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Abstract

We propose a measure of asymmetry of a probability density function (pdf) by

considering the relative entropy between itself and its (appropriately defined) mirror

image. The measure is shown to be useful for detecting asymmetry in distributions

of categorical or continuous random variables. Asymmetries of a pdf near its center

and away from the center are investigated. This measure leads to generalizations of

asymmetric categorical models. Comparison (using examples) with the asymmetry

measures of MacGillivray (1986) shows the proposed measures are useful for non-

monotonic asymmetry. For square contingency tables with same row and column

classifications, the sampling distributions of the measures are studied asymptotically.

Applications are discussed for two-way tables and in linear regression models. Monte

Carlo simulations show that the proposed measures/tests have good size and power

properties when compared with competitors, even for smaller samples. Two illustra-

tive examples are analyzed.

Key words and phrases: categorical, central asymmetry, coefficients, isotonic regres-

sion, mirror image, skewness, tail asymmetry, unimodal ordering.
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1 Introduction

The concept of symmetry has played an important role in statistics. In nonparametric

statistics, validity of many procedures depend on this assumption. In parametric

inference, there are often situations when the assumption of normality can be replaced

by the assumption of any symmetric distribution (Chaffin and Rhiel, 1993). For a

continuous random variable X with distribution function (df) F (x) and probability

density function (pdf) f(x), let the mean, median and mode be denoted by µ, m

and M , respectively. The historically known measures for detecting departures from

symmetry include (µ−M)/σ, E(X−µ)3/σ3, (Q3+Q1−2m)/(Q3−Q1) and (µ−m)/σ,

where σ is the standard deviation of X, and Q1, Q3 are the first and third quartiles,

respectively. See MacGillivray (1986) for the related references who also discussed

γp(F ) = F−1(1−p)+F−1(p)−2m
F−1(1−p)−F−1(p)

, p ∈ (0, .5) and (µ−m)/E|X−m|. An influence function

approach to describing the skewness of a distribution using some of these measures

is given by Groeneveld (1991). Note that there exists asymmetric distributions with

the third central moment equal to zero (Ord, 1968; Johnson and Kotz, 1970).

van Zwet (1964) defined a df G having ‘greater skewness to the right’ than a df F

if G−1(F (x)) is convex on AF = {x : 0 < F (x) < 1}. Oja (1981) studied the function

G−1(F (x))−x on AF using various partial orderings of distributions. Doksum (1975)

proposed the symmetry function θF (x) = [x − F
−1

(F (x))]/2 (F (x) = 1 − F (x)),

and defined F as ‘strongly skewed to the right’ if and only if θF (x) is nonincreasing

for x < mF and nondecreasing for x ≥ mF and ‘skewed to the right’ if and only

if θF (x) ≥ mF . MacGillivray (1986) studied the interconnections between many of

the above partial orderings and discussed measures that are derived from them. Two

such measures are

ψ1 =
|µ−m|

σ
and ψ2 =

∣

∣

∣

∣

∣

sup
α≤u≤.5

γu(F )− inf
α≤u≤.5

γu(F )

∣

∣

∣

∣

∣

(1.1)

for α > 0. Both of these are in (0, 1), which is a desirable property of an asymmetry
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measure.

In this paper, we propose a measure of departure from symmetry that compares

the pdf f(x) with its ‘mirror image’ (or reflection). The definition of mirror image

depends on the context. In the continuous univariate case, the mirror image of a

skewed to the right pdf becomes skewed to the left (possibly on a different domain)

depending on the point of reflection. When needed, we make a linear transformation

to the domain of the mirror image pdf so that this domain matches with that of the

original pdf. Then the relative entropy (or the Kullback-Leibler deviation) between

these two pdf’s is considered. If the original pdf is symmetric to begin with, then

it is identical with its mirror image, and the above deviation is zero; otherwise the

deviation is nonnegative and provides us a measure of its asymmetry.

MacGillivray (1986, p.997) proposed some desirable criteria of skewness measures:

they should (a) have same structure for self and different distributions comparisons,

(b) compare with existing measures, (c) be able to identify the ordering the measure

indicates, (d) measure skewness of any asymmetric distribution, (e) not be more

complicated than necessary. Using f(x) and its mirror image only (and no other

information) to measure asymmetry, we satisfy (e). The criterion (b) is considered in

Section 6. The criteria (a,c,d) are shown to hold in Sections 2, 3. As we will see later,

the comparison between f(x) and its mirror image, leads to a symmetric measure,

so it does not matter which one we start with. The proposed quantity measures

deviations from symmetry only and it does not detect the direction of asymmetry,

right or left. Such behavior of asymmetry measures are acceptable (MacGillivray,

1986, page 1005).

In Section 2, we consider asymmetry in two-way contingency tables. Discrete

and continuous univariate random variables are considered in Section 3. Section 4

addresses applications of the proposed measure in the areas of contingency tables

and linear regression, respectively. Comparison with existing measures and related
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discussions are in Section 5. Proofs of results are deferred to the appendix at the end.

2 Two-way contingency tables

Let p = ((pij), i = 1, . . . , r, j = 1, . . . , r, pij ≥ 0,
∑r
i=1

∑r
j=1 pij = 1) be an r × r

contingency table of probabilities. For another r×r contingency table of probabilities

q = ((qij), i = 1, . . . , r, j = 1, . . . , r, ), the relative entropy between p and q is

I(p|q) =
r
∑

i=1

r
∑

j=1

pij ln
pij
qij
. (2.1)

Here we adopt the conventions that 0 ln(0/0) = 0, 0 ln 0 = 0, a ln(a/0) = ∞, ∀a > 0.

It is easily shown that I(p|q) ≥ 0, and I(p|q) = 0 if and only if pij = qij, ∀i, j.

The symmetry model is defined as

pij = pji, ∀i, j. (2.2)

Due to its strict restrictions, the symmetry model may not be practical in most

circumstances. To study the deviations from symmetry, one would like to know how

different is pij from pji, ∀i > j. We assume
∑r
i=1

∑

j 6=i pij 6= 0. To determine if

p is symmetric around the main diagonal, we propose a measure of deviation from

symmetry as follows

δ =
1

∑r
i=1

∑

j 6=i pij

r
∑

i=1

r
∑

j=1

pij ln
pij
pji
,

which can be simplified as

δ =

∑∑

i<j pij ln pij

pji
+
∑∑

i<j pji ln
pji

pij
∑∑

i<j pij +
∑∑

i<j pji
=

∑∑

i<j(pij − pji) ln pij

pji
∑∑

i<j(pij + pji)
. (2.3)

The measure δ ranges in the interval [0,∞). While 0 refers to symmetry, ∞ corre-

sponds to ‘complete asymmetry’, which is attained when either pij = 0 or pji = 0,

but not both, for some (i, j).

Next we present some preliminary properties of the measure δ. The following

remarks and results help one understand its nature.

4



Remark 2.1 To see that δ is truly a divergence between two probability distributions,

define T =
∑r
i=1

∑

j 6=i pij, then it is easy to see that δ denotes divergence between:

{pij/T : i 6= j} and {pji/T : i 6= j}. These two probability distributions use the same

pij ’s in different order. 2

In general, for two probability distributions p and q, it is well-known that I(p|q) 6=

I(q|p). However, it is easy to see that the following symmetry holds.

Proposition 2.1 Let p† be the transpose of p. Then I(p|p†) = I(p†|p), ∀p. 2

Thus δ = I(p|p†)/T is invariant to the order of p and p†. Although δ compares

{pij/T : i 6= j} with its transpose, the following lemma shows that δ can also be

expressed as a divergence between two separate probability distributions.

Proposition 2.2 Let p(1) be the probability distribution with entries as p
(1)
ij =

pij/
∑∑

i>j pij for i > j, and p(2) be the probability distribution with entries as

p
(2)
ij = pij/

∑∑

i<j pij for i < j. If α =
∑

i>j pij/
∑∑

i6=j pij, then

δ = αI(p(1)|p(2)) + (1 − α)I(p(2)|p(1)) + (2α− 1) ln
α

1 − α
. 2

Remark 2.2 Proposition 2.2 shows that, in general, δ is related to a weighted sum of

I(p(1)|p(2)) and I(p(2)|p(1)). In particular, when α = .5 (or,
∑∑

i>j pij =
∑∑

i<j pij),

δ is (1/2) times Jeffrey’s divergence between p(1) and p(2). 2

To obtain a measure between 0 and 1, which makes it easier to understand its

behavior (Bishop et al., 1975), we make the following transformation

ψ = 1 − e−δ. (2.4)

This transformation is appropriate for ordinal categorical random variables (assumed

to derive from an underlying continuous random variable) (Joe, 1989; Soofi et al.,

1995). Thus ψ = 0 corresponds to ‘symmetry’ and ψ = 1 corresponds to ‘complete

asymmetry’ as pji = 0, pij > 0 for some pair (j, i).

It is insightful to evaluate the measure δ for well-known asymmetry models as

follows, which show how δ is related to the source of asymmetry.
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i) Conditional symmetry holds if pij = pjik for i < j and a constant k > 0. Since

∑

j 6=i pij = (k + 1)
∑

i<j pji, we get from (2.3),

δ =
(k − 1) ln k

∑

i<j pji
(k + 1)

∑

i<j pji
=

(k − 1)

(k + 1)
lnk,

which is an increasing (decreasing) function of k for k > 1 (k < 1). For large k,

(k − 1)/(k + 1) ≈ 1, we have δ ≈ ln k. Note asymmetries for k and 1/k are same.

(ii) Diagonal parameter symmetry holds if pij = pjikt, t = j − i for i < j, kt > 1.

Here we get from (2.3),

δ =

∑∑

i<j pji(kt − 1) ln kt
∑∑

i<j pji(kt + 1)
=

∑r−1
t=1

∑r
i=1 pi+t,i(kt − 1) ln kt

∑r−1
t=1

∑r
i=1 pi+t,i(kt + 1)

,

which is an increasing function of kt’s, ∀t. Then δ =
∑r−1
t=1 wt ln kt where wt =

∑r
i=1 pi+t,i(kt − 1)/

∑r−1
t=1

∑r
i=1 pi+t,i(kt + 1). For large kt, (kt − 1) ≈ (kt + 1), ∀t, we

have
∑r−1
t=1 wt = 1.

(iii) Linear diagonal parameter symmetry holds if pij = φj−ipji, φ > 1 for i < j.

Define pi· =
∑r
j=1 pij , ∀i. Here we get from (2.3), δ =

ln φ
∑r−1

t=1
t(φt−1)pt·

∑r−1

t=1
(φt+1)pt·

, which is an

increasing function of φ. Then δ = (lnφ)[
∑r−1
t=1 twt] where wt = (φt−1)pt·/

∑r−1
t=1 (φt+

1)pt·. For large φ, (φt − 1) ≈ (φt + 1), ∀t, we have
∑r−1
t=1 wt = 1.

(iv) Quasi-symmetry holds if pij = αiβjγij where γij = γji > 0 for i < j. Here we

get from (2.3), δ =

∑∑

i<j(αiβj − αjβi)γij ln
αiβj

αjβi
∑∑

i<j(αiβj + αjβi)γij
. This is equal to 0 if αi = βi, ∀i,

which is marginal homogeneity. Since symmetry model is equivalent to marginal

homogeneity and quasi-symmetry together, so δ > 0 is possible when quasi-symmetry

holds but not marginal homogeneity. Thus here δ is a measure of the marginal

inhomogeneity of the pij ’s when quasi-symmetry holds. For example, if βi = ciαi, ci ≥

1 ∀i, then δ =
∑∑

i<j wij(cj − ci) ln(cj/ci), wij = αiαjγij/
∑∑

i<j(cj + ci)αiαjγij . 2

For nominal categorical variables, we suggest the transformation

τ = −
∑r
i=1

∑r
j=1 pij ln

pij

pji
∑r
i=1

∑r
j=1 pij ln pji

. (2.5)
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Since 0 ≤ ∑r
i=1

∑r
j=1 pij ln pij −

∑r
i=1

∑r
j=1 pij ln pji ≤ −∑r

i=1

∑r
j=1 pij ln pji, it follows

that 0 ≤ τ ≤ 1, where τ = 0 corresponds to ‘symmetry’ and τ = 1 corresponds to

‘complete asymmetry’ as pij = 1 for some pair (i, j).

Next we consider the sampling distribution of an estimate of δ. Let nij denote the

observed frequency in the ith row and jth column of the square table resulting from

a full multinomial sampling. Let δ̂ be the sample version of δ obtained by replacing

pij with p̂ij = nij/n where n =
∑r
i=1

∑r
j=1 nij in (2.3). Let ψ̂ = 1 − e−δ̂. As n → ∞,

ψ̂ converges almost surely to ψ. Let p (p̂) denote the vector obtained by stacking the

elements of pij (p̂ij) in a column. Since
√
n(p̂−p) → N(0, Diag(p)−ppT ), using the

multivariate delta method (Serfling, 1980), it can be shown that if δ > 0,
√
n(δ̂ − δ)

converges in distribution to a normal distribution with mean 0 and variance σ2
δ where

σ2
δ =

∑∑

i6=j

[

(pij−pji)
2

pij
+
(

ln
pij

pji

)2
pij + 2(pij − pji) ln

pij

pji

]

(
∑∑

i6=j pij)
2

− δ2.

The rate of convergence to asymptotic normality is slower as δ gets closer to 0. If

δ = 0, then using the second-order delta method it follows that n(δ̂− δ) converges in

distribution to a chi-squared distribution with 1 degree of freedom. Provided δ̂ and n

are sufficiently large, an estimated standard error for δ̂ is σ̂δ/
√
n where σ̂2

δ denote the

estimated variance obtained by replacing pij with p̂ij in the expression of σ2
δ . Then

δ̂± zα/2σ̂δ/
√
n is an approximate 100(1−α)% confidence interval for δ, where zα/2 is

the α/2th upper quantile of the standard normal distribution. From this, an interval

estimate for ψ can be obtained by using the transformation (2.4). Alternatively, an

interval estimate can be obtained through the standard error σ̂2
ψ = e−2δ̂σ̂2

δ/
√
n.

δ̂ is also normal under other sampling schemes if δ > 0. Consider independent

row multinomial sampling in which a random sample of size ni is taken from the

subpopulation of each row. Let n =
∑

i ni, and, pi· = ni/n. Writing pij = pj|ipi·, where

pj|i is the conditional probabilities in the ith row. Denoting the δ in this case by δr, it

can be written as δr =

∑∑

i<j(pj|ipi· − pi|jpj·) ln
pj|ipi·

pi|jpj·
∑∑

i<j(pj|ipi· + pi|jpj·)
. Let p·|i = (p1|i, p2|i, . . . , pr|i)

T
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be the vector of conditional probabilities of the ith row with transpose pT·|i. Let δ̂r be

obtained from δr by replacing pj|i by p̂j|i = nij/ni. Since
√
ni(p̂·|i − p·|i) → N(0,Σi)

where Σi = Diag(p1|i, p2|i, . . . , pr|i) − p·|ip
T
·|i, it can be shown that as mini ni → ∞,

√
n(δ̂r−δr) converges in distribution to a multivariate normal distribution with mean

vector 0 and variance given by σ2
δr =

∑r
i=1 pi·

[

∑r
j=1 pj|ia

2
ij −

(

∑r
j=1 pj|iaij

)2
]

, where

aij = (pj|ipi· − pi|jpj·)/pj|ipi· + ln(pj|ipi·/pi|jpj·). An estimated standard error can

be obtained from the above expression of σ2
δr

by replacing pj|i by p̂j|i. Asymptotic

variances for other sampling schemes can be obtained in a similar way.

3 Univariate Random Variables

For univariate discrete random variables taking 2k + 1 [2k] values (−k, . . . , 0, . . . , k)

[(−k, . . . ,−1, 1, . . . , k)] with probabilities p = (p−k, . . . , pk), symmetry (around 0)

corresponds to pi = p−i, for 1 ≤ i ≤ r. The asymmetry measure is

δ =
1

1 − p0

k
∑

i=−k
pi ln

pi
p−i



δ =
k
∑

i=−k
pi ln

pi
p−i

, respectively



 . (3.1)

In any case, let ψ = 1 − e−δ so that 0 ≤ ψ ≤ 1.

Example 3.1 For a binomial random variable (Bin(n, p)), the probability function

is pi = bnip
i(1 − p)n−i, −k ≤ i ≤ k, where p = .5 + c, −.5 ≤ c ≤ .5, and bni is the

binomial coefficient. Its mirror image is also a binomial random variable (Bin(n, 1−p))

with probability function as p−i = bni(1 − p)ipn−i. Then, as 1 − p = .5 − c, it follows

that δ(c) = 2nc ln
(

.5+c

.5−c

)

, ψ(c) = 1−e−δ(c) = 1−
(

.5−c

.5+c

)2nc
. For n = 11, Table 1 sh ows

values of δ(c), ψ(c) increase fast with c. The values of δ(c), ψ(c) remain unchanged

Table 1: The δ(c) and ψ(c) for the binomial distribution with n = 11, p = .5 + c

c .00 .03 .06 .09 .12 .15 .18 .21 .24 .50

δ(c) .0 .079 .318 .721 1.292 2.043 2.985 4.137 5.523 ∞

ψ(c) .0 .076 .273 .514 .725 .870 .949 .984 .996 1.0
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with sign of c. Such tables are useful for calibrating (McCullagh, 1989) asymmetry,

as discussed in Section 5. 2

Now we consider the case of continuous random variables. For a continuous ran-

dom variable X of pdf f(x) with a mirror image f †(x) around c, we define

δ(c) =
∫

f(x) ln

(

f(x)

f †(x)

)

dx, (3.2)

and, ψ(c) = 1− e−δ(c), to get a number between 0 and 1. The mirror image f †(x) and

δ(c) in (3.2) depend on c chosen. If two mirror images of f are considered around

the points of reflection c1 and c2, then one can be obtained from the other by moving

left or right a distance of |c1 − c2|. So, for measuring asymmetry of f , we prescribe

convenient choices of c depending on the domain: midpoint for a bounded interval,

zero for the real line, and then compute δ(c).

Since f †(x) = f(y) for some x, y, and (f †)†(x) = f(x), we get
∫

f(x) ln(f(x)/f †(x))

dx =
∫

f †(x) ln(f †(x)/f(x))dx, as stated in the next result.

Proposition 3.1 The measure δ(c) in (3.2) is invariant to the choice of f, f †. 2

Using the df F , it is easy to see that δ(c) can be expressed as δ(c) =
∫ 1
0 ln

(

f(F−1(u))
f†(F−1(u))

)

du. The next result, easy to verify, gives a sufficient condition for f (with df F ) to be

more asymmetric than another pdf g (with df G).

Proposition 3.2 If the dfs F,G are strictly increasing and f(F−1(u))
f†(F−1(u))

> g(G−1(u))
g†(G−1(u))

, ∀0 ≤

u ≤ 1, then δf (c) ≥ δg(c). 2

We consider three different cases based on the domain of f(x).

Case 1. If the pdf f(x) has support on a bounded interval, such as (a, b), then we

consider c = (a + b)/2, and compare f(x) with f †(x) = f(a + b − x) (mirror image

around the midpoint) as follows:

δ = δ((a+ b)/2) =
∫ b

a
f(x) ln

(

f(x)

f(a + b− x)

)

dx. (3.3)

Then consider ψ = 1 − e−δ.
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Example 3.2 Let X ∼ beta(α, β). Here a = 0, b = 1. It is well known that

1 − X ∼ beta(β, α). If the two corresponding pdf’s are denoted by f(x) and f †(x),

respectively, then it can be shown from (3.3) that δ = (α − β)(φ(α) − φ(β)) where

φ(α) = Γ′(α)/Γ(α) = (d/dα)(ln Γ(α)) is the digamma function. The graph in Figure

1 shows the values of ψ = 1 − e−δ versus α when β = 3. When α = 3, its value

is 0, which leads to symmetry. The asymmetry behavior can be seen as one moves

away from α = 3 in either direction. This graph is not symmetric around α = 3.

So, for example, the asymmetry (skewed right) of beta(α = 1, β = 3) pdf is different

from that of (skewed left) beta(α = 5, β = 3) pdf; in fact, they are ψ = .95 and

ψ = .69, respectively. Thus the former is more asymmetric than the latter. Figure 1

also includes graphs of ψ1, ψ2 from (1.1). Values of ψ are much larger than those of

ψ1, ψ2 for most of the range although near symmetry ψ is smaller than both. 2

Case 2. Next we consider the pdf’s which have support on the entire real line. For

such a pdf f with median m, let f1(x) = f(x −m). Then consider asymmetry of f1

around zero as follows:

δ =
∫ ∞

−∞
f1(x) ln

(

f1(x)

f1(−x)

)

dx =
∫ ∞

−∞
f(x−m) ln

(

f(x −m)

f(m − x)

)

dx. (3.4)

Then consider ψ = 1 − e−δ to get a number between 0 and 1.

Example 3.3 Let Z ∼ SN(λ), λ ∈ R (Azzalini, 1985), known as the skew-normal

distribution, which reduces to the standard normal when λ = 0. Here f(z) =

2φ(z)Φ(λz), z ∈ R, where φ(z),Φ(z) are the standard normal pdf and df, respec-

tively. As λ → ∞, the distribution approaches to a half-normal distribution on

(0,∞). Also −Z ∼ SN(−λ). Then from (3.4), with mλ = median of Z, we get

δ(λ) =
∫ ∞

−∞
2φ(z −mλ)Φ(λ(z −mλ)) ln

(

Φ(λ(z −mλ))φ(z −mλ)

Φ(λ(mλ − z))φ(mλ − z)

)

dz.

The graph in Figure 2 shows values of ψ(λ) = 1 − e−δ(λ) versus λ. As expected,

λ = 0 touches the x-axis which corresponds to symmetry (or, the standard normal

distribution). Unlike the beta distribution (in Example 3.2), here asymmetries on
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the left and right sides of zero are identical. As λ deviates from 0, the pdf becomes

increasingly more asymmetric. 2

Case 3. Next we consider the pdf’s which have support on half-infinite intervals, e.g.

(0,∞). Such pdf’s are always skewed to the right. Still, for some such pdf’s, there

exists a c0 such that pdf’s are approximately symmetric on (0, c0), and for c > c0,

the pdf becomes increasingly more asymmetric on (0, c). This is truly the case for

many gamma pdf’s, although not the exponential (which is always strongly skewed

to the right). For such cases we propose to compare the properly normalized versions

of f(x) and f †(x) = f(c − x) (mirror image around c/2) on the interval (0, c), for

c > 0. Thus we define

δ(c) =
1

T

∫ c

0
f(x) ln

(

f(x)

f(c − x)

)

dx (3.5)

where T =
∫ c
0 f(x)dx. Then consider ψ(c) = 1 − e−δ(c) to get a number between 0

and 1. As c moves from 0 to ∞, the asymmetry pattern on (0,∞) becomes evident.

Example 3.4 Let X ∼ gamma(α, β). Then it can be shown from (3.5) that

δ(c) =

∫ c

0
xα−1e−x/β

[

(α − 1) ln
(

x

c− x

)

+
c− 2x

β

]

dx

∫ c

0
xα−1e−x/βdx

.

The graph in Figure 3 shows the values of ψ(c) = 1 − e−δ(c) versus c for various

gamma pdf’s. It is seen that all pdf’s are close to symmetry for some c. For larger

values of α, β (e.g., 15, 17, respectively), the pdf’s are close to symmetry for a larger

interval of c. For smaller values of α, β, the pdf’s are close to symmetry for a smaller

interval of c, and then become asymmetric very quickly. With close inspection, it can

be seen that although these graphs look like inverted normal pdf (except exponential),

they are not symmetric. For the case of exponential distribution (included in Figure

3), the above expression simplifies to δ(c) = (c−β+(c+β)e−c/β)/(β(1− e−c/β)). 2

Oja (1981) suggested that skewness measures should keep the same absolute value

for a linear transformation h1X + h2 of a random variable X. MacGillivray (1986)
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showed this to be true for the measures she suggested. The same property holds for

the measure δ, for specific choices of c when the domain of f is of the form of (a, b)

or R. When f has domain (0,∞), we consider bounded intervals (0, c), as c→ ∞.

Proposition 3.3 For given constants h1, h2, δX(c) = δh1X+h2
(c), where c = midpoint

of (a, b) when domain of f is (a, b), and, c = 0 when domain of f is R. 2

The above δ in (3.2) considers the asymmetry of the entire pdf f . Sometimes

the asymmetry of f in more specific parts of it is of interest. Below we consider the

asymmetries of f near and away from the center.

When considering the ‘central asymmetry’ of f with its median as center, we like

to compare the asymmetries of f to the left and right sides of its median. Thus we

consider the pdf’s,

f1(x) = f(x)/(F (m+ t) − .5), m ≤ x ≤ m+ t,

f2(x) = f(x)/(.5 − F (m− t)), m− t ≤ x ≤ m.
(3.6)

These pdf’s have different domains. We make a transformation to f2 so that both

pdf’s are defined on the same domain, (m,m+ t) for t > 0. Thus we define

f †
2(x) = f(2m− x)/(.5 − F (m− t)), m ≤ x ≤ m+ t. (3.7)

The relative entropy between f1(x) and f †
2(x) is

δc(t) =
∫ m+t

m

f(x)

F (m+ t) − .5)
ln

(

f(x)/(F (m+ t)− .5)

f(2m− x)/(.5 − F (m− t))

)

dx

=
.5 − F (m− t)

F (m+ t) − .5
+
∫ m+t

m

f(x)

F (m+ t)− .5)
ln

(

f(x)

f(2m − x)

)

dx

Define ψc(t) = 1− e−δ
c(t), 0 < t < tc0 , where tc0 is the largest value of t for which δc(t)

is defined. Plotting ψc(t) versus t (0 < t < tc0), the central asymmetry of f around

the median m is revealed.

When considering ‘tail asymmetry’, we like to compare the behavior of left and

right tails of f away from the median. Thus we like to compare between the dis-

tributions of X|X > m + t, and, X|X < m − t for t > 0. The pdf’s of these
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random variables are given by f3(x) = f(x)/(1−F (m+ t)), x > m+ t, and, f4(x) =

f(x)/F (m−t), x < m−t, respectively. Considering the mirror image of f4(x) so that

it has the same domain as f3(x), we define f †
4(x) = f(2m− x)/F (m− t), x > m+ t.

Using the relative entropy between f3(x) and f †
4(x), we define

δu(t) =
∫ ∞

m+t

f(x)

1 − F (m+ t)
ln

(

f(x)/(1 − F (m+ t))

f(2m − x)/F (m− t)

)

dx

= ln
(

F (m−t)
1−F (m+t)

)

+ 1
1−F (m+t)

∫ ∞

m+t
f(x) ln

(

f(x)

f(2m − x)

)

dx.

Defining ψu(t) = 1 − e−δ
u(t), 0 < t < tu0 , where tu0 is the largest value of t for which

δu(t) is defined. Plotting ψu(t) versus t, (0 < t < tu0) the tail asymmetry of f away

from the median m is revealed.

Example 3.5 To compare the central asymmetry of beta(3,2) and beta(5,2) with

respective medians m = .614 and m = .736, first form f †(x) = f(2m − x) in each

case. Then ψc(t) and ψu(t) are calculated and graphed in Figure 4 for 0 < t < .25.

Note that for both pdf’s the tail asymmetry increases at a faster rate as one moves

away from the respective medians, more for beta(5,2) than beta(3,2). The asymmetry

between the two pdf’s is substantially more when t = .25 than when t is closer to 0.

The central asymmetry of beta(3,2) starts at around .68, initially it decreases slightly

as t increases, then stays constant at around .6; whereas for beta(5,2) the central

asymmetry starts from being close to 0 increases up to around .2 at t = .17, but then

decreases slightly. 2

It is of interest to find when the central (or tail) asymmetry is changing with t, if

at all. The next result gives a necessary and sufficient condition for δc(t) and δu(t)

to be nonincreasing (nondecreasing) in t > 0.

Proposition 3.4 Let

hct,y(f) =
(

f(F−1(F (m+t)−(1−y)(F (m+t)−.5))
f(2m−F−1(F (m+t)−(1−y)(F (m+t)−.5))

) (

.5−F (m−t)
F (m+t)−.5

)

,

hut,y(f) =
(

f(F−1(1−(1−y)F (m+t)))

f(2m−F−1(1−(1−y)F (m+t)))

)

(

F (m−t)
1−F (m+t)

)

.
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Then δc(t) [δu(t)] is nonincreasing (nondecreasing) according as hct,y(f) [hut,y(f)] is

nonincreasing (nondecreasing) in t > 0 for every y ∈ (0, 1). 2

Example 3.6 For the exponential(1) distribution, F (x) = 1−e−x, x > 0, or F−1(y) =

− ln(1 − y). Thus it follows that f(F−1(1 − (1 − y)F (m + t))) = (1 − y)e−m−t and

f(2m−F−1(1− (1− y)F (m+ t))) = (1− y)−1e−m+t. Here ln(hut,y(f)) = 2 ln(1− y)+

(m−t)+ln(1−e−m+t), which is nonincreasing in t for every y ∈ (0, 1). Since
∫ 1
0 ln(1−

y)2dy = −2, it follows that δu(t) = 2em−t(e−m+t−2). Thus the tail asymmetry of the

exponential(1) distribution is nonincreasing in t. The expressions for hct,y(f), δc(t)

can be calculated. 2

It would be of interest to find when δc(t) (or, δu(t)) is free of t. The next result

states this fact, the proof of which follows along similar lines as in Ebrahimi and

Kirmani (1996).

Proposition 3.5 δc(t) [δu(t)] is free of t if and only if F (m− t) = (1 − F (m+ t))β,

[.5 − F (m− t) = (F (m+ t) − .5)β], β > 0, ∀t > 0. 2

4 Applications

4.1 Two-way tables. Tomizawa (1994) proposed the indices φ1 = 1
b ln 2

∑∑

i6=j pij ln
(

2pij

pij+pji

)

, and, φ2 = 1
b

∑∑

i<j
(pij−pji)

2

pij+pji
, where b =

∑∑

i6=j pij for measuring asym-

metry. The sample versions satisfy φ̂1 = G2

(2 ln 2)
∑∑

i6=j
nij
, φ̂2 = X2

∑∑

i6=j
nij

, where

G2 = 2
∑∑

i6=j nij ln
(

2nij

nij+nji

)

, X2 = 2
∑∑

i<j
(nij−nji)2

nij+nji
, are the likelihood ratio and

the Pearson chi-square statistics, respectively. Both φ1, φ2 are scale-invariant and

between 0 and 1. As the performance of these measures are similar, we compare the

performance of ψ in (2.4) with that of φ = φ1 only using a simulation study.

Monte Carlo Experiments 4.1. We consider two models: Model 1: pij = θπij, i >

j, pii = πii, pij = (2 − θ)πij, i < j, for 0 < θ < 2, where πij = πji = bkibkjq
i+j(1 −

q)2k−i−j, 0 ≤ i, j ≤ k, 0 < q < 1 (bki = binomial coefficient). Symmetry corresponds
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to θ = 1. Asymmetry results when θ 6= 1. Model 2: pij = c, ∀i, j, p21 = c+ θ, θ > 0,

then pij are normalized to sum to 1.

We consider 10,000 replications using a sample of size n = 500 on a 4 × 4 table

(k = 3) using q = .5. In Table 2, we find the 95% confidence interval for each index

and count the number of times 0 is in the confidence interval for different values of

θ. For each index, when θ = 1 (or close) for model 1 and when θ = 0 (or close) for

model 2, approximately 95% intervals contain 0, and this percentage gets much lower

as θ deviates from the symmetry value, as expected. This is more pronounced for ψ

than for φ. Thus from Table 2, ψ performs well compared to φ. 2

Table 2: Percent of times the confidence interval contains zero for different indices
Model 1

θ 1 1.02 1.04 1.06 1.08 1.10 1.14 1.18 1.22 1.26 1.30

φ .9742 .9719 .9606 .9404 .9076 .8478 .6713 .4105 .1868 .0557 .0107

ψ .9705 .9706 .9566 .9341 .8963 .8323 .6443 .3806 .1655 .0503 .0120

Model 2

θ 0 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

φ .9773 .9708 .9404 .8813 .7952 .6641 .5183 .3706 .2524 .1465 .0881

ψ .9726 .9648 .9301 .8661 .7680 .6377 .4879 .3439 .2297 .1322 .0773

Example 4.1. Information analysis of eye vision data. We consider the fa-

mous data set of unaided distance vision of 7477 women (age 30 to 39) employed

in Royal Ordinance factories from 1943 to 1946 (Stuart, 1953). The variables are

the right eye grade and the left eye grade. From (2.4), we find ψ = .01763. A 95%

confidence interval of ψ is given by (.00199, .03327). Since zero is not in this interval,

we conclude the table is asymmetric (at 95% confidence level). Our interpretation is

that perhaps there are some constraints which are operational in the data-generating

process causing asymmetry. One possible constraint is that ‘right-eye vision is better

than left-eye vision’.

Two ways to quantify such constraints are (1) pij ≥ pji, ∀i < j, and, (2)
∑m
i=1

∑4
j=1
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pij ≥
∑m
i=1

∑4
j=1 pji, ∀1 ≤ m ≤ 3. Clearly, (1) is a stronger ordering than (2). The (I-

projection) estimates under (1) are calculated as follows: if p̂ij , ∀(i, j) satisfy (1), then

they are the estimates under (1), otherwise the estimate in (i, j)th cell is (pijpji)
1/2,

and then normed to sum to 1. We find under model (1), ψ(1) = .01754 (slightly

smaller than ψ as expected). Comparing ψ with ψ(1), the relative increment=.0051,

or .51% of asymmetry is explained by constraints (1) over unrestricted. Since the

unrestricted estimates already satisfy (2), those are the estimates under (2) also.

Here I(p̂2|p̂1) = .005168, which gives a measure of difference between constraints (1)

and (2) with respect to this data set. It is somewhat weak as the estimates are same

under (1) and (2) except at only two cells. Bhattacharya and Dykstra (1997) gives

an algorithm for finding restricted estimates under convex constraints such as (1) and

(2) above. Bhattacharya (2006) generalized this algorithm to work for the continuous

case. 2

4.2 Linear Regression Models. Consider the linear regression model yi = xT
i β +

εi, i = 1, . . . , n, where xi is a d × 1 vector of regressors (fixed) that may include a

constant term, β is a d× 1 vector of parameters, εi ∼ f(εi) are iid with mean zero. If

f is known to be normal, then the maximum likelihood estimator of β is the ordinary

least square estimator. However, if f is only known to be symmetric around zero, then

the exact maximum likelihood estimator does not exist. In this case, Bickel (1982)

has shown that β can be estimated adaptively and Newey (1988) has constructed

adaptive estimators of β using a generalized method of moments approach. Thus it

is useful to construct consistent tests that can verify the assumption of symmetry of

the error distribution in regression.

To test H0 : f(ε) = f(−ε) a.e. against the alternative H1 : f(ε) 6= f(−ε) a.e., the

appropriate discrepancy measure from (3.4) is

δ =
∫ ∞

−∞
f(ε) ln

(

f(ε)

f(−ε)

)

dε. (4.1)
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Using a sample of size n, we propose to estimate δ in (4.1) by

1

n

[

n
∑

i=1

(

ln f̂ (ε̂i) − ln f̂ (−ε̂i
)

]

(4.2)

where ε̂i = yi − xT
i b, b is the ordinary least square estimator of β and f̂ is the non-

parametric kernel density estimator of f . Robinson (1991) has proposed an estimator,

similar to (4.2), when testing symmetry of univariate observations, and also has de-

rived its asymptotic distribution. His test statistic, when modified to the regression

setting, turns out to be

R =

n−1/2





∑

t:ε̂t≤m
ln f̂ (ε̂t) −

∑

t:ε̂t>m

ln f̂(ε̂t)





√

√

√

√
1
nν

n
∑

t=1

ct(ln f̂ (ε̂t))
2 −

(

1

nν

n
∑

t=1

ct ln f̂(ε̂t)

)2

where ct = 1 if ε̂t ≤ m, and = 0, otherwise, m is the sample median, and nν = n, if

n is odd, otherwise, nν = n + ν, ν ≥ 0. Robinson (1991) has shown that R has an

asymptotic standard normal distribution. For testing H0 : δ = 0 versus H1 : δ > 0,

we reject H0 when R > 1.645 for α = .05. We denote this as ‘R-test’.

Often the error distribution is assumed to be unimodal in nature. This information

can be incorporated when estimating f(x) in (4.1) using isotonic regression as follows

(Robertson, Wright and Dykstra, 1988). Let y1, . . . , yn be the ordered sample from a

pdf f . Assume the mode is M (known), and there exists a such that ya < M < ya+1.

The density estimate is assumed to be zero on (−∞, y1) ∪ (yn,∞), and constant on

each of the intervals [yj−1, yj), 2 ≤ j ≤ a, [ya,M), (M, ya+1], (yj, yj+1], a+1 ≤ j ≤ n−1.

Define a partial order � on {1, . . . , n} by 1 � 2 � . . . � a, a + 1 � . . . � n.

The estimate (a step function) f̂ is the isotonic regression with respect to � of g =

(g1, . . . , gn) with weights w = (w1, . . . , wn), where wi = yi+1−yi, i = 1, . . . , a−1, wa =

M − ya, wa+1 = ya+1 −M,wi = yi − yi−1, i = a+ 2, . . . , n and gi = 1/nwi, ∀i. We use

a test statistics as

D =
∫ ∞

−∞
f̂(ε) ln

(

f̂(ε)

f̂(−ε)

)

dε. (4.3)
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As the distribution of D is unknown, we have simulated its percentiles in Table 3.

We denote this as ‘D-test’.

Next we describe two already available tests for testing the symmetry of the

residuals. Fan and Gencay (1995) proposed the test statistic T ∗
γ =

√
n(λ∗γ−1)

σ̃∗
γ,0

, where

λ∗γ = δ̃∗γ/∆̃(f), δ̃∗γ = n−1
γ

∑n
i=1Ci(γ)f̂(−ei), Ci(γ) = 1 + γ for i odd, = 1 − γ for i

even, nγ = n for n even, = n + γ for n odd, 0 < γ ≤ 1, ∆̂(f) =
∫

f̂2(ε)dε, and,

σ̂∗2
γ,0 =

γ2
∫

f̃(ε)[f̃(−ε)−δ̃∗γ ]2dε

∆̃2(f)
with γ = .65, f̂ the nonparametric kernel density estimator

of f , ei is the ith residual, ∆̃(f), σ̃∗
γ,0 are obtained from ∆̂(f), σ̂∗

γ,0 respectively, by

replacing ε with ei. We denote this as ‘FG-test’.

Bai and Ng (2005) has presented a test of symmetry of the residuals based on two

odd moments, say r1th and r2th. For a sample (X1, . . . , Xn), let Y ′
n = (

∑n
t=1(Xt −

X)r1/
√
n,
∑n
t=1(Xt −X)r2/

√
n). Defining α = [1 0 − r1µr1−1\0 1 − r2µr2−1]

′, Zt =

((Xt − µ)r1, (Xt − µ)r2 , (Xt − µ))′ Γ = limn→∞ nE(ZZ
′
), Z is the sample average of

the Zt’s, the test statistic is Y ′
n(α̂Γ̂α̂′)−1Yn, which has a chi-square distribution with

2 degrees of freedom, where (α̂Γ̂α̂′) is a consistent estimate of (αΓα′). They used

r1 = 3, r2 = 5. We denote this as ‘BN-test’.

Monte Carlo Experiments 4.2. We considered n = 50 and 100 with 2000 repli-

cations in each case. The symmetric distributions used are standard normal, t with

5 degrees of freedom, and, double exponential. Listed below are asymmetric distri-

butions:

A1: chi-squared with two degrees of freedom, A2: lognormal,

A3: F−1(u) = λ1 + [uλ3 − (1 − u)λ4]/λ2, (λ1, λ2, λ3, λ4) = (0, 1, 1.4, .25)

A4: F−1(u) = λ1 + [uλ3 − (1 − u)λ4]/λ2, (λ1, λ2, λ3, λ4) = (0,−1,−.0075,−.03),

A5: F−1(u) = λ1 + [uλ3 − (1 − u)λ4]/λ2, (λ1, λ2, λ3, λ4) = (0,−1,−.1,−.18),

A6: F−1(u) = λ1 + [uλ3 − (1 − u)λ4]/λ2, (λ1, λ2, λ3, λ4) = (0,−1,−.001,−.13),

A7: F−1(u) = λ1 + [uλ3 − (1 − u)λ4]/λ2, (λ1, λ2, λ3, λ4) = (0,−1,−.0001,−.17),
of which A3-A7 contain the inverse distribution functions of the generalized lambda

family with lambda parameters taken from table 1 of Randles et al. (1980). The
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n× d regressor matrix X is constructed the same way as Fan and Gencay (1995).

Table 3: Size of R test and percentiles of the D test under symmetry

Size of R test Percentiles of the D test

n = 50 n = 100 n = 50 n = 100

Distributions 5% 10% 5% 10% 90% 95% 90% 95%

N(0, 1) .047 .095 .047 .083 .450 .517 .268 .313

t5 .056 .110 .050 .102 .448 .492 .300 .338

DE .068 .112 .052 .101 .477 .542 .299 .343

With two regressors (including an intercept term), Table 3 presents the simulated

size of the R test. The overrejection or underrejection is limited by 2% of the nominal

size in each case. The percentiles of the D test in Table 3 under different symmetric

distributions are relatively insensitive, more so for higher n. Critical values of the D

test are constructed from this table by averaging these values. Similar observations

are revealed with four and six regressors (available from author).

Table 4: Power comparison of the BN, FG and R tests at 5% level

n = 50 n = 100

Distributions BN FG R D BN FG R D

Two regressors

A1 .685 .934 .996 .991 .957 .998 1.0 1.0

A2 .399 .994 .999 .999 .627 1.0 1.0 1.0

A3 .336 .465 .793 .761 .733 .744 .968 .988

A4 .349 .545 .851 .703 .816 .806 .989 .963

A5 .090 .287 .480 .330 .245 .420 .737 .569

A6 .548 .946 1.0 .995 .847 .998 1.0 1.0

A7 .511 .951 1.0 .994 .799 .997 1.0 .1.0

For the asymmetric alternatives, the power values of the four tests are given in

Table 4. Power values for all tests improve substantially with increase in n. All

four tests have relatively lower powers under the alternative A5, which is close to
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symmetry. Powers are lower with increase in the number of regressors for all tests

(not shown). This decrease is less when n = 100 than n = 50. Overall both proposed

R andD tests performed very well in this simulation compared with BN and FG tests.

The R test uses sample median, and the D test uses the unimodal order, whereas the

BN and FG tests do not use this order information. 2

Example 4.2. Information analysis of Mazda cars data. We apply the methods

developed on a data set (available at statsci.org) of prices of 124 Mazda cars versus the

year of purchase, see Figure 5. Rousseeuw and Struyf (2004) analyzed this data with

a logarithmic transformation of the response variable (price) and established presence

of linearity. Thus the model becomes Yi = β0 + β1Xi + εi, where Y = logarithm of

the purchase price, and X is the year of purchase, i = 1, . . . , 124.

The calculated symmetry test from (4.2), using the residuals of the regression

model,is -.7396, thus we do not reject the null hypothesis of symmetry at α = .05

level. As the residuals have a unimodal pattern, one would like to use this informa-

tion. Using (4.3), we find the observed asymmetry as D = .2105 using 120 nontied

observations. Although this is not very large, to find out which pair(s) of values

is/are most responsible for the observed asymmetry, we have considered 120 separate

regressions of 119 pairs each, keeping ith (1 ≤ i ≤ 120) pair out. The 120 values of D

from these regressions are graphed in Figure 6. When we keep the point B out, the

value of D is closest to symmetry (spike down), and when we keep the point A out,

D is farthest from symmetry (spike up). Keeping any other observation out does not

make as much difference as these two. It is immediate that points A and B are most

influential in assessing asymmetry of this data. By inspecting data, it can be seen

that the point B corresponds to a unusually low price for the year 1982, and the point

A corresponds to a unusually high price for the year 1974. Usual regression analysis

in this example shows that the errors are homoscedastic, and not normal. Thus the

OLS estimator is not the most efficient one, and a generalized method of moments
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estimator such as Newey (1988) may be adopted. 2

5 Comparison and Discussion

Although our proposed measure depends on the choice of relative entropy, our method

of using I(p|p†) instead of I(p|ps) or I(ps|p), ps being the symmetrized version of

p, (similarly for the continuous case) has a clear advantage. The estimators p̂s take

different forms based on the criterion used (see Pardo, 2006, for related references):

for two-way contingency tables, psij = (p̂ij + p̂ji)/2 (maximum likelihood estimators);

psij = c(p̂ij p̂ji)
1/2, c = normalizing constant (minimum modified likelihood estimators);

psij = c(p̂2
ij + p̂2

ji)
1/2, c = normalizing constant (minimum chi-square estimators); etc.

Thus different levels of asymmetry would be obtained when one calculates I(p̂|p̂s) or

I(p̂s|p̂) for same p̂. Using I(p̂|p̂†) instead, we avoid this ambiguity.

For the two-way contingency tables, the well-known test statistics G2, X2 (both

with df = r(r− 1)/2 for an r× r table) are not scale-invariant. The symmetry model

imposes no restriction on the diagonal cell probabilities. Hence it seems natural that

the measures of degree of departure from symmetry do not depend on the diagonal

probabilities. The ranges of G2/n and X2/n depend on diagonal proportions (e.g.

0 ≤ G2/n ≤ 2 ln 2(1−∑nii/n) and 0 ≤ X2/n ≤ (1−∑nii/n)). On the contrary, the

estimate ψ̂ does not depend on diagonal proportions and range in (0, 1).

There is no relationship between our ordering and the orderings given by ψ1, ψ2 in

(1.1). For example, from Figure 1 for the beta distribution ψ, ψ1, ψ2 are all larger for

α = 2 than for α = 3, but ψ(α = 2.4) < ψ(α = 3.7), however ψ1(α = 2.4) > ψ1(α =

3.7), ψ2(α = 2.4) > ψ2(α = 3.7).

For monotone asymmetry such as f(x) = k, 0 ≤ x ≤ .5,= ck, .5 ≤ x ≤ 1, 1 ≤

k ≤ 2, c is a norming constant, the values of ψ, ψ1, ψ2 are similar for a longer range

(see Figure 7) than for nonmonotone asymmetry such as beta pdf’s (Figure 1). From
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Figure 7, when asymmetry is high, ψ1 goes down, and rate of increment in values of

ψ2 slows down, but ψ increases fast. Thus the behavior of ψ is different from ψ1, ψ2

for such monotone asymmetries.

One could construct a general class of distance or divergence measures that in-

cludes the relative entropy by defining τ =
∫

fφ
(

g
f

)

dµ, where φ is a strictly convex

function on R satisfying φ(1) = 0. Taking φ(u) = u lnu leads to relative entropy,

and φ(u) = u2 − 1 leads to τP =
∫

f2/gdµ − 1 =
∫

(f − g)2/gdµ, which is Pear-

son’s chi-square discrepancy. Thus for the density f with its mirror image f † = g,

τP =
∫

f2/f †dµ− 1. However, when f is beta(α, β) so that f † is beta(β, α), it can be

shown that τP = Γ(2α−β)Γ(2β−α)
Γ(α)Γ(β)

. Thus τP is defined only for those α, β which satisfy

2α−β > 0 and 2β −α > 0. Since, τP is not defined for all α > 0, β > 0 (because the

gamma function is undefined when 2α − β < 0 or 2β − α < 0), so τP is not a very

useful measure of asymmetry. Similarly, other choices of the convex function φ, such

as, φ(u) = ut − 1, 1 < t < 2, in the divergence
∫

fφ
(

g
f

)

dµ will not lead to suitable

measures of asymmetry.

Two pdf’s f1, f2 with ψ1, ψ2 can be compared: if ψ1 ≥ ψ2 then f1 is more asym-

metric than f2, and the relative increment in asymmetry of f1 over f2 is r(f1|f2) =

1 − ψ2/ψ1. When ψ1 ≈ ψ2, the asymmetry levels of f1, f2 are about the same. As δ

cannot be expressed as a difference of two entropies, we have refrained from naming

r as a distinguishability index (Soofi et al, 1995) although it serves similar purpose.

For calibration purposes, one can seee from Table 1, binomial distributions with

n = 10 and p ≥ .85 or p ≤ .15 have similar asymmetries (all with ψ = 1, approx-

imately). Also, the distributions binomial(n = 10, p = .65 or p = .35), beta(α =

1.3, β = 3), beta(α = 5.6, β = 3), skew-normal(λ = 1.45) all have ψ = .84 (ap-

proximately), thus they have similar asymmetries. From Table 1, r(bin(n = 10, p =

.65)|bin(n = 10, p = .6)) = (.8439 − .5556)/.8439 = .3416. Thus bin(n = 10, p = .65)

is 34.16% more asymmetric than bin(n = 10, p = .6). 2
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Appendix

Proof of Proposition 2.2 Let A =
∑∑

i>j pij, B =
∑∑

i<j pij . Then we get

∑∑

i>j

pij ln
pij
pji

+
∑∑

i>j

pji ln
pji
pij

= AI(p(1)|p(2) +BI(p(2)|p(1)) + (A− B) ln
A

B
.

Dividing both sides by A +B and setting α = A/(A+B), one gets the result. 2

Proof of Proposition 3.3 Without loss of generality, assume 0 ≤ x ≤ 1, and y = ax+b.

For a > 0, b ≤ y ≤ a + b, and for a < 0, a + b ≤ y ≤ b. The result follows from the

fact that the mirror image satisfies g†(y) = g(a + 2b− y). 2

Proof of Proposition 3.4 For t > s > 0, let Fm+t(s) = P (m < X ≤ m+ s|m < X ≤

m + t) = F (m+s)−.5
F (m+t)−.5 . Setting F (m+s)−.5

F (m+t)−.5 = y, one gets F (m + s) = F (m + t) − (1 −

y)(F (m+ t)− .5), or

m+ s = F−1(F (m+ t) − (1 − y)(F (m+ t) − .5)). (5.1)

With x = m + s in (3.6), (3.7), one gets fm+t(s) = f(m + s)/(F (m+ t) − .5), and,

f †
m+t(s) = f(m− s)/(.5 − F (m− t)). Then

δc(t) =
∫ m+t

m

f(x)

F (m+ t) − .5)
ln

(

f(x)/(F (m+ t) − .5)

f(2m− x)/(.5 − F (m− t))

)

dx

=
∫ 1

0
ln

(

fm+t(s)

f †
m+t(s)

)

dFm+t(s).

Using y = Fm+t(s), forms of fm+t, f
†
m+t, and (5.1), the result follows. 2
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