

∆0 =0.0000 0.4863 0.5202 0.6815 0.5151 0.4878 0.6491 0.4891 0.5050 0.5990

∆1 =1.6100 0.1955 0.2234 0.4172 0.1300 0.1129 0.1682 0.0349 0.0318 0.0533

∆2 =2.5456 0.0947 0.1129 0.2001 0.0376 0.0299 0.0844 0.0023 0.0017 0.0054

∆3 =3.6000 0.0341 0.0376 0.0764 0.0063 0.0049 0.0153 0.0000 0.0000 0.0010

Uniform(0, 1)

∆0 =0.0000 0.4959 0.5196 0.6745 0.5013 0.5032 0.6485 0.5086 0.4927 0.6181

∆1 =0.1039 0.2154 0.2497 0.4072 0.1305 0.1426 0.2897 0.0365 0.0442 0.0888

∆2 =0.1643 0.1125 0.1271 0.2039 0.0431 0.0506 0.0886 0.0026 0.0036 0.0187

∆3 =0.2324 0.0477 0.0647 0.2039 0.0104 0.0122 0.0416 0.0000 0.0001 0.0022

DoubleExponential

∆0 =0.0000 0.5016 0.5119 0.6830 0.5008 0.5122 0.6507 0.4947 0.5013 0.6074

∆1 =0.5091 0.2119 0.1793 0.2138 0.1260 0.0928 0.1688 0.0329 0.0156 0.0183

∆2 =0.8050 0.0984 0.0841 0.0842 0.0357 0.0197 0.0426 0.0019 0.0003 0.0004

∆3 =1.1384 0.0370 0.0327 0.0286 0.0054 0.0033 0.0068 0.0000 0.0000 0.0000
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