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Abstract. A new theory and methods of solving variational problems of probability are
given and applied to generalized maximum entropy problems. The cost functional and
“moments” are generalized and the solution is efficiently found by now established analyt-
ical techniques or efficient and accurate numerical methods. It is shown that the classical
maximum entropy problem is an immediate example of this theory.

To illustrate the type of results for the general setting, the results for the classical problem
are developed. This will give the reader a good idea as to what to expect for more general
problems.

In our chosen context with two moments, a simple second order differential equation in
five dependent variables with appropriate boundary conditions, is obtained, which leads
to the unique solution. In addition, previous work by the second author gives an efficient
numerical algorithm with a priori, global, error of O(h2), where h is the node size.

Alternately, it is shown that this problem has a less familiar solution of a second order
ODE with two parameters, each of which is associated with a moment isoperimetric con-
straint. Finally, because these problems fit within the second author’s theory of constraint
optimization, we can easily add additional reasonable constraints, inequality constraints,
etc. to these problems.

1. Introduction

In his delightful book where he uses the ideas of probability to “cut a broad swath through

the physical sciences”, Coles [6] highlights the maximum energy principle for continuous

parameters as a lack of information. Indeed, these ideas are a major part of the modern day

sciences.

In Cole’s notation, he has

S = −
∫

p(x) log
p(x)

m(x)
dx (1.1)

where m “normalizes” S under the expected moment constraints such as
∫

x p(x) dx = µ and

∫
(x − µ)2p(x) dx = σ2. (1.2)
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Even more complete in the discussion of this topic is the current edition of Wikipedia, the

free encyclopedia on the web. They refer to [7], but clearly the importance of the problem

can be found throughout the literature of applied mathematics.

The purpose of this paper is to give the theory for a broader interpretation to Problem

(1.1) which includes this problem as a specific example. We will replace the integrand with

f(t, x1, x
′
1, x2, x

′
2) of two dependent variables and (1.2) by more generalized “moments”.

This problem will then be in a classical calculus of variations setting or, more specifically, a

constraint optimization setting [11] and [13]. To aid the reader we will provide results and

comments for Problem (1.1) as an example.

It is first worthwhile to consider even the classical role of “entropy”. The role of entropy in

statistical theory and information processing is well documented by Karlin and Rinott [18],

Kullback [20],Marshall and Olkin [21], Rao [23], Rényi [24]. For applications of entropy in

other areas such as thermodynamic systems, ecological structures, see Kapur [17] and Karlin

and Rinott [19].

When selecting a model for a given situation it is often appropriate to express the prior

information in terms of constraints. However, one must be careful so that no information

other than these specified constraints is used in model selection. That is, other than the

constraints that we have, the uncertainty associated with the probability distribution to

be selected should be kept at its maximum. This is the ‘principle of maximum entropy’

advocated by Jaynes [15], and later treated axiomatically by Shore and Johnson [25].

Consider the set of constraints

C = {p(x) : Ep[Ti(X)] = ti, i = 0, · · · , n}

where Ti are integrable functions, ti are known constants and T0(x) = t0 = 1. The maximum

entropy principle finds the unknown probability density function p∗(x) which maximizes the

entropy subject to the constraints in C. This procedure has been shown to characterize

most well known univariate probability distributions, e.g., see Kagan et al. [16], Kapur [17],

Guiasu [9], Preda [22], and the references therein. Although, literature is significantly less for
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the multivariate distributions, Kapur [17] considered several usual multivariate distributions,

Zografos [26] considered the cases of Pearson’s type II and VII multivariate distributions,

Bhattacharya [4] considered characterization for the multivariate Liouville distribution, and

Aulogiaris and Zografos [3] considered symmetric Kotz type and Burr multivariate distri-

butions. Expressions for entropies for several known and relatively unknown multivariate

distributions can be found in Zografos and Nadarajah [27], Ahmed and Gokhale [1] and

Darbellay and Vajda [8].

In Section 2 we develop the major mathematical results for the general problem using the

second author’s theory of constrained optimization [11] and [13]. In Section 3 we consider

the “classical” maximum entropy problem as a special example of Section 2. We get a

second order ODE with two parameters, which are associated with the isoperimetric moment

constraints (1.2). This implies a unique solution to our boundary value problem as we have

four conditions. We also “obtain” the well-known solution p(t) = e−t2/2 for the interval

(−∞,∞) by an easy extension to a = −∞ and b = ∞.

Hopefully, the interested reader can now solve his/her own problem whatever the condi-

tions on f or the number of “moments”.

In Section 4 we indicate how to efficiently solve these problems numerically with a global,

a priori error of O(h2). The perceptive reader may be surprised to see that for the classical

problem in Section 3 we obtain the values of the two isoperimetric constraints along with the

numerical solution. This is because our numerical problem involves five dependent variables

and not just one.

To reiterate . . . As an example of our ideas for these general problems, the solutions to

the classical problem can be found as a five dependent variable problem with 10 boundary

values or as a two-point second order boundary value problem in one dependent variable

with two parameters. For a quick introduction to the subject, we recommend the reader to

be familiar with [11]. This would make it easier for anyone to go through the subject matter

of this paper.
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2. The Mathematical Development

The purpose of this section is to develop the key mathematical ideas. We will first state

our problem and then obtain our second order ODE as a boundary value problem.

Our problem is

min

∫ b

a

f
(
t, x1(t), x

′
1(t), x2(t), x

′
2(t)

)
dt, fx′

1x′
1
> 0

s.t. x′
2 = g(t, x1, x

′
1); x1 in BC.





(2.1)

and f, g are continuous functions of their arguments, x1, x2 are continuous with derivatives

which are piecewise smooth. In the above, BC means that x1 is given or unspecified at either

endpoint and we assume there is a unique minimum solution.

We will call x2 a moment function for x1 if the equality in (2.1) holds and x2(a) = 0. This

clearly generalizes the usual situation as in (1.2). If we choose to add additional moment

constraints, it will be immediate, as in Section 3.

To obtain a solution for (2.1) we proceed as follows:

Following the procedures in [11] and [13], we define X(t) =
(
x1(t), x2(t), x3(t)

)T
where

x1(t) = x(t), x2(t) =
∫ t

a
g
(
s, x1(s), x

′
1(s)

)
ds, x′

3(t) is a multiplier as indicated below,

F
(
t,X(t),X ′(t)

)
= f + x′

3[x
′
2 − g], with

X(a) =




0
0
0


 , and X(b) =




1
M
∗








(2.2)

The perceptive reader will note that we “associate” x1(t) with the cumulative distribution

function and x′
1(t) with the probability density function. The first two components of X(a)

and X(b) are now immediate. The third component of X(a) is to “normalize” x3 , in that

we only need the unique values of x′
3 but can/will find x3(t) . Finally, “∗” refers to the fact

that we can not specify x3(b) instead must use the transversality procedure, below.

We next make the following calculations.

F (t,X,X ′) = f(t, x1, x2, x
′
1, x

′
2) + x′

3

[
x′

2 − g(t, x1, x
′
1)

]
,
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so that

FX =




fx1 − gx1x
′
3

fx2

0


 , FX ′ =




fx′
1
− gx′

1
x′

3

fx′
2
+ x′

3

x′
2 − g(t, x1, x

′
1)


 ,

and FX ′X ′ =




fx′
1x′

1
− gx′

1x′
1
x′

3 0 −gx′
1

0 fx′
2x′

2
1

−gx′
1

1 0


 .





(2.3)

We note that FX ′X ′ is, of course, symmetric and that det FX ′X ′ = −fx′
2x′

2
g2

x′
1
− fx′

1x′
1

+

gx′
1x′

1
x′

3 , which we assume is not identically zero on any subinterval.

Lemma 2.1. If det FX ′X ′ 6≡ 0 on any subinterval, then the Euler equation d
dt

FX ′ = FX is a

regular, second order differential equation. It, along with the boundary conditions in (2.2),

has a unique solution. �

In the classical case(s) where f = x′ lnx′ and g = a(t)x′, a cofactor expansion implies

detFX ′X ′ = 1
x′
1

and the stated results.

We next note that under this assumption, the Bliss Multiplier Rule ideas hold, in that

this problem is nonsingular in the sense of Bliss [5]. By [11] and [13], the basic necessary

conditions for (2.2) hold. That is

Theorem 2.2. There exists a unique solution to (2.1) such that

d

dt
FX ′ = Fx , (2.4a)

F T
X ′ X|ba = 0, and (2.4b)

FX ′ is continuous at points where X ′(t) is not continuous. � (2.4c)

We note that these three conditions are the conditions which give the solution when one

exists.

If we regard this as a problem in three dependent variables, it is “complete”. However, it is

instructive to note that these general problems can be reduced to a second order differential
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equation in one variable which is not ordinary. Thus, using the results of this theorem, we

have

(i) x′
3 − g(t, x1, x

′
1) ≡ 0 by the use of the third component of (2.4a), the

fact it is piecewise continuous by (2.4c), and it is 0 at b by (2.4b)

and the (∗) condition. Thus, x3(t) =

∫ t

a

g(s, x, x′) ds by use of the

X(a) third component of in (2.2) and hence

∫ b

a

g(t, x, x′) dt = M.

(2.5a)

From the second component we have

(ii) x′
3 =

∫ t

a

fx2ds − fx′
2

(2.5b)

and finally we have the second order equation for x = x1,

(iii)
d

dt

[
fx′

1
− gx′

1

∫ t

a

fx2 ds + gx′
1
fx′

2

]
= fx1 − gx1

∫ t

a

fx2 ds + gx1f. (2.5c)

Theorem 2.3. The solution to (2.1) is as follows: As a problem with three dependent vari-

ables, its solution is given by the second order differential equation

d

dt
fX ′ = fX

in (2.3) with boundary conditions (2.2). In addition, in one dependent variable it is given

by (2.5c) with x in BC. �

As expected, the one variable solution causes additional problems. In three variables the

differential equation is ordinary and there are efficient and accurate numerical methods with

an a priori global error of O(h2) as described in [11] and [12]. The arguments in one variable

involve the antiderivative so at a minimum, (2.5c) will require additional differentiation to

easily solve that equation.

3. The Classical Problems

In this section we consider the classical problem:

min

∫ b

a

x′(t) lnx′(t) dt

s.t.

∫ b

a

t x′(t) dt = M1 and

∫ b

a

t2x′(t) dt = M2, and x(a) = 0, x(b) = 1.

(3.1)
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We note that f is only a function of x′
1 and that there are now two constraints or moments

but they are of the form x′
2 = g1(t, x

′
1) = tx′

1 and x′
3 = g2(t, x

′
1) = t2x′

1, that is of the form

a(t)x′
1 .

Following the procedures given above, we define X(t) =
(
x1(t), x2(t), x3(t), x4(t), x5(t)

)T

where x1(t) = x(t), x2(t) =
∫ t

a
s x′

1(s) ds, x3(t) =
∫ t

a
s2x′

1(s) ds, x′
4(t), x′

5(t) are multipliers

we have,

F
(
t,X(t),X ′(t)

)
= x′

1(t) lnx′
1(t) + x′

4(t)
[
x′

2(t)− t x′
1(t)

]
+ x′

5(t)
[
x′

3(t) − t2x′
1(t)

]

X(a) =




0
0
0
0
0




, and X(b) =




1
M1

M2

∗
∗




.
(3.2)

We again note that we “associate” x1(t) with the cumulative distribution function, x′
1(t) with

the probability density function while x′
2 − t x′

1 = 0 and x′
3 − t2 x′

1 = 0 are associated with

the first and second “moment integrands”, respectively. The first three components of X(a)

and X(b) are now immediate. The fourth and fifth components of X(a) are to “normalize”

x4 and x5 , in that we only seek the unique values of x′
4 and x′

5 but can/will find x4(t) and

x5(t). Finally, “∗” refers to the fact that we can not specify x4(b) and x5(b) and instead

must use the transversality procedure, below.

We next make the following calculations.

FX =




0
0
0
0
0




, FX ′ =




lnx′
1 + 1 − t x′

4 − t2x′
5

x′
4

x′
5

x′
2 − t x′

1

x′
3 − t2x′

1




,

and FX ′X ′ =




1
x′
1

0 0 −t −t2

0 0 0 1 0
0 0 0 0 1

−t 1 0 0 0
−t2 0 1 0 0




,

(3.3)

and have
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Lemma 3.1. Det FX ′X ′ 6≡ 0, except at isolated points, and hence, the Euler equation

d
dt

FX ′ = FX is a regular, second order differential equation. It, along with the boundary

conditions in (3.2), has a unique solution. �

A cofactor expansion implies det fX ′X ′ = 1
x′
1

and the stated results. The reader is invited

to observe why this result is much simpler than in the general problem of Section 2.

Theorem 3.2. There exists a unique solution to (3.1) such that

d

dt
FX ′ = Fx , (3.4a)

F T
X ′ X|ba = 0, and (3.4b)

FX ′ is continuous at points where X ′(t) is not continuous. � (3.4c)

We note that these three conditions are the conditions which give the solution. To aid

the reader in perhaps unfamiliar ground, we repeat ideas of the previous section. Otherwise,

these specific results are immediate from Section 2.

Using the results of this theorem, we have

(i) x′
3 − t2x′

1 ≡ 0 by the use of fifth component of (3.4a), the fact it is piecewise

continuous by (3.4c), and it is 0 at b by (3.4b) and the (∗) condition.

Thus, x3(t) =

∫ t

a

s2x′
1(s) ds by use of the third component of

X(a) in (3.2) and the fact that

∫ b

a

t2x′(t) dt = M2 .

(3.5a)

Similar reasoning yields

(ii) x′
2 = t x′

1 and, hence, x2(t) =

∫ t

a

s x′
1(s) ds and

∫ b

a

t x1(t) dt = M1 . (3.5b)

We also have

(iii) x′′
5 = 0 and x5(t) = c2(t− a) by the fifth component of X(a). (3.5c)

Similarly,

(iv) x4(t) = d2(t− a). (3.5d)
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Once again, we invite the reader to consider why the special form in (3.5c), (3.5d), and (3.5e)

below

(v)
d

dt

[
(lnx′ + 1) − d2t− c2t

2
]

= 0 . (3.5e)

The fact that the multipliers x′
4 and x′

5 are constants agrees with the classical isoperimetric

result [2]. Finally, (3.5e) is a 4-parameter boundary value problem including M1 and M2 .

We have

d

dt
(lnx′) = d2 + 2c2t (3.6)

which implies that
lnx′ = d2t + c2t

2 + d1 and

x(t) =

∫ t

a

ed1+d2s+c2s2

ds + c1 .
(3.7)

By the boundary conditions, c1 = 0. In addition, we use x(a) = 0 and x(b) = 1, which are

the familiar results from continuous probability and M1 and M2 to uniquely determine the

unique values of c2, d1 and d2 .

An easy argument extends these results to the interval (−∞,∞). Thus, x′(t) = ec2(t−c3)2

where c2 < 0. But the moment constraints in (3.1) immediately imply that c3 = 0 and

c2 = −1
2
. This is the known, classical result that p(t) = e−t2/2 in this case.

4. The Numerical Problem

The purpose of this section is to consider numerical solutions for (2.1) The numerical

extension to a finite number of moments and any interval [a, b] will be immediate and left

to the reader.

Our first task is to give the relevant theory from [11, Formulas (6.9) or (6.29), and (6.3)]

or [12], and then we will explicitly describe (4.1) and (4.2), below. Thus,
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Theorem 4.1. Let F (t,X,X ′) be given as in (2.2), h > 0, Nh = b − a and Xk, k =

0, 1, . . . , N , be a sequence of values which satisfy

FX ′

(
a∗

k−1,
Xk + Xk−1

2
,
Xk − Xk−1

h

)

+
h

2
FX

(
a∗

k−1,
Xk + Xk−1

2
,
Xk − Xk−1

h

)

− F ′
X

(
a∗

k,
Xk + Xk+1

2
,
Xk−1 − Xk

h

)

+
h

2
FX

(
a∗

k,
Xk + Xk−1

2
,
Xk+1 − Xk

h

)
= 0

for k = 1, 2, . . . , N − 1

(4.1)

and

FX ′

(
a∗

N−1,
XN + XN−1

2
,
XN −XN−1

h

)

+
h

2
FX

(
a∗

N−1,
XN + XN−1

2
,
XN − XN−1

h

)
= 0

(4.2)

where a∗
k = (ak + ak+1)/2 with ak = a + k h.

Let X(t) be the solution to Problem (2.1) and {Xk} be a computed, numerical solution of

(4.1) and (4.2). Then there exists a constant C > 0, independent of h > 0, so that for h

sufficintly small

‖X(ak) − Xk‖ ≤ Ch2. �

We note that (4.1) “solves” the two point boundary value problem where X(a) and X(b)

are given. The combination of (4.1) and (4.2) “solves” transversality problem at t = b.

Finally, to aid the reader in using these techniques, we return to FX ′ in (2.3) and look at

the first term for a specific value of k. The remaining steps in applying our methods will be

immediate and left to the reader. Hence,

FX ′

(
a∗

k−1,
Xk + Xk−1

2
,

Xk − Xk−1

h

)

=




ln
(x1k−x1k−1

h

)
+ 1 −

(
ak − h

2

) (x4k−x4k−1

h

)
−

(
ak − k

2

)2 (x5k−x5k−1

h

)
x4k−x4k−1

h
x5k−x5k−1

h
x2k−x2k−1

h
−

(
ak − h

2

) x1k−x1k−1

h

x3k−x3k−1

h
−

(
ak − h

2

)2 (x1k−x1k−1

h

)



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We note that (4.1), (4.2) are a set of 5(N + 1) equations in 5(N + 1) unknowns with a

unique solution by Lemma 2.1 and Theorem 2.2.

Acknowledgement

The authors thank the referee for useful comments which led to improvements in its

presentation.

References

[1] N.A. Ahmed and D.V. Gokhale, Entropy expressions and their estimators for multivariate distributions,
IEEE. Trans. Inform. Theory 35 (1989), 688–692.

[2] Arfken, G., Mathematical Methods for Physicists, Academic Press, Inc., Orlando, FL, 1985.
[3] G. Aulogiaris and K. Zografos, A maximum entropy characterization of symmetric Kotz type and mul-

tivariate Burr distributions, Test 13 (2004), 65–83.
[4] Bhattacharya, B., Maximum entropy characterization for the multivariate Louisville distribution, Jour-

nal of Multivariate Analysis, 97 (2006), 1272-1283.
[5] Bliss, G.A., Lectures on the Calculus of Variations, Phoenix Science Series, University of Chicago Press,

Chicago, IL, 1963.
[6] Coles, P., From Cosmos to Chaos: The Science of Unpredictability, Oxford University Press, New York,

2006.
[7] Cover, T.M. and Thomas, J.A., Elements of Information Theory, Chapter 11, John Wiley & Sons, 1991.
[8] G.A. Darbellay and T. Vajda, Entropy expressions for multivariate continuous distributions, IEEE.

Trans. Inform. Theory 46 (2000), 709–712.
[9] S. Guiasu, A classification of the main probability distributions by minimizing the weighted logarithmic

measure of deviation, Ann. Inst. Statist. Math. 42 (1990), 269–279.
[10] Gregory, J., A New, Systematic Method for Efficiently Solving Holonomic (and Nonholonomic) Con-

straint Problems, in preparation.
[11] Gregory, J. and Lin, C., Constrained Optimization in the Calculus of Variations and Optimal Control

Theory, Van Nostrand Reinhold, New York, 1992.
[12] Gregory, J. and Lin, C., Discrete variable metohds for the m-dependent variable, non-linear extremal

problem in the calculus of variations, II, SIAM J. Numer. Anal. 30 (1993), 871–883.
[13] Gregory, J. and Lin, C., An unconstrained calculus of variations formulation for generalized optimal

control problems and for the constrained problem of Bolza, J. Math. Anal. Appl. 187 (1994), 826–841.
[14] Hestenes, M.R., Calculus of Variations and Optimal Control Theory, John Wiley and Sons: New York,

1966.
[15] E.T. Jaynes, Information theory and statistical mechanics, Phys. Rev., 106 (1957), 620–630.
[16] A.M. Kagan, Y.V. Linnik, C.R. Rao, Characterization Problems in Mathematical Statistics, Translated

from Russian text by B. Ramachandran, Wiley, New York, 1973.
[17] J.N. Kapur, Maximum Entropy Models in Engineering, Wiley, New York, 1989.
[18] S. Karlin and Y. Rinott, Entropy inequalities for classes of probability distributions-II, The multivariate

case, Adv. Appl. Probab. 13 (1981), 325–351.
[19] S. Karlin and Y. Rinott, Classes of orderings of measures and related correlation inequalities-I, Multi-

variate totally positive distributions, J. Multivariate Anal. 10 (1980), 467–498.
[20] S. Kullback, Information Theory and Statistics, Wiley, New York, 1959.
[21] A.W. Marshall and I. Olkin, Theory of Majorization and its Applications, Wiley, New York, 1979.
[22] V. Preda, The student distribution and the maximum entropy, Ann. Inst. Statist. Math. 34 (1982),

335–338.
[23] C.R. Rao, Linear Statistical Inference and Its Applications, Wiley, New York, 1973.



12 B. BHATTACHARYA AND J. GREGORY
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