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Abstract

We consider disparity based test statistics to test the equality of a multinomial

probability vector to a given probability vector against an isotonic order restriction.

The problem of testing the isotonic restriction as a null hypothesis against unrestricted

alternatives is also considered. In both cases the asymptotic distributions of the test

statistics are shown to be of the chi-bar squared type. For the Cressie-Read power

divergence test statistic, the proximity of the actual moments of the test statistic to

the moments of the chi-bar squared distribution is also numerically investigated.

Key words and phrases: Blended weight Hellinger distance, Blended weight chi-

square, Hellinger distance, Likelihood ratio test, Power divergence, minimum dis-

parity estimation.
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1 Introduction

Test statistics such as Pearson’s chi-square and the likelihood ratio are two of the

most popular means of testing equality of a multinomial probability vector (PV)

(p = (p1, p2, · · · , pk) with pi ≥ 0,
∑k

i=1 pi = 1) to a given PV. There are, however,

less popular test statistics available, such as Neyman modified chi-square, Freeman-

Tukey, and the modified log likelihood ratio for the same testing scenario. In an

attempt to unify these statistics, Cressie and Read (1984) (also see Read and Cressie,

1988) introduced the family of power divergence test statistics (CR). For two PV’s p

and q = (q1, q2, · · · , qk), the power divergence family of test statistics is denoted by

{2nIλ(p, q), λ ∈ R}, where n is the sample size and

Iλ(p, q) =
k
∑

i=1





pi

λ(λ + 1)







(

pi

qi

)λ

− 1







+
qi − pi

λ + 1



 (1)

with the cases of λ = 0,−1 defined as the continuous limits at those It can be

easily seen that the statistics Neyman modified chi-square, discriminant information,

Freeman-Tukey, log likelihood ratio and the Pearson’s chi-square are special cases

of (1) with λ = −2,−1,−1/2, 0, 1 values respectively. Cressie and Read studied the

differences in behavior of (1) asymptotically and for finite sample sizes for different

λ values. They also suggested using the statistic based on λ = 2/3 as a compromise

between the Pearson’s chi-square and log likelihood ratio statistics.

In this paper we assume that a random sample is available from a multinomial

distribution with PV π = (π1, π2, · · · , πk) and consider the hypotheses H0 : π = π0

for a specified π0 = (π01, π02, · · · , π0k), H1 : π is isotonic and H2 : π is unrestricted.

The theory of isotonic cone restrictions and related topics are discussed in Robertson,

Wright and Dykstra (1988). Assuming π0 is isotonic, we consider testing H0 versus

H1 −H0 and also H1 versus H2 −H1 using disparity based test statistics, and study

the asymptotic distributions of the test statistics when H0 is true. Robertson (1978)
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considered the likelihood ratio test for the same hypotheses.

Dykstra and Lee (1997) found a general solution to minimizing (1) subject to p

belonging to an isotonic cone and q being the vector of observed relative frequencies

of the multinomial. The solution, based on λ, is expressed in terms of convex projec-

tions onto the isotonic cone. Bhattacharya (1999) considered a more general form of

the isotonic cone restrictions, obtained the estimates and performed hypothesis tests

under these restrictions. In this paper, based on the disparity approach of Lindsay

(1994), we consider general classes of test statistics such as those based on the power

divergence, blended weight Hellinger distance, and blended weight chi-square fami-

lies, all of which are subclasses of disparity tests. Basu and Sarkar (1994) considered

testing H0 versus H2 − H0 using such disparity test statistics. Although in exist-

ing order-restricted testing literature the likelihood ratio test is the most common

choice as a test statistic, many of the disparity test statistics used in this paper will

be shown to have better power under certain alternatives. Cressie and Read (1984),

Read and Cressie (1988), and Basu and Sarkar (1994) demonstrate similar cases when

the alternative is unrestricted.

In Section 2, we describe the test statistics used in this paper. In Section 3, we

obtain the asymptotic distributions of the test statistics for the two testing situations

considered. In Section 4, we present several numerical investigations, and show that

when the tree order restriction is used as an alternative the test statistics developed

here produce higher power at the ‘dip’ alternative compared to the statistics developed

for unrestricted alternatives by Cressie and Read (1984), Read and Cressie (1988) and

Basu and Sarkar (1994). Appropriately defined statistics enjoy similar improvements

for the bump alternative. Since under the isotonic restrictions setup, theoretical

asymptotic analysis of the moments of the test statistics appear to be intractable, we

also compare the moments of the statistics through simulations for the simple order

and the simple tree order to examine their convergence to the asymptotic limit. Such
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moment comparisons under the order-restricted set up does not exist in the current

literature.

2 Disparity Test Statistics

Suppose n observations are available from a multinomial distribution with PV π, and

let x = (x1, · · · , xk) denote the vector of observed frequencies for the k categories.

Let G be a strictly convex thrice differentiable function on [−1,∞) with G(0) = 0,

G(1)(0) = 0 and G(2)(0) = 1, where G(i) represents the ith derivative of G. For the

rest of this paper we will assume that G(3) is bounded and continuous at 0.

A disparity between two PVs p and q generated by G is defined by

ρG(p, q) =
k
∑

i=1

G

(

pi

qi

− 1

)

qi. (2)

Let p = (p1, p2, · · · , pk) where each pi = xi/n for 1 ≤ i ≤ k. The disparity test

statistic for testing H0 against H1−H0 generated by G is given by 2nρG(p∗, π0), where

p
∗ = (p∗1, p

∗

2, · · · , p∗k) is the isotonic regression of p with equal weights (Robertson et

al., 1988) under H1. Appropriate algorithms are available to compute the isotonic

regression estimates for well known restrictions; for example, when H1 is the simple

order, the pool adjacent violators algorithm (page 10 of Robertson et al., 1988) may

be used, and when H1 denotes the simple tree order, the algorithm given on page 19

of Robertson et al (1988) may be used. These are used later in the paper.

Letting δi = (π−1
0i p∗i − 1), the Pearson chi-square statistic is generated by G(δ) =

2−1δ2. The log likelihood ratio chi-square and the power divergence family are gen-

erated by

G(δ) = (δ + 1) log(δ + 1) − δ and G(δ) =
(δ + 1)(λ+1) − 1

λ(λ + 1)
− δ

λ + 1
,
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respectively. The (twice) squared Hellinger distance (the Freeman-Tukey divergence)

corresponds to G(δ) = 2[(δ +1)
1

2 − 1]. Lindsay (1994) introduced the blended weight

Hellinger and the blended weight chi-square distance families. Here we modify those

to the restricted alternative case. The blended weight Hellinger distance family

{BWHDα, 0 ≤ α ≤ 1} defined by

BWHDα(p∗, π0) = 2−1
k
∑

i=1

{

p∗i − π0i

α(p∗i )
1

2 + (1 − α)(π0i)
1

2

}2

(3)

corresponds to

G(δ) = 2−1
{

δ/[α(δ + 1)1/2 + (1 − α)]
}2

.

Note that the (twice) squared Hellinger distance is a member of {BWHDα} with α =

1/2. Another family of disparities is the blended weight chi-square {BWCSα, 0 ≤

α ≤ 1} obtained by taking a weighted average of the denominators of the Pearson’s

and Neyman’s chi-squares. Its form is

BWCSα(p∗, π0) = 2−1
k
∑

i=1

(p∗i − π0i)
2

αp∗i + (1 − α)π0i
(4)

and for this family of disparity test statistics

G(δ) = 2−1δ2/(αδ + 1).

For the unrestricted case, Lindsay (1994) used the families (3) and (4) for estimation

purposes and Basu and Sarkar (1994) used those for goodness-of-fit tests.

Here the disparities ρG are presented in a standardized form so that the corre-

sponding G(·) functions have the appropriate properties without changing the dispar-

ity statistics themselves. Notice that we have represented the Iλ measure in a slightly

different but equivalent way compared to Cressie and Read (1984). Our standardiza-

tions guarantee that G(1)(0) = 0 and G(2)(0) = 1, and thus the leading term of any

disparity ρG(p, π) equals 2−1 ∑k
i=1 δ2

i πi, where δi = π−1
i pi − 1, when expanded in a

Taylor series in δ around 0. As a result, the leading term of any disparity test statistic
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equals the Pearson’s chi-square statistic. As we will see, this helps to establish the

asymptotic distribution of the disparity test statistics in the next section.

3 Hypothesis Tests

When testing the hypothesis H0 against the alternative H1 −H0, the test statistic to

be used is 2nρG(p∗, π0) = 2n
∑k

i=1 G (p∗i /π0i − 1) π0i. Using a Taylor series expansion

(as a function of p∗i around π0i), it follows that

ρG(p∗, π0) =
∑k

i=1 G (p∗i /π0i − 1) π0i

=
∑k

i=1 G(0)π0i +
∑k

i=1(p
∗

i − π0i)G
(1)(0) +

∑k
i=1 2−1(p∗i − π0i)

2G(2)(0)π−1
0i

+
∑k

i=1 6−1(p∗i − π0i)
3G(3)(π−1

0i ξi − 1)π−2
0i

= S1 + S2 + S3 + S4

say, where p∗i ≤ ξi ≤ π0i. Note that G(0) = 0 and G(2)(0) = 1. As both p∗i and π0i

sum to 1 over i, the first two terms S1 and S2 are equal to 0. Also

6nS4 =
∑k

i=1 n(p∗i − π0i)
3[G(3)(π−1

0i ξi − 1)π−2
0i ]

≤ {∑k
i=1 n(p∗i − π0i)

2}{supi |p∗i − π0i|}{supi π
−2
0i }{supi G

(3)(π−1
0i ξi − 1)},

where {supi π
−2
0i } is bounded, supi |p∗i − π0i| = op(1) and

∑k
i=1 n(p∗i − π0i)

2 = Op(1)

under H0. Since (ξi − π0i) = op(1) for every i, it follows that G(3)(π−1
0i ξi − 1) = Op(1)

by the assumptions on G(3). Therefore, 6nS4 = op(1). Then the result follows by

noting that

2nS3 = n
k
∑

i=1

π−1
0i (p∗i − π0i)

2

is the Pearson chi-square statistic whose asymptotic chi-bar square distribution under

the simple null hypothesis is well known (Robertson et al, 1988).

When testing H1 versus H2 − H1, the test statistic is given by

2nρG(p, p∗) = 2n
k
∑

i=1

G (pi/p
∗

i − 1) p∗i .
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In this case, it may be shown that H0 : π0i = 1/k, ∀i is least favorable within H1

(Robertson, 1978). By a Taylor series expansion similar to above, its asymptotic

distribution may be shown to be the same as that of n
∑k

i=1(pi − p∗i )
2/p∗i whose

asymptotic chi-bar square distribution is also well known (Robertson, et al., 1988).

Thus we arrive at the following theorem .

Theorem 1. For 1 ≤ i ≤ k, let P (i, k) be the equal weight level probabilities for

a given isotonic order. For a constant c1, when testing H0 against H1 − H0 the

asymptotic distribution of the test statistic 2nρ(p∗, π0) under H0 is given by

lim
n→∞

P (2nρ(p∗, π0) ≥ c1) =
k
∑

i=1

P (i, k)P (χ2
i−1 ≥ c1)

where χ2
i is a chi-square random variable with i degrees of freedom with χ2

0 ≡ 0.

When testing H1 as a null hypothesis against the alternative H2 −H1, H0 : π0i =

1/k, ∀i is least favorable within H1. For a constant c2, the asymptotic distribution

of the test statistic 2nρ(p, p∗) under H0 is given by

lim
n→∞

P (2nρ(p, p∗) ≥ c2) =
k
∑

i=1

P (i, k)P (χ2
k−i ≥ c2).

Clearly, the same test statistic is used when antitonic order restrictions are used

with appropriate estimates. In the next section we consider the simple order and the

simple tree order for which the level probabilities are available from Robertson et al

(1988) upto k ≤ 20.

4 Numerical Results

We begin by describing the performance of several disparity tests with some exact

computations. To keep a clear focus we concentrate on the case with n = 20 and

k = 4 and a test of size 0.05 for these exact computations. We consider the power
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divergence test statistics for several different λ values, as well as the disparity test

statistics based on the BWHDα and BWCSα tests for several choices of α. For a

given value of k, we consider the symmetric null hypothesis H0 : π0i = 1/k for all i

against appropriate alternative hypotheses of simple tree order H1 : π1 ≤ πi, ∀i =

2, · · · , k or the antitonic order H ′

1 : π1 ≥ πi, ∀i = 2, · · · , k. Consider the PV π with

π1 = (1 + γ)/k, πi = ((1 − γ/(k − 1))/k, i = 2, ..., k indexed by a single parameter

γ, −1 ≤ γ ≤ k − 1, and notice that negative values of γ lead to ‘dip’ alternatives

belonging to the situation described by H1, and positive values of γ produce ‘bump’

alternatives in H ′

1. We have computed exact powers for γ = 1.5 and −0.9 as in Cressie

and Read (1984) and Basu and Sarkar (1994). For a given disparity, we first consider

three test statistics T1 = 2nρ(p, π0), T2 = 2nρ(p∗, π0), T3 = 2nρ(p∗∗, π0). T1 is

the conventional test statistic of Cressie and Read, and Basu and Sarkar, originally

developed to test H0 against H2, while T2 and T3 are our proposed statistics for

isotonic and antitonic tree orders respectively (eg. for testing H0 against H1 and

H ′

1 respectively), and p
∗ and p

∗∗ are the isotonic and antitonic regression of p with

equal weights. We have computed exact powers for γ = 1.5 and −0.9 as in Cressie

and Read (1984) and Basu and Sarkar (1994). The powers of the test statistics are

presented in Tables 1–3, and demonstrate the following:

• For each given disparity, the power values of T2 are higher than those of T1

for all the disparity tests when γ = −0.9 (i.e. for the dip alternative); this

is expected, since T2 specifically utilizes the information that the alternative

belongs to H1, while T1 simple states that the null is false.

• For the bump alternative (γ = 1.5) T3 has higher power than T1 for all the

disparity tests, which is again expected.

• The increase in power in T2 over T1 for the dip alternative is generally higher

compared to the increase in power in T3 over T1 for the bump alternative. This
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is because we used an extreme dip alternative (γ = −0.9 is near the end of the

range) but a moderate bump alternative. More extreme bump alternatives like

those generated by γ = 2 or 2.5 would lead to greater increases in power for T3

over T1 for such alternatives.

• The powers are decreasing functions of λ within the power divergence family,

and increasing functions of α for the BWCS and BWHD families for the dip

alternatives, but the reverse happens for bump alternatives.

• For bump alternatives, the powers of T2 are lower than those of T1 (in fact

lower than the size of the test), since here the truth is further away from the

alternative compared to the null; similarly, powers of T3 are smaller than those

of T1 under dip alternatives.

While overall recommendations will require more extensive investigations, the

message of this limited study is that it may be preferable to use disparity tests of

the form T2 with small values of λ (in the Cressie-Read family) or large values of

α (within the BWHD or BWCS family) against suspected isotonic alternatives.

Similarly disparity tests of the form T3 may be preferable with large values of λ (in

the Cressie-Read family) or small values of α (within the BWHD or BWCS family)

against suspected antitonic alternatives.

We next perform a simple comparison of the convergence of the statistics to their

asymptotic chi-bar square limits through the speed of convergence of the moments

of the disparity tests under the null hypothesis H0 : π = π0 as k goes to infinity.

For simplicity we restrict ourselves to the Cressie-Read family in this case, although

similar analysis can be easily done with the BWHD and BWCS. Defining wi =
√

n(p∗i − π0i) we have the Taylor series expansion

2nIλ(p∗, π0) =
k
∑

i=1

w2
i

π0i

− λ − 1

3
√

n

k
∑

i=1

w3
i

π2
0i

+
(λ − 1)(λ − 2)

12n

k
∑

i=1

w4
i

π3
0i

+ Op(n
−3/2) (5)
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under H0. Since it appears to be intractable to obtain the moments of 2nIλ(p∗, π0)

using (5), we compare the simulated moments of 2nIλ(p∗, π0) for different values

of λ with the moments of (its limiting asymptotic) chi-bar square distribution. We

consider the first three moments for the restrictions of the simple order and the

simple tree order with 100,000 replications and a sample size of 500. We consider

k = 3, 7, 10, 20. The results are expected to be better for larger k. The rth moments

of the chi-bar square distribution for the simple order and the simple tree order are

given by
k
∑

i=1

P (i, k)(i− 1)(i + 1) · · · (i + 2r − 3)

where the level probabilities P (i, k) are appropriately defined (Robertson et al., 1988).

In Table 4, we provide the exact moments from chi-bar squared distribution using

the above formula. The λ values, correct up to second decimal places, for which

the simulated moments of the CR statistics is closest to the corresponding moment

is provided along with the final absolute difference in parenthesis. For each k, the

minimizing value of λ seems to decrease for higher moments for both orders. It is seen

that we do not get clear choices of λ = 1 or λ = 2/3 as in Cressie and Read (1984),

but they do converge to somewhere in or around the interval (1/3, 2/3). In the case

of tree order, the case of k = 3 produces values of λ much larger than 1, which is

unexpected. On the whole, however, we expect the convergence of the statistics to

be reasonable in the interval (1/3, 2/3) for large k.
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Table 1: Power of the T1, T2 and the T3 test statistics for the Cressie-Read family for

the n = 20, k = 4 case, obtained via exact computations (rounded to four places of

decimals). The size of the test is 0.05.

λ T1 T2 T3

γ = 1.5 γ = −0.9 γ = 1.5 γ = −0.9 γ = 1.5 γ = −0.9

-5.00 0.6316 0.7434 0.0000 0.9357 0.6366 0.0022

-2.00 0.6500 0.7434 0.0000 0.9326 0.6550 0.0022

-1.00 0.7960 0.7342 0.0000 0.9248 0.8072 0.0021

-0.50 0.8009 0.7263 0.0000 0.9248 0.8749 0.0018

-0.30 0.8525 0.7108 0.0000 0.9095 0.8985 0.0017

0.00 0.8640 0.7045 0.0000 0.8905 0.9132 0.0016

0.30 0.8640 0.7045 0.0000 0.8017 0.9357 0.0015

0.50 0.8640 0.7045 0.0000 0.8017 0.9375 0.0015

2/3 0.8640 0.7045 0.0001 0.7620 0.9375 0.0015

0.70 0.8647 0.6363 0.0001 0.7620 0.9375 0.0015

1.00 0.8745 0.5150 0.0001 0.7434 0.9393 0.0015

2.00 0.8962 0.3290 0.0002 0.4791 0.9510 0.0003

5.00 0.9025 0.2422 0.0002 0.4630 0.9671 0.0001
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Table 2: Power of the T1, T2 and the T3 test statistics for the BWHD family for

the n = 20, k = 4 case, obtained via exact computations (rounded to four places of

decimals). The size of the test is 0.05.

α T1 T2 T3

γ = 1.5 γ = −0.9 γ = 1.5 γ = −0.9 γ = 1.5 γ = −0.9

0.00 0.8745 0.5150 0.0001 0.7434 0.9393 0.0015

0.10 0.8640 0.7045 0.0001 0.7620 0.9375 0.0015

0.20 0.8640 0.7045 0.0000 0.8017 0.9375 0.0015

0.30 0.8640 0.7045 0.0000 0.8905 0.9132 0.0016

0.40 0.8525 0.7048 0.0000 0.9094 0.8985 0.0017

0.50 0.8009 0.7045 0.0000 0.9248 0.8749 0.0018

0.60 0.7960 0.7341 0.0000 0.9248 0.8629 0.0018

0.70 0.7353 0.7410 0.0000 0.9248 0.8013 0.0021

0.80 0.7017 0.7428 0.0000 0.9288 0.7403 0.0021

0.90 0.6500 0.7433 0.0000 0.9288 0.7067 0.0022

1.00 0.6500 0.7433 0.0000 0.9326 0.6550 0.0022
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Table 3: Power of the T1, T2 and the T3 test statistics for the BWCS family for the

n = 20, k = 4 case, obtained via exact computations (rounded to four places of

decimals). The size of the test is 0.05.

α T1 T2 T3

γ = 1.5 γ = −0.9 γ = 1.5 γ = −0.9 γ = 1.5 γ = −0.9

0.00 0.8745 0.5150 0.0001 0.7434 0.9393 0.0015

0.10 0.8647 0.6363 0.0001 0.7620 0.9375 0.0015

0.20 0.8640 0.7045 0.0000 0.8017 0.9375 0.0015

0.30 0.8640 0.7045 0.0000 0.8572 0.9276 0.0015

0.40 0.8526 0.7049 0.0000 0.8905 0.9132 0.0016

0.50 0.8526 0.7049 0.0000 0.9248 0.8985 0.0017

0.60 0.8009 0.7263 0.0000 0.9248 0.8629 0.0018

0.70 0.7960 0.7341 0.0000 0.9248 0.8092 0.0019

0.80 0.7353 0.7410 0.0000 0.9248 0.8013 0.0021

0.90 0.7017 0.7428 0.0000 0.9288 0.7067 0.0022

1.00 0.6500 0.7433 0.0000 0.9326 0.6550 0.0022
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Table 4: First row is the exact moment of the chi-bar squared distribution, second

row is the value of lambda at which the corresponding simulated moment is closest

to the exact moment and the third row is |exact moment − simulated moment| in

parentheses, for the first three moments for the simple order and the simple tree

order alternatives
Simple order Simple tree order

Moments k = 3 k = 7 k = 10 k = 20 k = 3 k = 7 k = 10 k = 20

1 0.833 1.593 1.929 2.598 1.167 4.376 7.008 16.236

1.22 1.00 0.93 0.87 8.80 0.83 0.56 0.44

(0.0051) (0.0032) (0.0052) (0.0079) (0.0002) (0.0001) (0.0001) (0.0012)

2 2.833 6.804 8.958 13.945 4.167 29.049 64.642 298.485

1.07 0.79 0.73 0.68 6.37 0.74 0.46 0.41

(0.0464) (0.0569) (0.1094) (0.1511) (0.0013) (0.0040) (0.0049) (0.0452)

3 15.500 44.105 61.863 107.619 23.500 255.113 734.991 6120.870

0.95 0.67 0.63 0.59 5.01 0.64 0.39 0.39

(0.4505) (1.0449) (1.8042) (2.6966) (0.0062) (0.0248) (0.1168) (0.6352)
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